{composition-setup}{composition-setup} {table:cellspacing=0|cellpadding=8|border=1|frame=void|rules=cols} {tr:valign=top} {td:bgcolor=#F2F2F2|width=355px} {live-template:Left Column} {td} {td} {excerpt:hidden=true}*[System|system]:* One [point particle] constrained to move in a circle at constant speed. --- *[Interactions|interaction]:* [Centripetal acceleration|centripetal acceleration].{excerpt} h1. Uniform Circular Motion h4. Description and Assumptions This model applies to a single [point particle] moving in a circle of fixed radius (assumed to lie in the _xy_ plane with its center at the origin) with constant speed. It is a subclass of the [Rotational Motion] model defined by {latex}$\alpha=0${latex} and _r_ = _R_. h4.Problem Cues Usually uniform circular motion will be explicitly specified if you are to assume it. (Be especially careful of _vertical_ circles, which are generally _nonuniform_ circular motion because of the effects of gravity. Unless you are specifically told the speed is constant in a vertical loop, you should not assume it to be.) You can also use this model to describe the acceleration in _instantaneously_ uniform circular motion, which is motion along a curved path with the tangential acceleration instantaneously equal to zero. This will usually apply, for example, when a particle is at the top or the bottom of a vertical loop, when gravity is not changing the _speed_ of the particle. h4. Learning Objectives Students will be assumed to understand this model who can: * Explain why an object moving in a circle at constant speed must be [accelerating|acceleration], and why that acceleration will be [centripetal|centripetal acceleration]. * Give the relationship between the speed of the circular motion, the radius of the circle and the [magnitude] of the [centripetal acceleration]. * Define the [period] of circular motion in terms of the speed and the radius. * Describe the relationship of the [centripetal acceleration] to the [forces|force] applied to the object executing circular motion. h1. Model h4. {toggle-cloak:id=compat} Compatible Systems {cloak:id=compat} A single [point particle|point particle]. {cloak} h4. {toggle-cloak:id=relint} Relevant Interactions {cloak:id=relint} The system must be subject to an acceleration (and so a net force) that is directed _radially inward_ to the center of the circular path, with no tangential component. {cloak} h4. {toggle-cloak:id=reldef} Relevant Definitions {cloak:id=reldef} h5. Phase \\ {latex}\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{i}}{R}\right) = \sin^{-1}\left(\frac{y_{i}}{R}\right) \]\end{large}{latex} {cloak} h4. {toggle-cloak:id=laws} Laws of Change {cloak:id=laws} {section}{column} h5. Position \\ {latex}\begin{large}\[ x(t) = R\cos\left(\frac{2\pi Rt}{v} + \phi\right)\]\end{large}{latex} \\ {latex}\begin{large}\[ y(t) = R\sin\left(\frac{2\pi Rt}{v} + \phi\right)\]\end{large}{latex} {column}{column}{color:white}________{color}{column}{column} h5. Centripetal Acceleration \\ {latex}\begin{large}\[ \vec{a}_{\rm c} = -\frac{v^{2}}{R} \hat{r}\]\end{large}{latex} {column}{section} {cloak} h4. {toggle-cloak:id=diagram} Diagrammatic Representations {cloak:id=diagram} * [Free body diagram|free body diagram] (used to demonstrate that a net radial force is present). * [Delta-v diagram|Delta-v diagram]. * {*}x{*}- and {*}y{*}-position versus time graphs. \\ *x-position vs. time* |! x Position vs time Uniform Circ Motion.PNG!| \\ *y-position vs. time* |! y Position vs time Uniform Circ Motion.PNG!| \\ * {*}θ{*} vs. time \\ {cloak} h1. Relevant Examples h4. {toggle-cloak:id=uni} Examples Involving Uniform Circular Motion {cloak:id=uni} {contentbylabel:example_problem,uniform_circular_motion|maxResults=50|showSpace=false|excerpt=true|operator=AND} {cloak} h4. {toggle-cloak:id=inst} Examples Involving Non-Uniform Circular Motion {cloak:id=inst} {contentbylabel:example_problem,circular_motion,centripetal_acceleration|maxResults=50|showSpace=false|excerpt=true|operator=AND} {cloak} h4. {toggle-cloak:id=all} All Examples Using the Model {cloak:id=all} {contentbylabel:example_problem,uniform_circular_motion|maxResults=50|showSpace=false|excerpt=true|operator=AND} {contentbylabel:example_problem,circular_motion,centripetal_acceleration|maxResults=50|showSpace=false|excerpt=true|operator=AND} {cloak} \\ \\ \\ {search-box} \\ \\ {td} {td:width=235px} !gravitron.jpg! \\ \\ !iss.jpg! \\ Photos courtesy: * [Wikimedia Commons|http://commons.wikimedia.org] by [David Burton|http://www.ride-extravaganza.com/intermediate/gravitron/] * [NASA Johnson Space Center - Earth Sciences and Image Analysis|http://eol.jsc.nasa.gov/] {td} {tr} {table} {live-template:RELATE license} |