{table:align=right|cellspacing=0|cellpadding=1|border=1|frame=box|width=45%}
{tr}
{td:align=center|bgcolor=#F2F2F2}*[Model Hierarchy]*
{td}
{tr}
{tr}
{td}
{pagetree:root=Model Hierarchy|reverse=true}
{td}
{tr}
{table}
h2. Description and Assumptions
{excerpt:hidden=true}*System:* One [point particle]. --- *Interactions:* No acceleration (zero net force).{excerpt}
This model is applicable to a single [point particle] moving with constant velocity. It is a subclass of the [One-Dimensional Motion with Constant Acceleration|1-D Motion (Constant Acceleration)] model defined by the constraint _a_ = 0.
h2. Problem Cues
For pure kinematics problems, the problem will often explicitly state that the velocity is constant, or else some quantitative information will be given (e.g. a linear position versus time plot) that implies the velocity is constant.
----
|| Page Contents ||
| {toc:style=none|indent=10px} |
----
h2. Prerequisite Knowledge
h4. Prior Models
None.
h4. Vocabulary
* [position (one-dimensional)]
* [velocity]
----
h2. System
h4. Constituents
A single [point particle|point particle] (or a system treated as a point particle with position specified by the center of mass).
h4. State Variables
Time (_t_), position (_x_) and velocity (_v_).
----
h2. Interactions
h4. Relevant Types
In order for the velocity to be constant, the system must be subject to no _net_ interaction.
h4. Interaction Variables
None.
----
h2. Model
h4. Law of Change
\\
{latex}\begin{large}$x = x_{\rm i} + v (t - t_{\rm i})$\end{large}{latex}\\
\\
----
h2. DiagrammaticalDiagrammatic Representations
* Position versus time graph.
----
h2. Relevant Examples
{contentbylabel:1d_motion,constant_velocity,example_problem|showSpace=false|showLabels=true|excerpt=true|operator=AND|maxResults=50}
----
{search-box}
\\
\\
| !copyright and waiver^copyrightnotice.png! | RELATE wiki by David E. Pritchard is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License|http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. |
\\ |