Expectation value:
<math> \left \langle \hat A \right \rangle \equiv \left \langle \Psi \mid \hat A \mid \Psi \right \rangle </math>
Probability that system is between <math>\overline
</math> and <math> \overline
+ d \overline
</math> is <math>\Psi^*(\overline
, t) \Psi (\overline q, t) d \overline q</math>
Scalar product (0 if orthogonal):
<math> \left \langle \Psi \mid \phi
\right \rangle \equiv \int_{}{} \Psi
* \phi
\, dx </math>
Momentum:
<math> \hat P = \frac
\vec \nabla </math>
Position:
<math> \hat R = \hat r </math>
Energy:
<math> \hat H (\hat x, \hat p)=i\hbar\frac
=\frac
+V(\hat x) = \frac
=\frac {-\hbar^2}
\frac
+V(\hat x) </math>
<math> \frac
=\frac {-\hbar^2}
\frac
</math>
Time-dependent Schr��dinger's equation:
<math>\hat H \Psi = i \hbar \frac
</math>
General soluion to Schr��dinger's equation:
<math> \Psi(x,t)= \sum_
c_E u_E \mathrm
^{-\mathrm
Et/ \hbar} </math>
where <math> c_E </math> are the eigenfunctions of the Hamiltonian that has eigenvalues of E
Fermi function:
<math>f(\epsilon)=\frac
{e^{\frac
{k_B T}}+1}</math>
Density of states:
<math>g(\epsilon)</math>
<math>f(E) = \frac
{1 + e^{\frac
}}</math>
<math>[\hat H, \hat P] = 0</math> momentum is s constant of motion
Spherical harmonics:
<math>u(\vec r) = \phi (r) \Psi (\phi, \theta)</math>