Unknown macro: {table}
Unknown macro: {tr}
">
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}
One-Dimensional Motion (General) model. Thus, for the case of constant angular acceleration, the integral form of these Laws are equivalent to:
Rotational Motion
DescriptionandAssumptions"> Description and Assumptions
ProblemCues"> Problem Cues
PriorModels"> Prior Models
Vocabulary"> Vocabulary
Model
Compatible System "> Compatible System
Interactions "> Interactions
Relevant Definitions "> Relevant Definitions
One-Dimensional Motion (General) model. Thus, for the case of constant angular acceleration, the integral form of these Laws are equivalent to:
Unknown macro: {latex}
\begin
Unknown macro: {large}
[ \omega_
Unknown macro: {f}
= \omega_
Unknown macro: {i}
+ \alpha(t_
-t_
Unknown macro: {i}
)]
[ \theta_
Unknown macro: {f}
= \theta_
+ \frac
Unknown macro: {1}
Unknown macro: {2}
(\omega_
Unknown macro: {i}
+\omega_
Unknown macro: {f}
)(t_
-t_
)]
[ \theta_
Unknown macro: {f}
= \theta_
Unknown macro: {i}
+ \omega_
(t_
-t_
Unknown macro: {i}
) +\frac
Unknown macro: {2}
\alpha(t_
Unknown macro: {f}
-t_
Unknown macro: {i}
)^
]
[ \omega_
Unknown macro: {f}
^
Unknown macro: {2}
=\omega_
Unknown macro: {i}
^
+ 2\alpha(\theta_
-\theta_
Unknown macro: {i}
)]\end
Diagrammatic Representations"> Diagrammatic Representations
Relevant Examples
AllExamplesUsingtheModel"> All Examples Using the Model
Unknown macro: {search-box}
Error formatting macro: live-template: java.lang.NullPointerException