Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

There

...

is

...

real

...

statistical

...

mechanics

...

today.

...

An

...

ensemble

...

is

...

defined

...

and

...

an

...

average

...

calculated.

...

Microcanonical

...

&

...

Canonical

...

Ensembles

...

It

...

has

...

been

...

demonstrated

...

that

...

there

...

is

...

a

...

huge

...

number

...

of

...

microstates.

...

It

...

is

...

possible

...

to

...

connect

...

thermodynamics

...

with

...

the

...

complexity

...

of

...

the

...

microscopic

...

world.

...

Below

...

are

...

definitions.

...

Microstate

A microstate is a particular state of a system specified at the atomic level. This could be described by the many-body wavefunction. A system is something that over time fluctuates between different microstates. An example includes the gas from last time. There is immense complexity. Fix the variables <math>T, V,</math>

...

and

...

<math>N</math>.

...

With

...

only

...

these

...

variables

...

known,

...

there

...

is

...

no

...

idea

...

what

...

microstate

...

the

...

system

...

is

...

in

...

at

...

the

...

many

...

body

...

wavefunction

...

level.

...

Consider

...

a

...

solid.

...

It

...

is

...

possible

...

to

...

access

...

different

...

configurational

...

states,

...

and

...

two

...

are

...

shown

...

below.

...

Diffusion

...

is

...

a

...

process

...

that

...

results

...

in

...

changes

...

in

...

state

...

over

...

time.

...

X-ray

...

images

...

may

...

not

...

be

...

clear

...

due

...

to

...

the

...

diffusion

...

of

...

atoms

...

and

...

systems

...

accessing

...

different

...

microstates.

...

There

...

may

...

be

...

vibrational

...

excitations,

...

and

...

electronic

...

excitations

...

correspond

...

to

...

the

...

excitation

...

of

...

electrons

...

to

...

different

...

levels.

...

These

...

excitations

...

specify

...

what

...

state

...

the

...

solid

...

is

...

in.

...

Any

...

combination

...

of

...

excitations

...

specify

...

the

...

microstate

...

of

...

a

...

system.
Image Added

Summary

A particular state of a system specified at the atomic level (many function wavebody level

Latex

!Two_configurational_states.PNG!

h2. Summary

A particular state of a system specified at the atomic level (many function wavebody level
{latex} \[ \Psi_{\mbox{manybody}} \] {latex}

.

...

The

...

system

...

over

...

time

...

fluctuates

...

betwen

...

different microstates

  • There is immense complexity in a gas
  • Solid
    • Configurational states
    • Vibrational excitations
    • electronic excitations
      • There is usually a combination of these excitations, which results in immense complexity
      • Excitations specify the microstate of the system

Why Ensembles?

A goal is to find

Latex
 microstates
* There is immense complexity in a gas
* Solid
** Configurational states
** Vibrational excitations
** electronic excitations
*** There is usually a combination of these excitations, which results in immense complexity
*** Excitations specify the microstate of the system

h1. Why Ensembles?

A goal is to find
{latex} \[ P_v \] {latex}

.

...

Thermodynamic

...

variables

...

are

...

time

...

averages.

...

Sum

...

over

...

the

...

state

...

using

...

the

...

schrodinger

...

equation

...

to

...

find

...

energy

...

and

...

multiplying

...

by

...

probability.

...

To

...

facilitate

...

averages,

...

ensembles

...

are

...

introduced.

...

Ensembles

...

are

...

collections

...

of

...

systems.

...

Each

...

is

...

very

...

large,

...

and

...

they

...

are

...

macroscopically

...

identical.

...

Look

...

at

...

the

...

whole

...

and

...

see

...

what

...

states

...

the

...

system

...

could

...

be

...

in.

...

Below

...

is

...

a

...

diagram

...

of

...

systems

...

and

...

ensembles.

...

Each

...

box

...

represents

...

a

...

system,

...

and

...

the

...

collection

...

of

...

systems

...

is

...

an

...

ensemble.

...

Each

...

box

...

could

...

represent

...

the

...

class,

...

and

...

v

...

could

...

represent

...

the

...

sleep

...

state.

...

Look

...

at

...

the

...

properties

...

of

...

the

...

ensemble.

...

There

...

are

{
Latex
} \[ A \] {latex}

;macroscopically

...

identical

...

systems.

...

Eventually

{
Latex
} \[ A \] {latex}

is

...

taken

...

to

...

go

...

to

{
Latex
} \[ \infty \] {latex}

.

...

Each

...

system

...

evolves

...

over

...

time.

...


Image Added

Deriving P_v

...

The

...

probability,

{
Latex
} \[ P_v \] {latex}

is

...

defined

...

for

...

different

...

kinds

...

of

...

boundary

...

conditions.

