Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

Overview

Distinguishable and indistinguishable particles have been considered. Consider the

...

single-particle

...

partition

...

function

...

among

...

distinguishable

...

particles.

...

Label

...

and

...

assign

...

criteria

...

among

...

different

...

particles.

...

Apply

...

the

...

Boltzman

...

approximation

...

at

...

high

...

temperature,

...

low

...

density,

...

and

...

high

...

mass

...

to

...

indistinguishable

...

particles

...

and

...

obtain

...

the

...

relation

...

below.

...

Adjust

...

for

...

overcounting.

...

The

...

number

...

of

...

particles

...

is

...

much

...

less

...

than

...

the

...

number

...

of

...

state.

...

Apply

...

to

...

a

...

monoatomic

...

gas.

...

At

...

low

...

temperature

...

and

...

high

...

density,

...

the

...

Boltzman

...

approximation

...

is

...

not

...

good.

...

Different

...

types

...

of

...

statistics

...

have

...

been

...

mentioned.

{
Latex
} \[ Q = \frac{q_{\mbox{single}}^N}{N\!} \] {latex}

Today

...

a

...

diatomic

...

gas

...

is

...

considered.

...

In

...

a

...

solid,

...

atoms

...

are

...

fixed

...

in

...

space.

...

A

...

solid

...

solution

...

and

...

vibrations

...

in

...

a

...

solid

...

are

...

considered.

...

Degrees

...

of

...

freedom

...

in

...

a

...

diatomic

...

molecule

...

There

...

are

...

different

...

degrees

...

of

...

freedom

...

in

...

a

...

diatomic

...

molecule.

...

Below

...

is

...

a schematic.

Image Added

There are various contributions to the Hamiltonian of a single particle. Contributions include translation, rotation, vibration, electric, and nuclear. The diatomic molecule is part of an ideal gas. Separate the Hamiltonians. Separate the interactions and particles. Under the rigid rotor approximation, rotations do not see the changing bond length. The contributions of the Hamiltonian due to rotation and vibration are independent. When vibrations are large, though, the bond length is changing. The first excited electric state would be considered. McQuarrie considers the first excited nuclear state. Thermodynamics cares about derivatives of the partition function.

Latex
 schematic.

!Diatomic_molecule_--_translation%2C_vibration%2C_rotation.PNG!

There are various contributions to the Hamiltonian of a single particle. Contributions include translation, rotation, vibration, electric, and nuclear. The diatomic molecule is part of an ideal gas. Separate the Hamiltonians. Separate the interactions and particles. Under the rigid rotor approximation, rotations do not see the changing bond length. The contributions of the Hamiltonian due to rotation and vibration are independent. When vibrations are large, though, the bond length is changing. The first excited electric state would be considered. McQuarrie considers the first excited nuclear state. Thermodynamics cares about derivatives of the partition function.
{latex} \[ \hat H_{\mbox{single}} = \hat H_{\mbox{trans}} + \hat H_{\mbox{rot}} + \hat H_{\mbox{vib}} + \hat H_{\mbox{elec}} + \hat H_{\mbox{nucl}} \] {latex}

The

...

partition

...

function

...

is

...

a

...

measure

...

of

...

the

...

number

...

of

...

thermally

...

excited

...

states.

...

Consider

...

the

...

single-particle

...

partition

...

function.

{
Latex
} \[ q_{\mbox{single}} = q_{\mbox{trans}} \cdot q_{\mbox{rot}} \cdot q_{\mbox{vib}} \] {latex}

There

...

is

...

a

...

high

...

temperature

...

approximation.

...

Assuming

...

"normal

...

conditions"

...

the

...

Boltzman

...

approximation

...

can

...

be

...

used.

{
Latex
} \[ Q_{\mbox{sys}} = \frac{q_{\mbox{single}}^N}{N\!} \] {latex}

h2. Translation

Look at the center of mass when considering the translational component of the single-particle partition

Translation

Look at the center of mass when considering the translational component of the single-particle partition function.

