Excerpt | ||
---|---|---|
| ||
Integrate to find the moment of inertia of a solid sphere. |
...
width | 70% |
---|
...
Calculate
...
the
...
...
...
...
of
...
a
...
solid
...
sphere
...
of
...
radius
...
R
...
and
...
uniform
...
density
...
ρ rotated
...
about
...
an
...
axis
...
passing
...
through
...
its
...
center.
...
Solution
System,
...
Interactions
...
and
...
Model:
...
Not
...
applicable.
...
We
...
solve
...
this
...
problem
...
using
...
the
...
definition
...
of
...
the
...
...
...
...
.
...
Approach:
...
We
...
will
...
have
...
to
...
perform
...
an
...
integral
...
over
...
the
...
volume
...
of
...
the
...
sphere
...
to
...
calculate
...
the
...
moment
...
of
...
inertia.
...
The
...
integral
...
is
...
best
...
performed
...
in
...
cylindrical
...
coordinates
...
with
...
the
...
z-axis
...
chosen
...
to
...
lie
...
along
...
the
...
axis
...
of
...
rotation,
...
since
...
it
...
takes
...
the
...
form:
Latex |
---|
}\begin{large}\[ I =\int\int\int r^{2}\:\rho\:r\:dr\:d\theta\:dz \] \end{large} {latex}
{info}In spherical |
Info |
---|
In spherical coordinates, the integrand is complicated by the fact that the radial coordinate measures deviation from the center point instead of the axis of rotation. {info} |
The
...
best
...
way
...
to
...
configure
...
this
...
integral
...
is
...
to
...
integrate
...
over
...
angle
...
first,
...
then
...
radius,
...
and
...
finally
...
the
...
z-coordinate.
...
The
...
sphere
...
is
...
continuous
...
so
...
the
...
limits
...
on
...
theta
...
are
...
always
...
zero
...
to
...
2
Latex |
---|
}$\pi$ {latex} |
,
...
and
...
the
...
sphere
...
is
...
axially
...
symmetric
...
so
...
the
...
integrand
...
has
...
no
...
dependence
...
on
...
θ. Thus,
...
we
...
can
...
simply
...
perform
...
this
...
integral
...
to
...
obtain:
Latex |
---|
}\begin{large} \[ I = 2\pi \int \int r^{3}\:\rho\:dr\:dz \]\end{large} {latex}
|
It
...
is
...
simplest
...
to
...
next
...
perform
...
the
...
integral
...
over
...
r
...
.
...
Here
...
we
...
have
...
some
...
trouble,
...
however,
...
since
...
the
...
limits
...
on
...
r
...
will
...
be
...
a
...
function
...
of
...
z
...
.
...
Basically,
...
we
...
are
...
cutting
...
the
...
sphere
...
up
...
into
...
a
...
stack
...
of
...
circles
...
perpendicular
...
to
...
the
...
z-axis.
...
If
...
we
...
move
...
through
...
the
...
stack
...
from
...
bottom
...
to
...
top,
...
the
...
circles
...
first
...
grow
...
larger
...
(as
...
we
...
near
...
the
...
center)
...
and
...
then
...
reduce
...
in
...
size
...
again
...
until
...
their
...
radius
...
disappears
...
at
...
the
...
"north
...
pole"
...
(the
...
top
...
of
...
the
...
sphere).
...
Based
...
upon
...
the
...
well-known
...
definition
...
of
...
a
...
spherical
...
surface
...
in
...
rectangular
...
coordinates:
Latex |
---|
}\begin{large}\[ x^2 + y^2 + z^2 = R^2 \]\end{large} {latex}
|
and
...
using
...
the
...
relationship
...
between
...
cylindrical
...
coordinates
...
and
...
rectangular
...
coordinates:
Latex |
---|
{latex}\begin{large}\[ r^{2} = x^2 + y^2\]\end{large} {latex}
|
we
...
can
...
see
...
that
...
the
...
radius
...
of
...
the
...
circle
...
perpendicular
...
to
...
the
...
z-axis
...
at
...
a
...
given
...
z-value
...
will
...
be:
Latex |
---|
}\begin{large} \[ r_{max} = \sqrt{R^{2} - z^{2}} \] \end{large} {latex}
|
Thus,
...
we
...
can
...
set
...
up
...
the
...
limits
...
of
...
our
...
integral
...
as:
Latex |
---|
}\begin{large}\[ I = 2\pi \int_{-R}^{R}\int_{0}^{\sqrt{R^{2}-z^{2}}} \:r^{3}\:\rho\:dr\:dz \]\end{large} {latex}
|
Performing
...
the
...
r
...
integral
...
gives:
Latex |
---|
}\begin{large} \[ I = 2\pi \int_{-R}^{R} \:\frac{1}{4}(R^{2} - z^{2})^{2} \:\rho\:dz = 2\pi \int_{-R}^{R} \:\frac{1}{4}(R^{4} - 2R^{2}z^{2} + z^{4}) \:\rho\:dz \] \end{large} {latex}
|
and
...
finishing
...
with
...
the
...
z
...
integral:
Latex |
---|
}\begin{large}\[ I = \pi \rho (R^{5} - \frac{2}{3} R^{5} + \frac{1}{5} R^{5}) = \frac{8}{15}\rho R^{5} \]\end{large} {latex}
|
The
...
answer
...
can
...
be
...
put
...
in
...
terms
...
of
...
the
...
mass
...
of
...
the
...
sphere
...
by
...
noting
...
that
...
for
...
a
...
uniform
...
sphere:
Latex |
---|
}\begin{large}\[ M = \frac{4\pi}{3} \rho R^{3}\]\end{large} {latex}
|
so:
Latex | ||
---|---|---|
}\begin{large} \[ I = \frac{2}{5} MR^{2}\]\end{large} {latex}
Column | | width | 35%
unmigrated-inline-wiki-markup |
---|
...
{html}
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-11762009-2");
pageTracker._trackPageview();
} catch(err) {}</script>
{html} |