...

When

...

looking

...

at

...

the

...

probability

...

that

...

students

...

in

...

a

...

class

...

are

...

asleep,

...

it

...

is

...

possible

...

to

...

take

...

an

...

instantaneous

...

snapshot.

...

The

...

term

{
Latex
} \[ a_v \] {latex}

is

...

the

...

occupation

...

number

...

and

...

is

...

defined

...

as

...

the

...

number

...

of

...

systems

...

that

...

are

...

in

...

the

...

state

{
Latex
} \[ v \] {latex}

at

...

the

...

time

...

of

...

the

...

snapshot.

...

The

...

fraction

...

of

...

systems

...

in

...

state

{
Latex
} \[ v \] {latex}
is
{latex}

is

Latex
 \[ P_v \] {latex}

.

...

This

...

is

...

one

...

approximation

...

to

...

get

...

the

...

probability,

...

and

...

it

...

could

...

be

...

a

...

bad

...

approximation.

{
Latex
} \[ P_v \approx \frac {a_v}{A} \] {latex}

There

...

are

...

an

...

additional

...

definitions

...

of

{
Latex
} \[ P_v \] {latex}

.

...

It

...

is

...

equal

...

to

...

the

...

probability

...

of

...

finding

...

a

...

system

...

in

...

state

...

v

...

at

...

time

...

t

...

or

...

identically

...

it

...

is

...

the

...

fraction

...

of

...

time

...

spent

...

by

...

the

...

system

...

in

...

state

...

v.

...

In

...

the

...

case

...

of

...

the

...

sleep

...

example,

...

it

...

is

...

equal

...

to

...

the

...

fraction

...

of

...

time

...

that

...

any

...

one

...

is

...

in

...

the

...

sleep

...

state.

...


The

...

time

...

average

...

corresponds

...

to

...

looking

...

at

...

a

...

class

...

and

...

seeing

...

for

...

what

...

fraction

...

of

...

time

...

does

...

it

...

find

...

someone

...

in

...

the

...

class

...

asleep.

...

The

...

ensemble

...

average

...

corresponds

...

to

...

looking

...

at

...

the

...

set

...

of

...

identical

...

classes

...

and

...

seeing

...

how

...

many

...

classes

...

have

...

at

...

least

...

one

...

student

...

asleep.

...

There

...

is

...

a

...

correlation

...

between

...

the

...

state

...

average

...

and

...

the

...

time

...

average.

...

There

...

is

...

a

...

need

...

of

...

boundary

...

conditions.

...

Take

...

a

...

picture

...

of

...

a

...

large

...

number

...

of

...

systems,

...

look

...

at

...

everyone,

...

and

...

average.

...

Summary

Recap:

{
Latex
} \[ E = \sum_V E_V P_V \] {latex}

To

...

facilitate

...

averages,

...

we

...

introduce

...

"ensembles"

...

that

...

we

...

average

...

over

...

  • Averaging

...

  • over

...

  • many

...

  • bodies

...

  • rather

...

  • than

...

  • averaging

...

  • over

...

  • time

...

  • Example:

...

  • student

...

  • =

...

  • system,

...

  • v

...

  • =sleepstate

...

Ensemble

...

of

...

systems:

...

  • 'A'

...

  • (a

...

  • very

...

  • large

...

  • number)

...

  • macroscopically

...

  • identical

...

  • systems

...

  • Each

...

  • system

...

  • evolves

...

  • over

...

  • time

...

Probability:

...

  • Take

...

  • an

...

  • instantaneous

...

  • snapshot

...

  • Define
    Latex
     \[ a_v \] 

...

  • =

...

  • #of

...

  • systems

...

  • that

...

  • are

...

  • in

...

  • state

...

  • v

...

  • at

...

  • the

...

  • time

...

  • of

...

  • snapshot

...

  • Fraction

...

  • of

...

  • systems

...

  • in

...

  • state

...

  • v

...

  • is

...

  • Latex

...

  •  \[ \frac{a_v}{A} \simeq P_v \] 
    • Probability to find a system in statevat timet
    • Fraction of time spent in statev

Microcanonical Ensemble

The boundary conditions of all systems of the microcanonical ensemble are the same. The variablesN, V,andEcannot fluctuate. Each system can only fluctuate between states with fixed energy,E.

Image Added

It is possible to get degeneracy from the Shrodinger equation.

Latex
{latex}
** Probability to find a system in statevat timet
** Fraction of time spent in statev

h1. Microcanonical Ensemble

The boundary conditions of all systems of the microcanonical ensemble are the same. The variablesN, V,andEcannot fluctuate. Each system can only fluctuate between states with fixed energy,E.