Latex
 function.
{latex} \[ q_{\mbox{trans}} = \left ( \frac{2 \pi ( m_1 + m_2 ) k_B T}{n^2} \right )^{\frac{3}{2}} \] 

Vibrations

There is interest in expressions of

Latex
{latex}

h2. Vibrations

There is interest in expressions of {latex} \[ q_{\mbox{rot}} \] 

and

Latex
{latex} and {latex} \[ q_{\mbox{vib}} \] {latex} 

and

...

energy

...

spectrum.

...

Diatomic

...

molecules

...

see

...

a

...

potential

...

well

...

and

...

there

...

is

...

an

...

equilibrium

...

bond

...

length.

...

The

...

deviation

...

is

{
Latex
} \[ \zeta \] {latex}

,

...

and

...

the

...

term

{
Latex
} \[ \mbox{De} \] {latex} 

is

...

the

...

energy

...

required

...

to

...

dissociate.

...

Assuming

...

the

...

vibrations

...

are

...

small,

...

the

...

energy

...

associated

...

with

...

vibrating

...

bonds

...

can

...

be

...

expressed

...

with

...

a

...

Taylor

...

expansion.

...


!Potential_versus_spacing_--_Ro.PNG

...

!

{
Latex
} \[ U( \zeta ) = U(0) + \left ( \frac{\partial U}{\partial \zeta} \right )_{\zeta = 0} \zeta + \frac {1}{2} \left ( \frac{\partial^2 U}{\partial \zeta^2} \right )_{\zeta = 0 } \zeta^2 + ... \] {latex}

The

...

first

...

term,

{
Latex
} \[ U(0) \] {latex}

,

...

is

...

constant,

...

and

...

the

...

second

...

term

...

is

...

equal

...

to

...

zero

...

since

...

there

...

is

...

no

...

force.

...

The

...

second-order

...

term

...

is

...

proportional

...

to

...

the

...

strength

...

of

...

the

...

bond

...

between

...

two

...

particles.

...

There

...

is

...

a

...

force

...

constant

...

between

...

two

...

particles.

...

Write

...

the

...

Hamiltonian

...

with

...

the

...

approximation

...

of

...

small

...

vibrations.

{
Latex
} \[ \hat H_{\mbox{vibr}} = \frac{\hbar^2}{2 m_r} \frac{\partial^2}{\partial \zeta^2} + \frac{1}
{2} f \zeta^2 \] {latex}
Latex
{latex} \[ m_r = \frac{m_1 m_2}{m_1 + m_2} \] {latex}

The

...

first

...

term

...

is

...

a

...

kinetic

...

contribution,

...

and

...

the

...

force

...

constant,f,

...

is

...

a

...

property

...

of

...

the

...

molecule.

...

Consider

...

the

...

quantum

...

mechanical

...

solutions

...

of

...

a

...

harmonic

...

oscillator.

{
Latex
} \[ \epsilon_n = \left ( n + \frac{1}{2}
\right ) h \nu \]
{latex}

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ n=0,1,2 \] 

...

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ \nu = \frac{1}{2 \pi} \sqrt{\frac{f}{m}} \] 

...

There

...

is

...

a

...

relation

...

between

...

a

...

spring

...

constant

...

and

...

mass.

...

Light

...

masses

...

or

...

masses

...

with

...

a

...

stiff

...

spring

...

vibrate

...

rapidly.

...

Write

...

the

...

mini-partition

...

function.

...

and

...

simplify

...

with

...

the

...

relation

...

pertaining

...

to

...

a

...

geometric

...

series.

{
Latex
} \[ q_{\mbox{vib}} = \sum_n^{\infty} e^{-\beta \epsilon_n} \] {latex}{

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ q_{\mbox{vib}} = \sum_{n=0}^{\infty} e^{\left ( n + \frac{1}{2} \right ) h \nu} \] 

...

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ q_{\mbox{vib}} = e^{\beta \frac{h \nu}{2}} \sum_{n=0}^{\infty} e^{\beta h \nu n} \] 

...

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ \mbox{Geometric Series} \] 

...

