The gravitational force exerted by the earth on an object near the earth's surface. The Force of Gravity Near Earth's SurfaceDefining "Near"Suppose an object of mass m is at a height h above the surface of the earth. Assume that the earth is spherical with radius RE. Working in spherical coordinates with the origin at the center of the earth, the gravitational force on the object from the earth will be:
Unknown macro: {latex}
\begin Unknown macro: {large} [ \vec Unknown macro: {F}
= - G \frac{M_ Unknown macro: {E}
m}{(R_ +h)^{2}} \hat Unknown macro: {r}
]\end
Unknown macro: {latex}
\begin Unknown macro: {large} [ \vec Unknown macro: {F}
\approx - G \frac{M_ Unknown macro: {E}
m}{R_ ^{2}}\left(1 - 2\frac Unknown macro: {h}
{R_{E}} + ...\right)\hat Unknown macro: {r}
]
Unknown macro: {latex}
\begin Unknown macro: {large} [ F_ Unknown macro: {g}
= mG\frac{M_{E}}{R_ Unknown macro: {E}
^{2}} ]\end Defining gThe above expression is of the form:
Unknown macro: {latex}
\begin Unknown macro: {large} [ F_ Unknown macro: {g}
= mg ]\end
Unknown macro: {latex}
\begin Unknown macro: {large} [ g = G\frac{M_{E}}{R_ Unknown macro: {E}
{2}} = \left(6.67\times 10{-11}\mbox Unknown macro: { N}
\frac{\mbox Unknown macro: {m}
^{2}}{\mbox Unknown macro: {kg}
{2}}\right)\left(\frac{5.98\times 10 Unknown macro: {24}
\mbox{ kg}}{(6.37\times 10^ Unknown macro: {6}
\mbox Unknown macro: { m}
)^{2}}\right) = \mbox Unknown macro: {9.8 m/s}
^ Unknown macro: {2}
]\end Gravitational Potential Energy Near Earth's SurfaceNear the earth's surface, if we assume coordinates with the +y direction pointing upward, the force of gravity can be written: Unknown macro: {latex}
\begin Unknown macro: {large} [ \vec Unknown macro: {F}
= -mg \hat Unknown macro: {y}
]\end Since the "natural" ground level varies depending upon the specific situation, it is customary to specify the coordinate system such that: Unknown macro: {latex}
\begin Unknown macro: {large} [ U(0) \equiv 0]\end The gravitational potential energy at any other height y can then be found by choosing a path for the work integral that is perfectly vertical, such that: Unknown macro: {latex}
\begin Unknown macro: {large} [ U Unknown macro: {0}
^ Unknown macro: {y}
(-mg)\;dy = mgy]\end For an object in vertical freefall (no horizontal motion) the associated potential energy curve would then be: For movement under pure near-earth gravity, then, there is no equilibrium point. At least one other force, such as a normal force, tension, etc., must be present to produce equilibrium. Example Problems involving Near-earth GravityExampleProblemsinvolvingGravitationalForce"> Example Problems involving Gravitational ForceError formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null
ExampleProblemsinvolvingGravitationalPotentialEnergy"> Example Problems involving Gravitational Potential EnergyError formatting macro: contentbylabel: com.atlassian.confluence.api.service.exceptions.BadRequestException: Could not parse cql : null
|