!Microcanonical_ensemble.PNG!

It is possible to get degeneracy from the Shrodinger equation.
{latex} \[ \hat H \Psi = E \begin {matrix} \underbrace{ (\Psi_1, \Psi_2, ..., \Psi_{\Omega}) } \\ \Omega(E) \end{matrix} \] {latex}

Consider

...

the

...

example

...

of

...

the

...

hydrogen

...

atom.

...

Below

...

is

...

an

...

expression

...

of

...

the

...

energy

...

proportionality

...

and

...

the

...

degeneracy

...

when

{
Latex
} \[ n=1 \] {latex}

and
{latex}

and

Latex
 \[ n=2 \] {latex}

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ E \alpha \frac {1}{n^2} 

...

\] 

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ \Omega (n=1) = 1 \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ \Omega (n=2) = 4 \] 

What is Pv in microcanonical ensemble?

All states should be equally probable with variables

Latex
{latex}

h2. What is Pv in microcanonical ensemble?

All states should be equally probable with variables
{latex} \[ N, V, \] 

and

Latex
{latex}

and
{latex} \[ E \] {latex}
\

[

...

fixed.

...

The

...

term

{
Latex
} \[ P_v \] {latex}

is

...

the

...

probability

...

of

...

being

...

in

...

any

{
Latex
} \[ E \] {latex}

state

...

for

...

a

...

system,

...

and

...

it

...

should

...

be

...

equal

...

to

...

a

...

constant.

...

An

...

expression

...

is

...

below.

...

Each

...

state

...

can

...

be

...

accessed,

...

and

...

one

...

is

...

not

...

more

...

favored.

...

This

...

is

...

related

...

to

...

the

...

principle

...

of

...

a

...

priori

...

probability.

...

There

...

is

...

no

...

information

...

that

...

states

...

should

...

be

...

accessed

...

with

...

different

...

probability.

{
Latex
} \[ P_v = \frac{1}{\Omega (E)} \] {latex}

h2. Example

Consider an example of a box and gas. All the atoms

Example

Consider an example of a box and gas. All the atoms are in one corner in the second box. Add to get complete degeneracy. The value of

Latex
 are in one corner in the second box. Add to get complete degeneracy. The value of
{latex} \[ \Omega_1 (E) \] {latex}

is

...

large;

...

there

...

is

...

enormous

...

degeneracy.
Image Added

Latex

!Microcanonical_ensemble_II.PNG!
{latex} \[ \Omega_1(E) \gg \Omega_2(E) \] {latex}

Consider

...

a

...

poker

...

hand.

...

There

...

is

...

a

...

lot

...

of

...

equivalence

...

in

...

bad

...

hands.

...

These

...

are

...

dealt

...

most

...

of

...

the

...

time

...

and

...

correspond

...

to

{
Latex
} \[ \Omega_1(E) \] {latex}

.

...

The

...

royal

...

flush

...

corresponds

...

to

{
Latex
} \[ \Omega_2(E) \] {latex}

.

...

It

...

is

...

equally

...

probable,

...

but

...

there

...

are

...

many

...

fewer

...

ways

...

to

...

get

...

the

...

royal

...

flush.

...

There

...

are

...

the

...

same

...

boundary

...

conditions.

...

In

...

an

...

isolated

...

system,

...

in

...

which

{
Latex
} \[ N, V, \] 

and

Latex
{latex}
and
{latex} \[ E \] {latex}

are

...

fixed,

...

it

...

is

...

equally

...

probable

...

to

...

be

...

in

...

any

...

of

...

its

{
Latex
} \[ \Omega (E) \] {latex}

possible

...

quantum

...

states.

Summary

The variables

Latex


h2. Summary

The variables
{latex} \[ N, V, \] 

and

Latex
{latex}

and
{latex} \[ E \] {latex}

are

...

fixed

...

  • Each

...

  • system

...

  • can

...

  • only

...

  • fluctuate

...

  • between

...

  • states

...

  • with

...

  • fixed

...

  • energy

...

  • Latex

...

  •  \[ E \] 

...

  • (like

...

  • from

...

  • Schrodinger's

...

  • equation)

...

  • Latex
     \[ \hat H \Psi = E \Psi \rightarrow E[\Psi_2 .... \Psi_\omega \|\Psi_1|\Psi_1] \] 

...

  • Latex

...

  •  \[ \Omega(E) \] 

...

  • All states are equally probable, and are given equal weight.

Hydrogen atom

  • Latex
     \[ E = \frac{1}{n^2} 

...

  • \] 
  • Latex
     \[ \Omega (n=1) =1 \] 

...

