You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

In a condenser microphone, also called a capacitor or electrostatic microphone, the diaphragm acts as one plate of a capacitor, and the vibrations produce changes in the distance between the plates. There are two methods of extracting an audio output from the transducer thus formed: DC-biased and radio frequency (RF) or high frequency (HF) condenser microphones. With a DC-biased microphone, the plates are biased with a fixed charge (Q). The voltage maintained across the capacitor plates changes with the vibrations in the air, according to the capacitance equation (C = Q / V), where Q = charge in coulombs, C = capacitance in farads and V = potential difference in volts. The capacitance of the plates is inversely proportional to the distance between them for a parallel-plate capacitor. (See capacitance for details.) The assembly of fixed and movable plates is called an "element" or "capsule."

A nearly constant charge is maintained on the capacitor. As the capacitance changes, the charge across the capacitor does change very slightly, but at audible frequencies it is sensibly constant. The capacitance of the capsule (around 5--100 pF) and the value of the bias resistor (100 megohms to tens of gigohms) form a filter which is highpass for the audio signal, and lowpass for the bias voltage. Note that the time constant of an RC circuit equals the product of the resistance and capacitance.

Within the time-frame of the capacitance change (as much as 50 ms at 20 Hz audio signal), the charge is practically constant and the voltage across the capacitor changes instantaneously to reflect the change in capacitance. The voltage across the capacitor varies above and below the bias voltage. The voltage difference between the bias and the capacitor is seen across the series resistor. The voltage across the resistor is amplified for performance or recording.

  • No labels