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ x < 1 \] 

...

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ \sum_{n = 0}^{\infty} x^n = \frac{1}{1-x} \] 

...

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ q_{\mbox{vib}} = \frac{e^{-\beta \frac{h \nu}{2}}}{1-e^{-\beta h \nu}} \] 

...

Express

...

in

...

terms

...

of

...

the

...

characteristic

...

vibrational

...

temperature,

{
Latex
} \[ \theta_{\nu} \] {latex}

.
{latex}

.

Latex
 \[ \theta_{nu} = \frac{h \nu}{k_B} \] {latex}

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ q_{\mbox{vib}} = \frac{e^{-\frac{\theta_{\nu}}{2 T}}}{1-e^{-\frac{\theta_{\nu}}{2 T}}} \] 

...

The

...

characteristic

...

termperature,

{
Latex
} \[ \theta_{\nu} \] {latex}

,

...

is

...

typically

...

between

{
Latex
} \[ 3000 - 6000 K \] {latex}

.

...

Calculate

...

the

...

probability

...

of

...

being

...

in

...

a

...

certain

...

state.

{
Latex
} \[ P_n = \pi_n \] {latex}{

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ P_n = \frac{e^{-\beta \epsilon_n}}{q_{\mbox{vib}}} \pi_{n>0} \] 

...

A

...

general

...

expression

...

of

...

being

...

in

...

any

...

state

...

other

...

than

...

the

...

ground

...

state

...

is

...

below,

...

as

...

well

...

as

...

a

...

calculation

...

at

{
Latex
} \[ 300 K \] {latex}

and

...

a

...

characteristic

...

temperature

...

of

{
Latex
} \[ 3000 K \] {latex}
.
{latex}

.

Latex
 \[ \pi_{n>0} = 1 - \pi_0 \] {latex}{

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ \pi_{n>0} = e^{-10} \] 

...

Wiki Markup
{html}

...

<P> </P>{html}

...

Latex

...

 \[ \pi_{n>0} \approx 10^{-5} \] 

...

The

...

probability

...

of

...

a

...

molecule

...

being

...

in

...

an

...

excited

...

state

...

is

...

very

...

small.

...

It

...

is

...

hard

...

to

...

excite

...

a

...

vibrational

...

state

...

above

...

the

...

ground

...

state.

...

Rotation

Rotational motion is associated with angular momentum. The rotation of a diatomic molecule can be considered equivalent to the rotation of one particles moving freely along a sphere with fixed radius,

Latex
 \[ R_0 \] 

, and a reduced mass. Consider the Hamiltonian. The term

Latex
 \[ I \] 

is the moment of inertia and an expression of the eigenvalues,

Latex
 \[ \epsilon_j \] 

, to the spherical coordinate problem is below.

!Diatomic_molecule_--_rotation_with_axis.PNG

...

!

{
Latex
} \[ \hat H = -\frac{\hbar^2}{2I} \left ( \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left ( \sin \theta \frac{\partial}{\partial \theta} \right ) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial r^2} \right ) \] 
Latex
{latex}
{latex} \[ I = m_R R_0^2 \] {latex}
{latex
Latex
} \[ \epsilon_j = \frac{\partial ( \zeta + 1 ) h^2}{8 \pi^2 I} \] 
Latex
{latex}
{latex} \[ j = 0, 1, 2 \] {latex}

Identify

...

the

...

Hamiltonian,

...

solve

...

with

...

Schrodinger

...

or

...

remember

...

the

...

energy

...

spectrum.

...

In

...

an

...

unsymmetric

...

molecules,

...

the

...

two

...

masses

...

are

...

not

...

equivalent.

...

A

...

summation

...

in

...

the

...

mini-partition

...

function

...

is

...

not

...

as

...

easy

...

as

...

the

...

vibrational

...

case.

...

Consider

...

two

...

limits.

{
Latex
} \[ q_{\mbox{rot}} = \sum_{\epsilon_j} = w_j e^{\beta \epsilon_j} \] {latex}
{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ q_{\mbox{rot}} = \sum_{\epsilon_j} = (2j + 1) e^{-j (j+1) \frac{\theta}{T} } \] 

...