  • Latex
     \[ \Omega (n=2) =4 \] 

...

Probability

...

of

...

being

...

in

...

any

...

E

...

state

...

for

...

a

...

system

...

  • employed

...

  • the

...

  • principle

...

  • of

...

  • equal

...

  • a

...

  • priory

...

  • probabilities

...

  • Latex
     \[ P_v = \mbox{constant} \] 

...

  • Latex

...

  •  \[ P_v = \frac{1}{\Omega(E)} \] 

...

Systems

  • Equally more probable
  • Some accessed more times because of large degeneracy number
    • There's just a lot more ways to get configuration left (like a craphand) than the right (like a straight flush)
    • Latex
       \[ \Omega_1 (E) >> \Omega_2 (E) \] 

...

An

...

isolated

...

system

...

(

{
Latex
} \[ N, V, E= \] {latex}

fixed)

...

is

...

equally

...

probable

...

to

...

be

...

in

...

any

...

of

...

its

{
Latex
} \[ \Omega (E) \] {latex}

possible

...

quantum

...

states.

...

Canonical

...

Ensemble

...

There

...

is

...

a

...

different

...

set

...

of

...

boundary

...

conditions

...

in

...

the

...

canonical

...

ensemble.

...

There

...

are

...

heat

...

conducting

...

walls

...

or

...

boundaries

...

of

...

each

...

system.

...

Each

...

of

...

the

{
Latex
} \[ A \] {latex}

members

...

of

...

the

...

ensemble

...

find

...

themselves

...

in

...

the

...

heat

...

bath

...

formed

...

by

...

the

{
Latex
} \[ A-1 \] {latex}

members.

...

Each

...

system

...

can

...

fluctuate

...

between

...

different

...

microstates.

...

An

...

energy

...

far

...

from

...

average

...

is

...

unlikely.

...

In

...

the

...

picture

...

below,

...

the

...

energy

...

of

...

the

...

ensemble

...

on

...

the

...

right

...

side

...

of

...

the

...

ensemble

...

is

...

fixed,

...

while

...

the

...

energy

...

of

...

a

...

particular

...

system

...

is

...

not

...

fixed

...

and

...

can

...

fluctuate.
Image Added

Take another snapshot. There is interest in the distribution. The term

Latex

!Canonical_ensemble.PNG!

Take another snapshot. There is interest in the distribution. The term
{latex} \[ \overline {a} \] {latex}

is

...

equal

...

to

...

the

...

number

...

of

...

systems

...

in

...

state

{
Latex
} \[ v \] {latex}
.
{latex}

.

Latex
 \[ {a_v} = \overline{a} \] {latex}

Below

...

is

...

a

...

table

...

of

...

microstates,

...

energy,

...

and

...

occurence,

...

and

...

a

...

graph.

...

In

...

the

...

graph,

...

equilibrium

...

has

...

occurred,

...

but

...

all

...

states

...

can

...

be

...

accessed.

...

It

...

is

...

possible

...

to

...

access

...

different

...

states

...

some

...

distance

...

from

...

the

...

average

...

energy.

...

The

...

total

...

energy,

{
Latex
} \[ \epsilon \] {latex}

,

...

is

...

fixed

...

and

...

is

...

equal

...

to

...

the

...

integral

...

of

...

the

...

curve.

...

As

...

the

...

number

...

of

...

systems

...

increases,

...

the

...

curve

...

becomes

...

sharper.

...

Latex
 \[ \mbox{microstate} \] 

...

1

2

3

Latex
 \[ \nu \] 

...

Latex
 \[ \mbox {energy} \] 

...

Latex

...

 \[ E_1 \] 

...

Latex
 \[ E_2 \] 

...

Latex
 \[ E_3 \] 

...

Latex
 \[ E_{\nu} \] 

...

Latex
 \[ \mbox{occurence} \] 

...

Latex

...

 \[ a_1 \] 

...

Latex

...

 \[ a_2 \] 

...

Latex

...

 \[ a_3 \] 

...

Latex
 \[ a_{\nu} \] 

Image Added

Constraints

Below are constraints. The first is the sum of the occupation number. The second constraint is possible due to the system being isolated.

Latex
} \] {latex} |
!Occurence_versus_energy.PNG!

h2. Constraints

Below are constraints. The first is the sum of the occupation number. The second constraint is possible due to the system being isolated.
{latex} \[ \sum_v a_v = A \] {latex}

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ \sum_v a_v E_v = \epsilon \] 

...

The

...

term

{
Latex
} \[ P_v \] {latex}

is

...

the

...

probability

...

of

...

finding

...

the

...

system

...

in

...

state

{
Latex
} \[ v \] {latex}

.

