h2. Description
{table:align=right|cellspacing=0|frame="box"|border=1|title=Hierarchy of Models|width=40025%}{tr}h4. Hierarchy of Models{tr}{tr}{pagetree:root=Hierarchy of Models}{tr}{table}
{excerpt}This model applies for a point particle subject to a constant acceleration that is either parallel to or antiparallel to the particle's initial velocity. It is a subclass of the One-Dimensional Motion (General) model defined by the constraint da/dt = 0. {excerpt}
----
||Page Contents||
|{toc:style=none|indent=10px}|
----
h2. Assumptions and Limitations
h4. Prior Models
* [One-Dimensional Motion with Constant Velocity]
h4. Vocabulary
* [position (one-dimensional)]
* [velocity (one-dimensional)]
* [acceleration (one-dimensional)]
----
h2. Model Specification
h4. System Schema
Internal Constituents: None. Object must be treated as a point particle.
\\
External Agents: Some constant external influence must be present which produces the acceleration.
h4. Descriptors
Object Variables: None.
\\
State Variables: Time (_t_), position (_x_) , and velocity (_v_) are possible state variables. Note that in some cases only two of the three possible state variables will be needed.
\\
Interaction Variables: Acceleration (_a_).
h4. Laws of Interaction
Acceleration must be a constant.
h4. Laws of Change
{latex}\begin{large}$v_{\rm f} = v_{\rm i} + a (t_{\rm f} - t_{\rm i})$\end{large}{latex}\\
{latex}\begin{large}$x_{\rm f} = x_{\rm i}+\frac{1}{2}(v_{\rm f}+v_{\rm i})(t_{\rm f} - t_{\rm i})$\end{large}{latex}\\
{latex}\begin{large}$ x_{\rm f} = x_{\rm i}+v_{\rm i}(t_{\rm f}-t_{\rm i})+ \frac{1}{2}a(t_{\rm f}-t_{\rm i})^{2}$\end{large}{latex}\\
{latex}\begin{large}$v_{\rm f}^{2} = v_{\rm i}^{2} + 2 a (x_{\rm f} - x_{\rm i})$\end{large}{latex}
----
h2. Relevant Examples
{contentbylabel:1d_motion,constant_acceleration,example_problem|showSpace=false|showLabels=false|maxResults=50}
----
{search-box}
\\
\\
| !copyright and waiver^copyrightnotice.png! | RELATE wiki by David E. Pritchard is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License|http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. |
\\
|