...
Wiki Markup |
---|
{html}
<P></P>{html} |
Latex |
---|
\[ U(x)= \begin{cases} \infty, & |x| > \frac{a}{2} \\ 0, & \frac{-a}{2} < x < \frac{a}{2} \end{cases} \] |
Wiki Markup |
---|
{html}
<P></P>{html} |
Latex |
---|
\[ \varepsilon_n = \mbox{energy eigenvalues} \] |
Wiki Markup |
---|
{html}
<P></P>{html} |
Latex |
---|
\[ \varepsilon_n = \frac{h^2 n^2}{8ma^2},n=1,2,... \] |
Simple Harmonic Oscillator (1-D)
...
Wiki Markup |
---|
{html}
<P></P>{html} |
Latex |
---|
\[ U(x) = \frac{1}{2} k x^2 \] |
Wiki Markup |
---|
{html}
<P></P>{html} |
Latex |
---|
\[ \varepsilon_n = (n + \frac{1}{2})\hbar \omega(k), n = 0, 1, 2, ... \] |
The Concept of Degeneracy
...
Wiki Markup |
---|
{html}
<P></P>{html} |
Latex |
---|
\[ 0 \le l \le n-1 \] |
Wiki Markup |
---|
{html}
<P></P>{html} |
Latex |
---|
\[ -l \le m \le l \] |
| Latex |
---|
\[ \mbox{states} \] |
| Latex |
---|
\[ \mbox{degeneracy} \] |
|
---|
| | |
| Latex |
---|
\[ 2s, 2p_x, 2p_y, 2p_z \] |
| |
| Latex |
---|
\[ 3s, 3p_x, 3p_y, 3p_z \] |
| |
...
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ 3d_{x^2-y^2}, 3d_{z^2-r^2} \] |
Degeneracy of one particle in a 3-D Infinite Well Potential
...
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ n_x,n_y,n_z=1, 2, 3 ,... \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ n_x^2+n_y^2+n_z^2 = R^2 \] |
How many ways can we get the same
...
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ R^2 = \frac{8ma^2 \varepsilon}{h^2} \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon > 0 \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon = \varepsilon_x + \varepsilon_y + \varepsilon_z \] |
When
or
...
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \phi (\epsilon) = \frac{\pi}{6} \left ( \frac{8 m a^2 \epsilon}{h^2} \right )^{\frac{3}{2}} \] |
The number of states in a slice, or the number of states between
...
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) = \frac {\pi}{6} \left ( \frac{m a^2}{h^2} \right )^{\frac{3}{2}} \left ( \left (\epsilon + \Delta \epsilon \right )^{\frac{3}{2}} - \epsilon^{\frac{3}{2}} \right ) \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) = \frac{\pi}{6}\left ( \frac{8 m a^2 \epsilon}{h^2} \right )^{\frac{3}{2}} \left ( \left (1 + \frac{\Delta \epsilon}{\epsilon} \right )^{\frac{3}{2}} - 1 \right ) \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) = \frac{\pi}{4} \left ( \frac{8 m a^2 \epsilon}{h^2} \right )^{\frac{3}{2}} \epsilon^{\frac{3}{2}} \Delta \epsilon \] |
Look at the order of magnitude of this. Consider just the kinetic energy in three dimensions. The formula for kinetic energy is
...
Wiki Markup |
---|
{html}<p>{html} |
Wiki Markup |
---|
{html}<p>{html} |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \Delta \epsilon = 0.01 \epsilon \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) \approx 10^{28} \] |
There is a huge number of additional points. The number of states that can be accessed is enormous. The numbers are very dense using room temperature. When calculating with interacting particles the results are about the same.
...
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon > 0 \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon = \varepsilon_x + \varepsilon_y + \varepsilon_z \] |
Additional math topics
A listing is below of additional math topics covered. Additional information is posted at thecourse website.
...