...

It

...

is

...

possible

...

to

...

use

...

snapshot

...

probability.

...

There

...

are

...

many

...

distributions

...

that

...

satisfy

...

the

...

boundary

...

conditions.

...

There

...

is

...

a

...

better

...

way

...

to

...

find

{
Latex
} \[ P_v \] {latex}

,

...

and

...

a

...

relation

...

is

...

below.

...

It

...

corresponds

...

to

...

the

...

average

...

distribution.

...

This

...

is

...

associated

...

with

...

a

...

crucial

...

insight.

{
Latex
} \[ P_v = \frac{\overline{a_v}}{A} \] {latex}

h2. Crucial 

Crucial Insight

An assumption is that the entire canonical ensemble is isolated. No energy can escape, and the energy

Latex
Insight

An assumption is that the entire canonical ensemble is isolated. No energy can escape, and the energy
{latex} \[ \epsilon \] {latex}

is

...

constant.

...

Every

...

distribution

...

of

{
Latex
} \[ \overline{a} \] {latex}

that

...

satisfies

...

the

...

boundary

...

conditions

...

is

...

equally

...

probable.

...

it

...

is

...

possible

...

to

...

write

...

many

...

body

...

wavefunction

...

because

...

the

...

energy

...

of

...

the

...

entire

...

ensemble

...

is

...

fixed.

...

The

...

principle

...

of

...

equal

...

a

...

priori

...

probabilities

...

is

...

applied.

...

Look

...

at

...

the

...

whole

...

distribution

...

that

...

satisfies

...

the

...

boundarty

...

condition.

...

Each

...

distribution

...

of

...

occurance

...

numbers

...

must

...

be

...

given

...

equal

...

weights.

Summary

The variables

Latex


h2. Summary

The variables
{latex} \[ N, V, T \] {latex}

are

...

fixed

...

  • There

...

  • are

...

  • heat

...

  • conducting

...

  • bondaries

...

  • of

...

  • each

...

  • system

...

  • Each

...

  • of

...

  • the

...

  • Latex

...

  •  \[ A \] 

...

  • (=

...

  • large

...

  • number)

...

  • members

...

  • finds

...

  • itself

...

  • in

...

  • a

...

  • heat

...

  • bath,

...

  • formed

...

  • by

...

  • the

...

  • Latex

...

  •  \[ (A - 1) \] 

...

  • other

...

  • members

...

  • Take

...

  • snapshot;

...

  • get

...

  • distribution

...

  • Latex

...

  •  \[ a_v = \overline{a} \] 

...

  • (=

...

  • #

...

  • of

...

  • systems

...

  • in

...

  • state

...

  • Latex

...

  •  \[ v \] 
    )

Constraints

The total energy,

Latex
{latex}
)

Constraints

The total energy,
{latex} \[ \epsilon \] {latex}

,

...

is

...

fixed

{
Latex
} \[ \sum_v a_v = A \sum_v a_v E_v = \epsilon \] {latex}

(isolated

...

!)

...


Probability

{
Latex
} \[ P_v \simeq \frac{a_v}{A} \] {latex}

is

...

an

...

approximation.

...

  • Better

...

  • to

...

  • use

...

  • Latex

...

  •  \[ P_v = \frac{\overline{a_v}}{A} \] 

...

  • ,

...

  • the

...

  • averaged

...

  • distribution

...

  • There

...

  • is

...

  • an

...

  • assumption

...

  • that

...

  • the

...

  • whole

...

  • canonical

...

  • ensemble

...

  • is

...

  • isolated

...

  • and

...

  • that

...

  • energy

...

  • Latex

...

  •  \[ \epsilon \] 

...

  • is

...

  • constant.

...

  • Every

...

  • distribution

...

  • of

...

  • Latex

...

  •  \[ \overline{a} \] 

...

  • that

...

  • satisfies

...

  • the

...

  • boundary

...

  • conditions

...

  • is

...

  • equally

...

  • probable.

...

  • We

...

  • are

...

  • applying

...

  • the

...

  • principle

...

  • of

...

  • equal

...

...

...

  • probabilities,

...

  • and

...

  • each

...

  • distribution

...

  • of

...

  • occurance

...

  • numbers

...

  • must

...

  • be

...

  • given

...

  • equal

...

  • weights.

...

Some

...

Math

...

Consider

...

every

...

possible

...

distribution

...

consistent

...

with

...

boundary

...

conditions,

...

and

...

for

...

each

...

distribution

...

consider

...

every

...

possible

...

permutation.

...

