unmigratedcomposition-wiki-markupsetup |
---|
HTML Table | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
{table:cellspacing=0|cellpadding=8|border=1|frame=void|rules=cols}
{tr:valign=top}
{td:bgcolor=#F2F2F2|width=350px}
{live-template:Left Column}
{td}
{td}
{excerpt:hidden=true}*[System|system]:* One [point particle] constrained to move in a circle at constant speed. --- *[Interactions|interaction]:* [Centripetal acceleration|centripetal acceleration].{excerpt}
h1. Uniform Circular Motion
h4. {toggle-cloak:id=desc} Description and Assumptions
{cloak:id=desc}
This model applies to a single [point particle] moving in a circle of fixed radius (assumed to lie in the _xy_ plane with its center at the origin) with constant speed. It is a subclass of the [Rotational Motion] model defined by {latex}$\alpha=0${latex} and _r_ = _R_.
{cloak}
h4. {toggle-cloak:id=cues} Problem Cues
{cloak:id=cues}
Usually uniform circular motion will be explicitly specified if you are to assume it. (Be especially careful of _vertical_ circles, which are generally _nonuniform_ circular motion because of the effects of gravity. Unless you are specifically told the speed is constant in a vertical loop, you should not assume it to be.) You can also use this model to describe the acceleration in _instantaneously_ uniform circular motion, which is motion along a curved path with the tangential acceleration instantaneously equal to zero. This will usually apply, for example, when a particle is at the top or the bottom of a vertical loop, when gravity is not changing the _speed_ of the particle.
{cloak}
h4. {toggle-cloak:id=mod} Prior Models
{cloak:id=mod}
* [1-D Motion (Constant Velocity)]
* [1-D Motion (Constant Acceleration)]
{cloak}
h4. {toggle-cloak:id=vocab} Vocabulary
{cloak:id=vocab}
* [tangential acceleration]
* [centripetal acceleration]
* [angular frequency]
{cloak}
h2. Model
h4. {toggle-cloak:id=sys} {color:red} Compatible Systems {color}
{cloak:id=sys}
A single [point particle|point particle].
{cloak}
h4. {toggle-cloak:id=int} {color:red}Relevant Interactions{color}
{cloak:id=int}
The system must be subject to an acceleration (and so a net force) that is directed _radially inward_ to the center of the circular path, with no tangential component.
{cloak}
h4. {toggle-cloak:id=def} {color:red} Relevant Definitions{color}
{cloak:id=def}
{section}{column}
h5. Initial conditions
{latex}\begin{large}\[ x_{0} = x(t=0)\]
\[ y_{0} = y(t=0) \]
\[\theta_{0} = \theta(t=0)\]\end{large}{latex}
{column}{column}{color:white}________{color}{column}{column}
h5. Centripetal acceleration
\\
{latex}\begin{large}\[ \vec{a}_{c} = -\frac{v^{2}}{R}\hat{r} = -\omega^{2}R\;\hat{r}\]\end{large}{latex}
{column}{column}{color:white}________{color}{column}{column}
h5. Phase
\\
{latex}
|