You are viewing an old version of this page. View the current version.
Compare with Current
View Page History
« Previous
Version 7
Next »
Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}
![](/confluence/download/attachments/43465966/SL9ImpactGalileo.jpg?version=1&modificationDate=1246933872000&api=v2)
|
Shoemaker-Levy Comet Fragment 9 impacting Jupiter July 22 1994
Photo from Wikimedia Commons by NASA/JPL |
![](/confluence/download/attachments/43465966/636px-Jupiter_showing_SL9_impact_sites.jpg?version=1&modificationDate=1246934702000&api=v2)
|
Jupiter, showing the impact marks from fragments of Comet Shoemaker-Levy 9 in July 1994
Photo from Wikimedia Commons. Original by Hubbel Space Telescope Comet Team and NASA |
Because [gravity] will act to pull meteors, comets, and other space debris toward a planet, the effective cross-section for a planet to capture an object is larger than its geometrical cross-section. What is the size of this effective cross-section in terms of the physical qualities of the planet and the situation? What features of the impacting body is it independent of?
Solution
System:
point particle subject to [gravity] but moving with constant [angular momentum].
Interactions:
[Gravity].
Model:
XXXXX.
Approach:
Diagrammatic Representation
The Force Diagram of the Meteor approaching the Planet
Force Diagram of Meteor and Planet |
The [single-axis torque] about the center of the planet is zero, because the force of [gravity] acts along the same direction as the radius r. About this point, therefore, [angular momentum] is conserved.
Mathematical Representation
Unknown macro: {latex} \begin
Unknown macro: {large} [ \vec
Unknown macro: {tau}
= \vec
Unknown macro: {r}
X \vec
Unknown macro: {F}
= rF = I_
Unknown macro: {rm total}
\alpha ]\end
Unknown macro: {latex} \begin
Unknown macro: {large} [ I_
Unknown macro: {rm total}
= I_
Unknown macro: {rm small}
+ I_
Unknown macro: {rm large}
]\end
Unknown macro: {latex} \begin
Unknown macro: {large} [ I = \frac
Unknown macro: {1}
Unknown macro: {2}
m r^2 ] \end
Unknown macro: {latex} \begin
Unknown macro: {large} [ I_
Unknown macro: {rm total}
= \frac
Unknown macro: {1}
Unknown macro: {2}
(m r^2 + M R^2 ) ]\end
Unknown macro: {latex} \begin
Unknown macro: {large} [ \omega_
Unknown macro: {rm f} = \omega_
Unknown macro: {rm i}
+ \alpha (t_
- t_
Unknown macro: {rm i}
) ] \end
Unknown macro: {latex} \begin
Unknown macro: {large} [ \theta_
Unknown macro: {rm f} = \theta_
Unknown macro: {rm i} + \omega_
( t_
- t_
Unknown macro: {rm i} ) + \frac
Unknown macro: {1}
Unknown macro: {2}
\alpha ( t_
Unknown macro: {rm f}
- t_
)^2 ]\end
Unknown macro: {latex} \begin
Unknown macro: {large} [ \omega_
Unknown macro: {rm f} = \alpha t_
]\end
Unknown macro: {latex} \begin
Unknown macro: {large} [ \theta_
Unknown macro: {rm f}
= \frac
Unknown macro: {1}
Unknown macro: {2}
\alpha {t_{\rm f}}^2 ]\end
where
Unknown macro: {latex} \begin
Unknown macro: {large} [ \alpha = \frac
Unknown macro: {rF}
{I_{\rm total}} = \frac
Unknown macro: {2rF}
Unknown macro: {mr^2 + MR^2 }
]\end
Error formatting macro: live-template: java.lang.NullPointerException