The

...

term

{
Latex
} \[ w (\overline{a}) \] {latex}

is

...

equal

...

to

...

the

...

number

...

of

...

ways

...

to

...

obtain

...

a

...

distribution

{
Latex
} \[ \overline{a} \] {latex}

,

...

where

{
Latex
} \[ a_v \] {latex}

is

...

the

...

number

...

of

...

systems

...

in

...

state

{
Latex
} \[ v \] {latex}

.

...

A

...

bad

...

hand

...

in

...

poker

...

is

...

defined

...

by

...

a

...

large

...

number

...

of

{
Latex
} \[ a \] {latex}

.

...

Use

...

the

...

multinomial

...

distribution.

{
Latex
} \[ a_i = \overline{a} \] {latex}

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ w (\overline{a}) = \frac{ A! }{ a_1! a_2! a_3! ..... a_v! } \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ w (\overline{a}) = \frac{ A! }{ \Pi_v a_v!} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ a_1 \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ \mbox{Number of systems in state 1} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ a_{\nu} \]

...

 

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ \mbox{Number of systems in state v} \] 

...

Below

...

are

...

expressions

...

of

...

the

...

probability

...

to

...

be

...

in

...

a

...

certain

...

state.

...

The

...

term

{
Latex
} \[ a_v \] {latex}

is

...

averaged

...

over

...

all

...

possible

...

distributions.

...

Every

...

distribution

...

is

...

given

...

equal

...

weight,

...

and

...

the

...

one

...

with

...

the

...

most

...

permutations

...

is

...

the

...

most

...

favored.

{
Latex
} \[ P_v = \frac{\overline{a_v}}{A} \] {latex}

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ P_v = \frac{1}{A} \frac{ \sum_{\overline {a}} \omega (\overline{a}) a_v (\overline{a} ) }{ \sum_{\overline a} \omega (\overline{a}) } \] 

Example

Below is an example of four systems in an ensemble. The term

Latex
} \] {latex}

h2. Example

Below is an example of four systems in an ensemble. The term
{latex} \[ P_1 \] {latex}

is

...

the

...

probability

...

of

...

any

...

system

...

to

...

be

...

in

...

state

{
Latex
} \[ 1 \] {latex}
.
|| {latex}

.

Latex
 \[ \mbox{state} \] 

...

Latex
 \[ 1 \] 

...

Latex
 \[ 2 \] 

...

Latex
 \[ \mbox{energy} \] 

...

Latex
 \[ E_1 \] 

...

Latex
 \[ E_2 \] 

...

Latex

...

 \[ \mbox{occupation} \] 

...

Latex

...

 \[ a_1 \] 

...

Latex

...

 \[ a_2 \] 

...

Latex

...

 \[ \mbox{distribution} \] 

...

Latex
 \[ a_0 \] 

...

Latex

...

 \[a_1 \] 
Latex
{latex} |
{latex} \[ \mbox{Distribution A} \] {latex}

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ w(A) = \frac{4!}{0!4!} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ w(A) = 1 \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ \mbox{Distribution B} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ w(B) = \frac{4!}{1!3!} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ w(B) = 4P_1 = \frac{1}{4} \left ( \frac{1 \cdot 0 + 4 \cdot 1 + 6 \cdot 2 + 4 \cdot 3 + 1 \cdot 4}{1 + 4 + 6 + 4 + 1} \right ) \

...

] 

Wiki Markup
{html}
<P> </P>{html}

...

Latex

...

 \[ P_1 = \frac{1}{2} \] 

...

Wiki Markup
{html}
<P> </P>{html}

...


Distribution

...

of

...

Latex

...

 \[ w(a) \] 

...

The

...

term

{
Latex
} \[ w(a) \] {latex}

is

...

the

...

number

...

of

...

permutations

...

for

...

a

...

particular

...

distribution.

...

As

...

the

...

number

...

of

...

systems

...

increases,

...

or

...

asAincreases,

...

the

...

distribution

...

becomes

...

more

...

peaked.

...


Consider

...

the

...

probability.

{
Latex
} \[ P_{\nu} = \frac{1}{A} \frac{ \sum_{\overline {a}} \omega (\overline{a}) a_{\nu} (\overline{a} ) }{ \sum_{\overline {a}} \omega (\overline{a}) } \] {latex}
Latex

{latex} \[ P_{\nu} \approx \frac{ \frac{1}{A} w ( \overline{a}^*) a_{\nu}^*}{w ( \overline{a}^*) } \] 
Latex
{latex}
{latex} \[ P_{\nu} \approx \frac{a_{\nu}^*}{A} \] {latex}

(Equation

...

1)

...


Look

...

at

...

the

...

distribution

...

that

...

maximizes

{
Latex
} \[ w ( \overline{a}) \] {latex}

,

...

the

...

permutation

...

number.

...

