Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
Progress

Procedure:

 

Cloning

Expand
TransfectionDoxCytometryData Analysis

TRE:Gal4VP16 LRed

    

 

Procedure:

titlePlate map

The plate map is as follows. Using lipo3k protocol. There will be two plates using this platemap, one with suspended transfection and one with adherent transfection.

HEK293
Plain
2ng 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

UAS

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

2ng

hEF1a:eBFP 5ng

 

1000 nm Dox

5ng 5ng

TRE:Gal4VP16 10ng

5ng

UAS:eYFP 10ng

hEF1a:mKate

5ng hEF1a:eYFP

5ng hEF1a:eBFP

10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

    
HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

    

Results:

Adhered Transfection:

 

Discussion:

 

Progress: 

CloningTransfectionDoxCytometryData Analysis

 

07/0607/0707/08 

Background:

Because transfecting a large number of plasmids (~8) into HEK293 cells can drastically increase cytotoxicity and lower transfection efficiency, we are optimizing our transfections before we start characterizing the B-Cell Receptor. We plan on evaluating suspended vs. adherent transfection and varying total mass of DNA transfected. Because we will be transfecting a large protein complex (BCR) into our cells we want to use many different plasmids interacting to test our transfection efficiency.

Approach:

We will be testing in duplicate 10, 25, 50,100, 250, 500, and 1000ng of DNA with lipo 3K suspended vs non suspended transfection to determine optimal transfection conditions for our cells.

Parts Needed:

 

 

HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

 

 

Procedure:

Expand
titlePlate map

The plate map is as follows. Using lipo3k protocol. There will be two plates using this platemap, one with suspended transfection and one with adherent transfection.

HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

    
HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

hEF1a:rtTA 100ng

TRE:Gal4VP16 100ng

UAS:eYFP 100ng

hEF1a:mKate 100ng

hEF1a:eBFP 100ng


1000 nm Dox

hEF1a:rtTA 200ng

TRE:Gal4VP16 200ng

UAS:eYFP 200ng

hEF1a:mKate 200ng

hEF1a:eBFP 200ng

 

1000 nm Dox

    

Results:

Adhered Transfection:

 

Discussion:

 

Progress: 

CloningTransfectionDoxCytometryData Analysis

 

07/0607/0707/08 

10ng hEF1a:rtTA

10ng TRE:Gal4VP16

10ng UAS:mKate

10ng hEF1a:eYFP

10ng hEF1a:eBFP

20ng hEF1a:rtTA

20ng TRE:Gal4VP16

20ng UAS:mKate

20ng hEF1a:eYFP

20ng hEF1a:eBFP

50ng hEF1a:rtTA

50ng TRE:Gal4VP16

50ng UAS:mKate

50ng hEF1a:eYFP

50ng hEF1a:eBFP

100ng hEF1a:rtTA

100ng TRE:Gal4VP16

100ng UAS:mKate

100ng hEF1a:eYFP

100ng hEF1a:eBFP

200ng hEF1a:rtTA

200ng TRE:Gal4VP16

200ng UAS:mKate

200ng hEF1a:eYFP

200ng hEF1a:eBFP

    HEK293 Plain

2ng hEF1a:rtTA

2ng TRE:Gal4VP16

2ng UAS:mKate

2ng hEF1a:eYFP

2ng hEF1a:eBFP

5ng hEF1a:rtTA

5ng TRE:Gal4VP16

5ng UAS:mKate

5ng hEF1a:eYFP

5ng hEF1a:eBFP

10ng hEF1a:rtTA

10ng TRE:Gal4VP16

10ng UAS:mKate

10ng hEF1a:eYFP

10ng hEF1a:eBFP

20ng hEF1a:rtTA

20ng TRE:Gal4VP16

20ng UAS:mKate

20ng hEF1a:eYFP

20ng hEF1a:eBFP

50ng hEF1a:rtTA

50ng TRE:Gal4VP16

50ng UAS:mKate

50ng hEF1a:eYFP

50ng hEF1a:eBFP

100ng hEF1a:rtTA

100ng TRE:Gal4VP16

100ng UAS:mKate

100ng hEF1a:eYFP

100ng hEF1a:eBFP

200ng hEF1a:rtTA

200ng TRE:Gal4VP16

200ng UAS:mKate

200ng hEF1a:eYFP

200ng hEF1a:eBFP

    

Background:

Because transfecting a large number of plasmids (~8) into HEK293 cells can drastically increase cytotoxicity and lower transfection efficiency, we are optimizing our transfections before we start characterizing the B-Cell Receptor. We plan on evaluating suspended vs. adherent transfection and varying total mass of DNA transfected. Because we will be transfecting a large protein complex (BCR) into our cells we want to use many different plasmids interacting to test our transfection efficiency.

Approach:

We will be testing in duplicate 10, 25, 50,100, 250, 500, and 1000ng of DNA with lipo 3K suspended vs non suspended transfection to determine optimal transfection conditions for our cells.

Parts Needed:

 

 

HEK293

hEF1a:rtTA 2ng

TRE:Gal4VP16 2ng

UAS:eYFP 2ng

hEF1a:mKate 2ng

hEF1a:eBFP 2ng

 

1000 nm Dox

hEF1a:rtTA 5ng

TRE:Gal4VP16 5ng

UAS:eYFP 5ng

hEF1a:mKate 5ng

hEF1a:eBFP 5ng

 

1000 nm Dox

hEF1a:rtTA 10ng

TRE:Gal4VP16 10ng

UAS:eYFP 10ng

hEF1a:mKate 10ng

hEF1a:eBFP 10ng

 

1000 nm Dox

hEF1a:rtTA 20ng

TRE:Gal4VP16 20ng

UAS:eYFP 20ng

hEF1a:mKate20ng

hEF1a:eBFP 20ng

 

1000 nm Dox

hEF1a:rtTA 50ng

TRE:Gal4VP16 50ng

UAS:eYFP 50ng

hEF1a:mKate 50ng

hEF1a:eBFP 50ng

 

1000 nm Dox

 

Results:

 

Discussion: