...
The Integral Form of Newton's Second Law and Impulse
The Law of Change for the Momentum and External Force model can in principle be integrated:
Latex |
---|
Second Law] can in principle be integrated: {latex}\begin{large}\[ \int_{\vec{p}_{i}}^{\vec{p}_{f}} d\vec{p} = \int_{t_{i}}^{t_{f}} \sum_{\rm ext} \vec{F}\:dt\]\end{large}{latex} |
The
...
left
...
hand
...
side
...
of
...
this
...
expression
...
is
...
simple,
...
and
...
after
...
some
...
rearrangement,
...
the
...
equation
...
becomes:
Latex |
---|
}\begin{large} \[ \vec{p}_{f} = \vec{p}_{i} + \int_{t_{i}}^{t_{f}} \sum_{\rm ext} \vec{F}\:dt\]\end{large}{latex} |
In
...
principle,
...
it
...
might
...
be
...
useful
...
to
...
leave
...
the
...
integral
...
over
...
...
explicit
...
in
...
this
...
equation,
...
but
...
in
...
practice
...
it
...
is
...
not
...
useful.
...
If
...
a
...
known
...
...
which
...
is
...
an
...
easily
...
integrable
...
function
...
of
...
time
...
is
...
applied,
...
then
...
it
...
is
...
usually
...
just
...
as
...
simple
...
and
...
more
...
intuitive
...
to
...
use
...
the
...
traditional
...
F
...
=
...
ma
...
approach
...
(followed
...
by
...
regular
...
kinematics).
...
The
...
utility
...
of
...
this
...
equation
...
actually
...
lies
...
in
...
the
...
reverse
...
approach:
...
using
...
what
...
is
...
known
...
about
...
momentum
...
to
...
learn
...
about
...
the
...
force.
...
To
...
facilitate
...
this,
...
we
...
define
...
the
...
...
associated
...
with
...
a
...
force
...
as:
Latex |
---|
}\begin{large}\[ \vec{J} = \int \vec{F}\:dt \]\end{large}{latex} |
With
...
this
...
definition,
...
the
...
integral
...
form of the Law of Change can be written:
Latex |
---|
of [Newton's Second Law] can be written: {latex}\begin{large}\[ \vec{p}_{f} = \vec{p}_{i} + \sum_{\rm ext} \vec{J} \]\end{large}{latex} {panel:bgColor=#F0F0FF}!images^SAP.gif! *[Off the Wall]* ({excerpt-include:Off the Wall|nopanel=true}) {panel} |
Panel | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
|