To

...

get

{
Latex
} \[ a_{\nu} \] {latex}

,

...

maximize

{
Latex
} \[ w ( \overline{a} ) \] {latex}

subject

...

to

...

the

...

constraints

...

below.

{
Latex
} \[ \sum_{\nu} a_{\nu} - A = 0 \] {latex}
{latex}
Latex
 \[ \sum_{\nu} a_{\nu}E_{\nu} - \epsilon = 0 \] {latex}

Use

...

Lagrange

...

multipliers,

...

and

...

maximize

{
Latex
} \[ \ln w ( \overline{a} ) \] {latex}

in

...

order

...

to

...

be

...

able

...

to

...

use

...

Stirling's

...

approximation.

{
Latex
} \[ \frac{\partial}{\partial a_{\nu}} \left ( \ln w ( \overline{a}) - \alpha \sum_k a_k - \beta \sum_k a_k E_k \right ) = 0 \] 
Latex
{latex}
{latex} \[ w ( \overline{a} ) = \frac{A!}{\pi_k a_k!} \] {latex}
{latex}
Latex
 \[ \ln w ( \overline{a}) = \ln A! + \left ( - \ln \pi_k a_k! \right ) = \ln A! - \sum_k \ln a_k! \] {latex}

Use

...

Stirling's

...

approximation

...

as

{
Latex
} \[ A \] {latex}

and

...

the

...

occupation

...

number,

{
Latex
} \[ a_k \] {latex}

,

...

go

...

to

...

infinity.

{
Latex
} \[ \sum_k \ln a_k! = \sum_k \left( a_k \ln a_k - a_k \right ) \] 
Latex
{latex}
{latex} \[ = \sum_K a_K \ln a_K - \sum_K a_K \] {latex}
{latex}
Latex
 \[ = \sum_K a_K \ln a_K - A\frac{\partial}{\partial a_{\nu}} \left ( \ln A! - \sum_k a_k \ln a_k + A - \alpha \sum_k a_k - \beta \sum_k a_k E_k \right ) = 0 \] {latex}
{latex}
Latex
 \[ \left ( a_v \to x \mbox{ , } \ln A! - \sum_k a_k \ln a_k + A \to -a_v \ln a_v \mbox{ , }\alpha \sum_k a_k \to \alpha a_v \mbox{ , }\beta \sum_k a_k E_k \to \beta a_v E_k \right )\ln a_v - 1 - \alpha - \beta E_{\nu} = 0 \] 

[
The term

Latex
{latex}

\[
The term
{latex} \[ a_{\nu} \] {latex}

is

...

the

...

occupation

...

number

...

that

...

maximizes

...

the

...

expressione

{
Latex
} \[ \alpha ' \cdot e^{\beta E_{\nu}} \] {latex}

,

...

where

{
Latex
} \[ \alpha ' = \alpha + 1 \] {latex}

.

...

Use

...

constraints

...

to

...

determine

...

the

...

Lagrange

...

multipliers

...

and

...

determine

...

the

...

probability.

{
Latex
} \[ a_{\nu}=e^{\alpha '} \cdot e^{\beta E_{\nu} \] 
Latex
{latex}
{latex} \[ \sum_{\nu} a_{\nu} = A \] {latex}
{latex}
Latex
 \[ \sum_{\nu} e^{\alpha '} \cdot e^{\beta E_{\nu} = A \] {latex}
{
Latex
latex} \[ e^{\alpha '} = \frac{1}{A} \sum_{\nu} e^{\beta E_{\nu}} \] 

The probability of being in a certain state

Latex
 {latex}
The probability of being in a certain state
{latex} \[ \nu \] {latex}

can

...

be

...

calculated,

...

and

...

it

...

is

...

still

...

in

...

terms

...

of

...

the

...

second

...

Lagrange

...

multiplier.

...

Plugging

...

back

...

into

...

Equation

...

1:

{
Latex
} \[ P_v = \frac{a_{\nu}}{A} = \frac{A}{\sum_{\nu} e^{-\beta E_{\nu}}} \cdot \frac{e{\beta E_{\nu}}}{A} = \frac{e^{-\beta E_{\nu}}}{\sum_{\nu} e^{-\beta E_{\nu}} \]

Partition Function

The denominator is the partition function,

Latex
{latex}

h2. Partition Function

The denominator is the partition function,
{latex} \[ Q = \sum_{\nu}e^{-\beta E_{\nu} \] {latex}

.

...

It

...

tells

...

us

...

how

...

many

...

states

...

are

...

accessible

...

by

...

the

...

system.

...

