Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

Excerpt
hiddentrue

Integrate to find the moment of inertia of a solid sphere.

Calculate the moment of inertia of a solid sphere of radius R and uniform density ρ rotated about an axis passing through its center.

Solution

System, Interactions and Model: Not applicable. We solve this problem using the definition of the moment of inertia.

Approach: We will have to perform an integral over the volume of the sphere to calculate the moment of inertia. The integral is best performed in cylindrical coordinates with the z-axis chosen to lie along the axis of rotation, since it takes the form:

Latex
Wiki Markup
{excerpt:hidden=true}Integrate to find the moment of inertia of a solid sphere.{excerpt}
Calculate the [moment of inertia] of a solid sphere of radius _R_ and uniform density ρ rotated about an axis passing through its center.  

System & Model:  Not applicable.  We solve this problem using the definition of the [moment of inertia].

Approach:  We will have to perform an integral over the volume of the sphere to calculate the moment of inertia.  The integral is best performed in cylindrical coordinates with the z-axis chosen to lie along the axis of rotation, since it takes the form:

{latex}\begin{large}\[ I =\int\int\int r^{2}\:\rho\:r\:dr\:d\theta\:dz \] \end{large}{latex}

{info}In spherical 
Info

In spherical coordinates,

the

integrand

is

complicated

by

the

fact

that

the

radial

coordinate

measures

deviation

from

the

center

point

instead

of

the

axis

of

rotation.

{info}

The

...

best

...

way

...

to

...

configure

...

this

...

integral

...

is

...

to

...

integrate

...

over

...

angle

...

first,

...

then

...

radius,

...

and

...

finally

...

the

...

z-coordinate.

...

The

...

sphere

...

is

...

continuous

...

so

...

the

...

limits

...

on

...

theta

...

are

...

always

...

zero

...

to

...

2

{
Latex
}$\pi${latex}

,

...

and

...

the

...

sphere

...

is

...

axially

...

symmetric

...

so

...

the

...

integrand

...

has

...

no

...

dependence

...

on

...

θ. Thus,

...

we

...

can

...

simply

...

perform

...

this

...

integral

...

to

...

obtain:

{
Latex
}\begin{large} \[ I = 2\pi \int \int r^{3}\:\rho\:dr\:dz \]\end{large}{latex}

It

...

is

...

simplest

...

to

...

next

...

perform

...

the

...

integral

...

over

...

r

...

.

...

Here

...

we

...

have

...

some

...

trouble,

...

however,

...

since

...

the

...

limits

...

on

...

r

...

will

...

be

...

a

...

function

...

of

...

z

...

.

...

Basically,

...

we

...

are

...

cutting

...

the

...

sphere

...

up

...

into

...

a

...

stack

...

of

...

circles

...

perpendicular

...

to

...

the

...

z-axis.

...

If

...

we

...

move

...

through

...

the

...

stack

...

from

...

bottom

...

to

...

top,

...

the

...

circles

...

first

...

grow

...

larger

...

(as

...

we

...

near

...

the

...

center)

...

and

...

then

...

reduce

...

in

...

size

...

again

...

until

...

their

...

radius

...

disappears

...

at

...

the

...

"north

...

pole"

...

(the

...

top

...

of

...

the

...

sphere).

...

Based

...

upon

...

the

...

well-known

...

definition

...

of

...

a

...

spherical

...

surface

...

in

...

rectangular

...

coordinates:

{
Latex
}\begin{large}\[ x^2 + y^2 + z^2 = R^2 \]\end{large}{latex}

and

...

using

...

the

...

relationship

...

between

...

cylindrical

...

coordinates

...

and

...

rectangular

...

coordinates:

Latex
 

{latex}\begin{large}\[ r^{2} = x^2 + y^2\]\end{large}{latex}

we

...

can

...

see

...

that

...

the

...

radius

...

of

...

the

...

circle

...

perpendicular

...

to

...

the

...

z-axis

...

at

...

a

...

given

...

z-value

...

will

...

be:

{
Latex
}\begin{large} \[ r_{max} = \sqrt{R^{2} - z^{2}} \] \end{large}{latex}

Thus,

...

we

...

can

...

set

...

up

...

the

...

limits

...

of

...

our

...

integral

...

as:

{
Latex
}\begin{large}\[ I = 2\pi \int_{-R}^{R}\int_{0}^{\sqrt{R^{2}-z^{2}}} \:r^{3}\:\rho\:dr\:dz \]\end{large}{latex}

Performing

...

the

...

r

...

integral

...

gives:

{
Latex
}\begin{large} \[ I = 2\pi \int_{-R}^{R} \:\frac{1}{4}(R^{2} - z^{2})^{2} \:\rho\:dz = 2\pi \int_{-R}^{R} \:\frac{1}{4}(R^{4} - 2R^{2}z^{2} + z^{4}) \:\rho\:dz \] \end{large}{latex}

and

...

finishing

...

with

...

the

...

z

...

integral:

{
Latex
}\begin{large}\[ I = \pi \rho (R^{5} - \frac{2}{3} R^{5} + \frac{1}{5} R^{5}) = \frac{8}{15}\rho R^{5} \]\end{large}{latex}

The

...

answer

...

can

...

be

...

put

...

in

...

terms

...

of

...

the

...

mass

...

of

...

the

...

sphere

...

by

...

noting

...

that

...

for

...

a

...

uniform

...

sphere:

{
Latex
}\begin{large}\[ M = \frac{4\pi}{3} \rho R^{3}\]\end{large}{latex}

so:

{
Latex
}\begin{large} \[ I = \frac{2}{5} MR^{2}\]\end{large}{latex}

Wiki Markup
{html}
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-11762009-2");
pageTracker._trackPageview();
} catch(err) {}</script>
{html}