Excerpt |
---|
A relationship between the moment of inertia of a rigid body about an axis passing through the body's center of mass and the moment of inertia about any parallel axis. |
Statement of the Theorem
The parallel axis theorem states that if the moment of inertia of a rigid body about an axis passing through the body's center of mass is Icm then the moment of inertia of the body about any parallel axis can be found by evaluating the sum:
Latex |
---|
Wiki Markup |
{excerpt}A relationship between the moment of inertia of a rigid body about an axis passing through the body's center of mass and the moment of inertia about any parallel axis.{excerpt} ||Page Contents|| |{toc:indent=10px|style=none}| ---- h2. Statement of the Theorem The parallel axis theorem states that if the moment of inertia of a rigid body about an axis passing through the body's center of mass is _I_~cm~ then the moment of inertia of the body about any parallel axis can be found by evaluating the sum: {latex}\begin{large}\[ I_{||} = I_{cm} + Md^{2} \] \end{large}{latex} where _d_ is the |
where d is the (perpendicular)
...
distance
...
between
...
the
...
original
...
center
...
of
...
mass
...
axis
...
and
...
the
...
new
...
parallel
...
axis.
...
Motivation for the Theorem
We know that the angular momentum about a single axis of a rigid body that is translating and rotating with respect to a (non-accelerating)
...
axis
...
can
...
be
...
written:
Latex |
---|
}\begin{large}\[ L = m\vec{r}_{\rm cm,axis}\times\vec{v}_{cm} + I_{cm}\omega_{cm} \]\end{large}{latex} |
Now
...
suppose
...
that
...
the
...
rigid
...
body
...
is
...
executing
...
pure
...
rotation
...
about
...
the
...
axis.
...
In
...
that
...
case,
...
the
...
velocity
...
of
...
the
...
center
...
of
...
mass
...
will
...
be
...
perpendicular
...
to
...
the
...
displacement
...
vector
...
from
...
the
...
axis
...
of
...
rotation
...
to
...
the
...
center
...
of
...
mass.
...
Calling
...
the
...
magnitude
...
of
...
that
...
displacement
...
d
...
,
...
to
...
make
...
contact
...
with
...
the
...
form
...
of
...
the
...
theorem,
...
we
...
then
...
have:
Latex |
---|
}\begin{large}\[ L \mbox{ (pure rotation)} = mv_{cm}d + I_{cm}\omega_{cm} \]\end{large}{latex} |
If
...
the
...
body
...
is
...
purely
...
rotating,
...
we
...
can
...
also
...
define
...
an
...
angular
...
speed
...
for
...
rotation
...
about
...
the
...
new
...
parallel
...
axis.
...
The
...
angular
...
speed
...
must
...
satisfy
...
(consider
...
that
...
the
...
center
...
of
...
mass
...
is
...
describing
...
a
...
circle
...
of
...
radius
...
d
...
about
...
the
...
axis):
Latex |
---|
}\begin{large} \[ \omega_{\rm axis} = \frac{v_{cm}}{d} \] \end{large}{latex} |
Futher,
...
the
...
rotation
...
rate
...
of
...
the
...
object
...
about
...
its
...
center
...
of
...
mass
...
must
...
equal
...
the
...
rotation
...
rate
...
about
...
the
...
parallel
...
axis,
...
since
...
when
...
the
...
object
...
has
...
completed
...
a
...
revolution
...
about
...
the
...
parallel,
...
its
...
oritentation
...
must
...
be
...
the
...
same
...
if
...
it
...
is
...
executing
...
pure
...
rotation.
...
Thus,
...
we
...
can
...
write:
Latex |
---|
}\begin{large}\[ L \mbox{ (pure rotation)} = m\omega_{\rm axis} d^{2} + I_{cm}\omega_{\rm axis} \]\end{large}{latex} |
which
...
implies
...
the
...
parallel
...
axis
...
theorem
...
holds.
Derivation of the Theorem
From the definition of the moment of inertia:
Latex |
---|
---- h2. Derivation of the Theorem From the definition of the moment of inertia: {latex}\begin{large}\[ I = \int r^{2} dm \] \end{large}{latex} |
The
...
center
...
of
...
mass
...
is
...
at
...
a
...
position
...
r
...
cm with
...
respect
...
to
...
the
...
desired
...
axis
...
of
...
rotation.
...
We
...
define
...
new
...
coordinates:
Latex |
---|
}\begin{large}\[ \vec{r} = \vec{r}\:' + \vec{r}_{cm}\]\end{large}{latex} where _ |
where r'
...
measures
...
the
...
positions
...
relative
...
to
...
the
...
object's
...
center
...
of
...
mass.
...
Substituting
...
into
...
the
...
moment
...
of
...
inertia
...
formula:
Latex |
---|
{latex}\begin{large}\[ I = \int\: (r\:'^{2} + 2\vec{r}\:'\cdot\vec{r}_{cm} + r_{cm}^{2})\: dm \]\end{large}{latex} The _r_~cm~ is a constant within the integral over the |
The rcm is a constant within the integral over the body's
...
mass
...
elements.
...
Thus,
...
the
...
middle
...
term
...
can
...
be
...
written:
Latex |
---|
}\begin{large}\[ \int\:\vec{r}\:'\cdot \vec{r}_{cm}\:dm = r_{cm}\cdot \int\:\vec{r}\:'\:dm \]\end{large}{latex} |
Since
...
the
...
r
...
'
...
measure
...
deviations
...
from
...
the
...
center
...
of
...
mass
...
position,
...
the
...
integral
...
r
...
'
...
dm
...
must
...
give
...
zero
...
(the
...
position
...
of
...
the
...
center
...
of
...
mass
...
in
...
the
...
r
...
'
...
system).
...
Thus,
...
we
...
are
...
left
...
with:
Latex |
---|
}\begin{large}\[ I = \int\: r\:'^{2}\:dm + r_{cm}^{2} \int\:dm = I_{cm} + Mr_{cm}^{2}\]\end{large}{latex} |
Which
...
is
...
the
...
parallel
...
axis
...
theorem.
...