...
Thermodynamic
...
variables
...
are
...
time
...
averages
...
of
...
their
...
microscopic
...
counterparts.
...
There
...
is
...
an
...
enormous
...
complexity
...
with
...
quantum
...
mechanics,
...
but
...
there
...
are
...
few
...
variables
...
in
...
thermodynamics.
...
The
...
two
...
worlds
...
are
...
connected
...
by
...
posulating
...
that
Latex |
---|
} \[ \overline E = \langle E(t) \rangle \] {latex} |
.
...
The
...
function
...
on
...
the
...
right-side
...
of
...
the
...
equation
...
can
...
be
...
a
...
many
...
body
...
wavefunction.
...
It
...
is
...
possible
...
to
...
compute
...
the
...
wavefunction
...
but
...
it
...
can
...
be
...
very
...
complicated.
...
A
...
major
...
postulate
...
involves
...
a
...
weighted
...
average
...
over
...
all
...
possible
...
states,
...
and
...
major
...
pursuit
...
is
...
to
...
find
...
the
...
probabilities,
Latex |
---|
} \[ P_v \] {latex} |
,
...
involved
...
in
...
the
...
weighted
...
average.
...
- Thermodynamic
...
- variables
...
- =
...
- time
...
- averages
...
- of
...
- their
...
- microscopic
...
- counterparts
...
Latex \[ U = \overline E = \langle E(t) \rangle = \frac {1}{\Delta t} \int_{\Delta t} \langle \Psi (q,t) \mid \hat H \mid \Psi^*(q,t) \rangle \]
...
whereLatex \[ q \]
...
is
...
- the
...
- quantum
...
- number.
...
Major
...
Postulate
...
A
...
major
...
postulate
...
is
...
that
...
the
...
the
...
time
...
average
...
is
...
the
...
weighted
...
average
...
over
...
all
...
possible
...
states
...
the
...
system
...
can
...
be
...
in
...
for
...
a
...
given
...
set
...
of
...
boundary
...
conditions.
Latex |
---|
} \[ E = \sum_V E_V P_V \] {latex} If { |
If
Latex |
---|
latex} \[P_V \] {latex} |
is
...
found,
...
everything
...
can
...
be
...
calculated.
...
Any
...
variable
...
that
...
can
...
fluctuate
...
can
...
be
...
determined
...
in
...
this
...
way.
...
Math
...
Review
...
Below
...
is
...
a
...
listing
...
of
...
topics
...
reviewed.
...
Read
...
McQuarrie
...
Ch.
...
1
...
and
...
see
...
the
...
...
...
notes for additional information
- Time-dependent
...
- Schrodinger
...
- equation
...
- wavefunction
- The time-dependence
...
- is
...
- removed
...
- when
...
- dealing
...
- with
...
- equilibrium.
...
- The
...
- solution
...
- without
...
- time-dependence
...
- is
...
- the
...
- stationary
...
- state.
...
- Hamiltonian
- The concept of degeneracy involves many states with the same energy
- Boundary conditions give specific\Psi (t),
...
- E
...
- Many-body
...
- problems
...
- are
...
- the
...
- sum
...
- of
...
- one-particle
...
- systems.
...
- Assume
...
- that
...
- degrees
...
- of
...
- freedom
...
- can
...
- be
...
- decoupled.
...
- Decouple
...
- the
...
- Hamiltonian
...
- and
...
- write
...
- as
...
- a
...
- sum.
...
- Energies
...
- of
...
- particular
...
- Hamiltonians
...
- can
...
- be
...
- superimposed
...
- Symmetry
...
- of
...
- wave
...
- functions
...
- is
...
- related
...
- to
...
- indistinguishability.
...
- Given
...
- an
...
- N
...
- particle
...
- wavefunction,
...
Latex
...
\[ \Psi (1, 2,..., N) \]
...
Latex \[ \Psi (2, 1, 3,..., N) = \pm \Psi (1, 2, 3,..., N) \]
- Indistinguishable particles are dealt with in this course
Examples of Simple Quantum Mechanical Systems
Write what interactions are assumed and solutions.
Particle in a 1-D Infinite Well Potential
A physical example of a 1-D infinite well potential is a particle in a box. Below is a schematic of the potential.