Wiki Markup
{html}<p>{html}

Latex
 \[ \theta_r = \frac{h^2}{8 \pi^2 I k_N} \] 

...

Case 1

The first case involves high temperatures, or temperatures much greater than\theta_r.

...

If

...

the

...

temperature

...

is

...

large,

...

the

...

exponential

...

term

...

goes

...

to

...

zero.

...

States

...

are

...

dense,

...

and

...

it

...

is

...

possible

...

to

...

approximate

...

with

...

an

...

integral.

{
Latex
} \[ q_{\mbox{rot}} = \int (2j + 1) e^{-j (j+1) \frac{\theta}{T}} dj \] {latex}
{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ q_{\mbox{rot}} = \frac{T}{\theta_r} \] 

...

Case 2

Consider when the temperature is close to\theta_r.

...

Caclulate

...

a

...

few

...

of

...

the

...

terms,

...

and

...

see

...

that

...

the

...

terms

...

decrease

...

rapidly.

...

Assume

...

that

...

the

...

larger

...

terms

...

are

...

zero.

...

Consider

...

the

...

first

...

couple

...

terms

...

of

...

the

...

summation.

{
Latex
} \[ q_{\mbox{rot}} = 1 + 3 e^{-\frac{2 \theta_r}{T}} + 5 e^{-\frac{6 \theta_r}{T}} + ... \] {latex}

There

...

is

...

overcounting

...

of

...

the

...

number

...

of

...

states

...

with

...

symmetric

...

molecules.

...

Rotational

...

degrees

...

of

...

freedom

...

are

...

coupled.

...

Read

...

MacQuarrie

...

6-4.

...

The

...

level

...

of

...

quantum

...

mechanics

...

is

...

above

...

what

...

is

...

required.

...

There

...

is

...

inversion

...

of

...

the

...

nucleus,

...

two

...

indistinguishable

...

configurations,

...

and

...

overcounting.

...

Regarding

...

the

...

quiz,

...

one

...

should

...

be

...

able

...

to

...

do

...

a

...

problem

...

with

...

a

...

symmetric

...

molecule.

...

Correction

...

for

...

overcounting

...

The

...

mini-partition

...

function

...

is

...

a

...

measure

...

of

...

the

...

number

...

of

...

thermally

...

accessible

...

states.

...

The

...

mini-partition

...

function

...

of

...

rotation

...

is

...

written

...

below

...

in

...

the

...

first

...

case

...

wherein

...

the

...

temperature

...

is

...

much

...

greater

...

than\theta_r.

{
Latex
} \[ q_{\mbox{rot}} = \frac{T}{2 \theta_r} \] {latex}

The

...

case

...

where

...

the

...

temperature

...

is

...

less

...

than\theta_rrequires

...

rigorous

...

quantum

...

mechanical

...

treatment

...

(really

...

onlyH_2

...

!).

...

Calculate

...

the

...

probability

...

to

...

be

...

in

...

a

...

certain

...

state.

{
Latex
} \[ P_j = \frac{N_j}{N} \] {latex}
{latex}
Latex
 \[ P_j = \frac{(2j + 1) e^{-j (j+1) \frac{\theta_r}{T}}}{q_{\mbox{rot}}} \] {latex}

Other

...

states

...

are

...

seen

...

other

...

than

...

the

...

lowest

...

one.

...

A

...

graph

...

is

...

below.

...

!Nj_n_versus_j.PNG

...

!

...

Deriving

...

Thermodynamic

...

Quantities

...

from

...

Partition

...

Function

...

From

...

the

...

single-partition

...

function,

...

build

...

the

...

entire

...

system.

{
Latex
} \[ Q_{\mbox{sys}} = \frac{\left ( q_{\mbox{trans}} \cdot q_{\mbox{rot}} \cdot q_{\mbox{vib}} \right )^N}{N\!} \] {latex}
{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ F = -k_B T \ln Q \] 

...