Determine

{
Latex
} \[ \beta \] {latex}
, a measure of thermally accessible states (?). Look 

, a measure of thermally accessible states (question). Look at how the partition function connects to macroscopic thermodynamic variables. Find

Latex
 at how the partition function connects to macroscopic thermodynamic variables. Find
{latex} \[ \beta \] {latex}

and

...

find

{
Latex
} \[ \overline{E} \] {latex}
{latex}
Latex
 \[ \overline{E} = \sum_{\nu} P_{\nu} E_{\nu}\overline{E}= \frac{\sum_{\nu} E_{\nu} e^{-\beta E_{\nu}}}{Q} \] {latex}

Consider

...

the

...

average

...

pressure.

...

The

...

pressure

...

for

...

one

...

microstate

...

is

{
Latex
} \[ p_{\nu} \] {latex}

.
{latex}

.

Latex
 \[ p_{\nu} = \frac{-\partial E_{\nu}}{\partial V} \] {latex}
{latex}
Latex
 \[ p_{\nu} = \sum_{\nu} P_{\nu} p_{\nu} \] {latex}
{latex} 
Latex
 \[ p_{\nu} = \frac{ -\sum_{\nu} \left ( \frac{\partial E_{\nu}}{\partial V} \right ) e^{-\beta E_{\nu}}}{Q} \] {latex}
Summary

Summary

In the case of a canonical ensemble, the energy of the entire ensemble is fixed. Each state is equally probable, and there is degeneracy. The probability is a function of how many ways to get the distribution. The distribution with the most permutation is the most probable. The graph can become very peaked. Once the distribution is known, do a maximization of

Latex
In the case of a canonical ensemble, the energy of the entire ensemble is fixed. Each state is equally probable, and there is degeneracy. The probability is a function of how many ways to get the distribution. The distribution with the most permutation is the most probable. The graph can become very peaked. Once the distribution is known, do a maximization of
{latex} \[ w(\overline{a}) \] {latex}

.

...

Use

...

Lagrange

...

multipliers

...

and

...

two

...

constraints.

...

The

...

term

{
Latex
} \[ a_{\nu}^* \] {latex}

is

...

the

...

distribution

...

that

...

maximizes

...

an

...

expression.

...

This

...

is

...

what

...

is

...

most

...

often

...

found.

...

Go

...

back

...

to

...

the

...

probability,

...

get

...

an

...

expression,

...

and

...

give

...

part

...

of

...

it

...

a

...

name.

...

The

...

term

{
Latex
} \[ \beta \] {latex}

is

...

a

...

measure

...

of

...

how

...

many

...

states

...

are

...

thermally

...

accessible.

{
Latex
} \[ \overline{a} \] {latex}

Consider

...

every

...

possible

...

distribution

{
Latex
} \[ a_i = \overline{a} \] {latex}

(consistent

...

with

...

boundary

...

conditions)

...

  • For

...

  • each

...

  • distribution,

...

  • consider

...

  • every

...

  • possible

...

  • permutation

...

  • The

...

  • number

...

  • of

...

  • ways

...

  • to

...

  • obtain

...

  • Latex

...

  •  \[ \overline{a} \] 

...

  • is
    Latex
     \[ \omega (\overline{a}) = \frac{ A! }{ a_1! a_2! a_3! ..... a_v! } = \frac{ A! }{ \Pi_v a_v!} \] 

...

  • ,

...

  • where

...

  • Latex

...

  •  \[ a_v \] 

...

  • is

...

  • the

...

  • number

...

  • of

...

  • systems

...

  • in

...

  • state

...

  • Latex

...

  •  \[ v \] 
    .

Probability

Latex
{latex}
.

Probability
{latex} \[ P_v = \frac{\overline{a_v}}{A} = \frac{1}{A}\frac{ \sum_{\overline a} \omega (\overline{a}) a_v (\overline{a} ) }{ \sum_{overline a}}\omega (\overline{a}) } \] 

Averaging

Latex
{latex}
Averaging

{latex} \[ a_v \] {latex}

over

...

all

...

possible

...

distributions.

{
Latex
} \[ w(\overline a) \] {latex}
{latex}
Latex
 \[ w(\overline a) \] {latex}

is

...

very

...

peaked

...

around

...

a

...

specific

...

distribution

...


Increase

{
Latex
} \[ A \] {latex

and

Latex
}

and
{latex} \[ \omega{\overline a} \] {latex}

becomes

...

more

...

peaked

{
Latex
} \[ a_v \] {latex}

To

...

get

{
Latex
} \[a_v \] {latex}

,

...

maximize

{
Latex
} \[ w (\overline a) \] {latex}

subject

...

to

...

constraints.

...


Find

...

the

...

partition

...

function,

{
Latex
} \[ Q \] {latex}