You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »

Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}

Shoemaker-Levy Comet Fragment 9 impacting Jupiter July 22 1994
Photo from Wikimedia Commons by NASA/JPL

Jupiter, showing the impact marks from fragments of Comet Shoemaker-Levy 9 in July 1994
Photo from Wikimedia Commons. Original by Hubbel Space Telescope Comet Team and NASA

Because [gravity] will act to pull meteors, comets, and other space debris toward a planet, the effective cross-section for a planet to capture an object is larger than its geometrical cross-section. What is the size of this effective cross-section in terms of the physical qualities of the planet and the situation? What features of the impacting body is it independent of?

Solution

System:

Interactions:

Model:

Approach:

Diagrammatic Representation

The Force Diagram of the Meteor approaching the Planet

Force Diagram of Meteor and Planet

The [single-axis torque] about the center of the planet is zero, because the force of [gravity] acts along the same direction as the radius r. About this point, therefore, [angular momentum] is conserved.

Sketch showing Torque

Mathematical Representation

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {tau}

= \vec

Unknown macro: {r}

X \vec

Unknown macro: {F}

= rF = I_

Unknown macro: {rm total}

\alpha ]\end

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ I_

Unknown macro: {rm total}

= I_

Unknown macro: {rm small}

+ I_

Unknown macro: {rm large}

]\end

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ I = \frac

Unknown macro: {1}
Unknown macro: {2}

m r^2 ] \end

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ I_

Unknown macro: {rm total}

= \frac

Unknown macro: {1}
Unknown macro: {2}

(m r^2 + M R^2 ) ]\end

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \omega_

Unknown macro: {rm f}

= \omega_

Unknown macro: {rm i}

+ \alpha (t_

- t_

Unknown macro: {rm i}

) ] \end

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \theta_

Unknown macro: {rm f}

= \theta_

Unknown macro: {rm i}

+ \omega_

( t_

- t_

Unknown macro: {rm i}

) + \frac

Unknown macro: {1}
Unknown macro: {2}

\alpha ( t_

Unknown macro: {rm f}

- t_

)^2 ]\end

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \omega_

Unknown macro: {rm f}

= \alpha t_

]\end

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \theta_

Unknown macro: {rm f}

= \frac

Unknown macro: {1}
Unknown macro: {2}

\alpha {t_{\rm f}}^2 ]\end

where

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \alpha = \frac

Unknown macro: {rF}

{I_{\rm total}} = \frac

Unknown macro: {2rF}
Unknown macro: {mr^2 + MR^2 }

]\end

Error formatting macro: live-template: java.lang.NullPointerException
  • No labels