Wiki Markup
{html}<p>{html}

Latex
 \[ F = -k_B T \left ( \ln q_{\mbox{trans}} + \ln q_{\mbox{rot}} + \ln q_{\mbox{vib}} - \ln N\! \right ) \] 

...

Wiki Markup
{html}<p>{html}

Latex
 \[ F = F_{\mbox{trans}} + F_{\mbox{rot}} + F_{\mbox{vibr}} \] 

Pressure

Calculate the pressure. Only the translational component of the partition function is proportional to volume.

Latex
{latex}

h2. Pressure

Calculate the pressure. Only the translational component of the partition function is proportional to volume.
{latex} \[ P = - \left ( \frac{\partial F}{\partial V} \right )_{N, T} \ln q_{\mbox{trans}} = \left ( \frac{2 \pi \left (m_1 + m_2 \right ) k_B T} {n^2} \right )^{\frac{3}{2} V} \] 
Latex
{latex}
{latex} \[ P = \frac{N k_B T}{V} \] {latex}

This

...

expression

...

is

...

the

...

same

...

as

...

for

...

a

...

monoatomic

...

gas.

...

The

...

ideal

...

gas

...

equation

...

holds

...

for

...

both

...

monoatomic

...

and

...

diatomic

...

gases.

...

Heat

...

Capacity

...

Calculate

...

the

...

heat

...

capacity.

...

Decouple

...

energies

...

and

...

heat

...

capacities.

{
Latex
} \[ E = k_B T^2 \left (\frac{\partial \ln Q}{\partial T} \right )_{N, V} \] 
Latex
{latex}
{latex} \[ E = E_{\mbox{trans}} + E_{\mbox{rot}} + E_{\mbox{vibr}} \] {latex}
{latex}
Latex
 \[ C_v = C_{v, \mbox{trans}} + C_{v, \mbox{rot}} + C_{v, \mbox{vibr}} \] {latex}

h3. Translational energy

Below is an expression of the translational energy
{

Translational energy

Below is an expression of the translational energy

Latex
latex} \[ E_{\mbox{trans}} = \frac{3}{2} N k_B T \] {latex}

h3. Rotational energy

An expression of the rotational energy is below. Consider at normal temperature and a system that is 

Rotational energy

An expression of the rotational energy is below. Consider at normal temperature and a system that is notH_2.

...

An

...

expression

...

of

...

the

...

rotational

...

partition

...

function

...

is

...

also

...

below.

{
Latex
} \[ E_{\mbox{rot}} = N k_B T^2 \left ( \frac{ \partial \ln q_{\mbox {rot}}}{\partial T} \right )_{N, V} \] {latex}
{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ E_{\mbox{rot}} = N k_B T \] 

Vibrational energy

The vibrational energy is expressed below.

Latex
{latex}

h3. Vibrational energy

The vibrational energy is expressed below.
{latex} \[ E_{\mbox{vibr}} = N k_B T^2 \left ( \frac{ \partial \ln q_{\mbox{vibr}}}{\partial T} \right )_{N, V} \] {latex}

{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ E_{\mbox{rot}} = N k_B T \left ( \frac{ \frac{h \nu}{k_B T}}{e^{\frac{h \nu}{k_B T}} - 1} \right ) + \frac{N h \nu}{2} \] 

...

Analyze

...

the

...

vibrational

...

energy

...

with

...

two

...

limits.

...

Case

...

1

...

In

...

the

...

first

...

case,

...

consider

...

the

...

vibrational

...

energy

...

as

...

the

...

temperature

...

approaches

...

infinity.

...

The

...

expression

...

of

...

vibrational

...

energy

...

can

...

be

...

written

...

in

...

terms

...

ofx,

...

and

...

is

...

written

...

below.

...

As

...

the

...

temperature

...

approaches

...

infinity,xapproaches

...

zero.

{
Latex
} \[ x = \frac{h \nu}{k_B T} \] {latex}

{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ \lim_{x \to 0} \frac {x}{e^x - 1} = 1 \] 

...

Wiki Markup
{html}<p>{html}

Latex
 \[ 

...

E_{\mbox{vibr}} = N k_B T + \frac {N h \nu}{2} \] 

Case 2

An expression of the vibrational energy in the case of temperature much less than

Latex
} \] {latex}

h4. Case 2

An expression of the vibrational energy in the case of temperature much less than {latex} \[ \theta_v \] 

.

Latex
{latex}.

{latex} \[ E_{\mbox{vib}} = \frac{N h \nu}{2} \] {latex}

h3. Translational component of heat capacity

The translational component of heat capacity is found by

Translational component of heat capacity

The translational component of heat capacity is found by differentiating the translational energy with respect to temperature.

Latex
 differentiating the translational energy with respect to temperature.

{latex} \[ C(v, \mbox{trans}) = \frac{\partial E_{\mbox{trans}} }{\partial T} \] {latex}

{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ C(v, \mbox{trans}) = \frac{3 N k_B}{2} \] 

Rotational component of heat capacity

The relation below of the rotational component of heat capacity is used unless the temperature is very low or for

Latex
{latex}

h3. Rotational component of heat capacity

The relation below of the rotational component of heat capacity is used unless the temperature is very low or for {latex} \[ H_2 \] 

.

Latex
{latex}.

{latex} \[ C(v, \mbox{rot}) = \frac{\partial E_{\mbox{rot}}}{\partial T} \] {latex}

{latex}

Wiki Markup
{html}<p>{html}

Latex
 \[ C(v, \mbox{rot}) = N k_B \] 

Vibrational component of heat capacity

The expression of the vibrational component of heat is below and is evaluated in two cases.

Latex
] {latex}

h3. Vibrational component of heat capacity

The expression of the vibrational component of heat is below and is evaluated in two cases.

{latex} \[ C(v, \mbox{vibr}) = \frac{\partial E_{\mbox{vib}}}{\partial T} \] {latex}

h4. Case 1

The temperature can be

Case 1

The temperature can be evaluated in the case of temperature much lower than

Latex
 evaluated in the case of temperature much lower than {latex} \[ \theta_r \] 

.

Latex
{latex}.

{latex} \[ C(v, \mbox{vibr}) = 0 \] {latex}

h4. Case 2

An express of the vibrational component of heat 

Case 2

An express of the vibrational component of heat capacity in the case of temperature greater than

Latex
capacity in the case of temperature greater than {latex} \[ \theta_r \] {latex} 

is

...

below.

{
Latex
} \[C{v, \mbox{vibr}} = N k_B \] {latex}

h3. Total heat capacity

The total heat capacity is considered in two cases

Total heat capacity

The total heat capacity is considered in two cases.

Case 1

Consider when the temperature is much less than

Latex
.

h4. Case 1

Consider when the temperature is much less than {latex} \[ \theta_{\nu} \] {latex} 

and

...

greater

...

than

{
Latex
} \[ \theta_r \] {latex}.

{latex}

.

Latex
 \[ C(v, \mbox{tot}) = \frac {3}{2} N k_B + N k_B + 0 \] {latex}
{html}<P><

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ C(v, \mbox{tot}) = \frac{5}{2} N k_B \] 

Case 2

An expression of the heat capacity is below in the case of the temperature greater than or equal to

Latex
{latex}

h4. Case 2

An expression of the heat capacity is below in the case of the temperature greater than or equal to {latex} \[ \theta_v \] {latex} 

and

...

much

...

greater

...

than

{
Latex
} \[ \theta_r \] {latex}

{latex}] 
Latex
 \[ C(v, \mbox{tot}) = \frac{3}{2} N k_B + N k_B + N k_B \] {latex}
{html}<P><

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ C(v, \mbox{tot}) = \frac{7}{2} N k_B \] 

Comments

Define different kinds of motion. Solve the Schrodinger equation. Evaluate as well as possible. Take limits in the rotational case. Boltzman is a system approximation. Don't need to be too occupied with the math.

Configurational Properties

A figure below is of a mixture of atoms in a solid. Consider some arrangement on a lattice of atoms and vacancies or a binary mix. In general different arrangements are associated with different energies. Consider

Latex
{latex}

h1. Comments

Define different kinds of motion. Solve the Schrodinger equation. Evaluate as well as possible. Take limits in the rotational case. Boltzman is a system approximation. Don't need to be too occupied with the math.

h1. Configurational Properties

A figure below is of a mixture of atoms in a solid. Consider some arrangement on a lattice of atoms and vacancies or a binary mix. In general different arrangements are associated with different energies. Consider {latex} \[ M \] {latex} 

sites

...

with

{
Latex
} \[ N \] {latex} 

atoms

...

of

...

one

...

kind.

...

The

...

term

{
Latex
} \[ x \] {latex} 

is

...

the

...

concentration.

Image Added

Latex


!Binary_mix.PNG!

{latex} \[ M \mbox{sites} \] {latex}
{html}<P><

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ N \mbox{atoms} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ x = \frac{N}{M} \] 

...

Assume

...

now

...

that

...

the

...

energy

...

is

...

only

...

a

...

function

...

of

...

concentration.

...

Fix

...

the

...

concentration.

...

With

{
Latex
} \[ N \] {latex} 


fixed,

...

there

...

is

...

only

...

one

...

energy.

...

Treat

...

in

...

terms

...

of

...

a

...

canonical

...

or

...

microcanonical

...

ensemble.

...

The

...

number

...

of

...

ways

...

to

...

distribut

{
Latex
} \[ eN \] {latex} 

distinguishable

...

particles

...

on

{
Latex
} \[ M \] {latex} 

sites

...

is

...

expressed

...

below

...

in

...

terms

...

of

{
Latex
} \[ \Omega (E) \] {latex}.

{latex}

.

Latex
 \[ Q = \Omega (E) \cdot e^{-\beta E} \] {latex}
{html}<P><

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ \Omega (E) = \frac{M!}{N!(M-N)!} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ F = E - TS \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ F = E - k_B T \ln \Omega \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ S = k_B \ln \Omega \] 

...

The

...

term

{
Latex
} \[ S \] {latex} 

is

...

the

...

configurational

...

entropy.

...

Construct

...

a

...

phase

...

diagram.

...

Consider

...

an

...

electronic

...

or

...

vibrational

...

shift.

...

Configurational

...

entropy

...

is

...

most

...

important.

...

Below

...

is

...

an

...

expression

...

simplified

...

with

...

Stirling's

...

approximation.

...

The

...

configurational

...

entropy

...

can

...

be

...

expressed

...

as

...

a

...

function

...

of

...

concentration.

{
Latex
} \[ S_{\mbox{config}} = k_B \ln \left ( \frac{M!}{N! (M-N)!} \right ) \] {latex}
{html}<P><

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ S_{\mbox{config}} = k_B ((M - N) \ln M + N \ln M - N \ln N - (M - N) \ln (M - N) \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ S_{\mbox{config}} = -k_B \left ( \frac{N} {M} \ln \frac{N}{M} + \frac{(N-M)} {M} \ln \frac {M-N}{M} \right ) \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ S_{\mbox{config}} = -k_B M ( x \ln x + (1 - x) \ln (1 - x)) \] 

...

The

...

expression

...

above

...

is

...

of

...

the

...

ideal

...

solid

...

solution

...

configurational

...

entropy.

...

Calculate

...

the

...

propert

...

of

...

the

...

system

...

with

...

increased

{
Latex
} \[ T \] {latex}

.

...

Consider

...

phase

...

diagrams.

...

An

...

expression

...

of

...

Hemholtz

...

free

...

energy

...

is

...

below.

{
Latex
} \[ F = E - TS \] {latex}
{html}<P><

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ F = E_{G, ST = 0} - T (S_{\mbox{conf}} + S_{\mbox{el}} + S_{\mbox{vibr}} ) \] 

...

The

...

largest

...

impact

...

is

...

from

...

the

...

configurational

...

entropy.