Write the Hamiltonian,
Latex |
---|
{latex} ** Indistinguishable particles are dealt with in this course h1. Examples of Simple Quantum Mechanical Systems Write what interactions are assumed and solutions. h2. Particle in a 1-D Infinite Well Potential A physical example of a 1-D infinite well potential is a particle in a box. Below is a schematic of the potential. !Infinite_potential.PNG! Write the Hamiltonian, {latex} \[ \hat H \] {latex} |
,
...
define
...
the
...
potential,
...
and
...
find
...
the
...
energy
...
eigenvalues.
Latex |
---|
} \[ \hat H = \frac{-\hbar^2}{2m}\frac{\partial}{\partial x^2} + U(x) \] {latex |
Wiki Markup |
---|
{html} <P></P>{html} |
...
Latex |
---|
\[ U(x)= \begin{cases} \infty, & |x| > \frac{a}{2} \\ 0, & \frac{-a}{2} < x < \frac{a}{2} \end{cases} \] |
...
Wiki Markup |
---|
{html} |
...
<P></P>{html} |
...
Latex |
---|
...
\[ \varepsilon_n = \mbox{energy eigenvalues} \] |
...
Wiki Markup |
---|
{html} <P></P>{html} |
...
Latex |
---|
\[ \varepsilon_n = \frac{h^2 n^2}{8ma^2},n=1,2,... \] |
...
Simple Harmonic Oscillator (1-D)
...
In
...
the
...
case
...
of
...
a
...
simple
...
harmonic
...
oscillator,
...
a
...
system
...
moved
...
from
...
equilibrium
...
feels
...
a
...
restoring
...
force.
The energy eigenvalues are discrete.
Latex |
---|
!Simple_harmonic_oscillator.PNG! The energy eigenvalues are discrete. {latex} \[ \hat H = \frac{\hbar}{2m}\frac{\partial}{\partial x^2} + U(x) \] {latex |
Wiki Markup |
---|
{html} <P></P>{html} |
...
Latex |
---|
\[ U(x) = \frac{1}{2} k x^2 \] |
...
Wiki Markup |
---|
{html} |
...
<P></P>{html} |
...
Latex |
---|
...
\[ \varepsilon_n = (n + \frac{1}{2})\hbar \omega(k), n = 0, 1, 2, ... \] |
The Concept of Degeneracy
Hydrogen Atom
Consider the hydrogen atom. The energy eigenvalues are proportional to the inverse of the square of the principal quantum number,
Latex |
---|
{latex} h1. The Concept of Degeneracy h2. Hydrogen Atom Consider the hydrogen atom. The energy eigenvalues are proportional to the inverse of the square of the principal quantum number, {latex} \[ n \] {latex} |
.
...
For
...
every
Latex |
---|
} \[ n \] {latex} |
,
...
there
...
are
Latex |
---|
} \[ s \] {latex}, { |
,
Latex |
---|
latex} \[ p \] {latex} |
,
...
and
Latex |
---|
} \[ d \] {latex} |
states
...
that
...
are
...
dependent
...
on
...
the
...
angular
...
momentum.
...
They
...
are
...
all
...
degenerate
...
in
...
energy,
...
but
...
there
...
are
...
different
...
wavefunctions
...
associated
...
with
...
each.
...
Consider
...
a
...
table
...
of
...
degeneracy.
...
The
...
degeneracy,
Latex |
---|
} \[ w \] {latex} |
,
...
is
...
equal
...
to
Latex |
---|
} \[ 2n^2 \] {latex} |
,
...
where
...
the
...
factor
...
of
...
two
...
is
...
due
...
to
...
spin.
Latex |
---|
} \[ n=1, 2, ... \] {latex |
Wiki Markup |
---|
{html} <P></P>{html} |
...
Latex |
---|
\[ 0 \le l \le n-1 \] |
...
Wiki Markup |
---|
{html} <P></P>{html} |
...
Latex |
---|
\[ -l \le m \le l \] |
...
Wiki Markup |
---|
{html}{html} |
|
---|
...
|
| |||||||
|
|
| ||||||
|
|
...
|
|
...
| ||
|
...
|
|
...
|
|
Latex |
---|
\[ 3d \mbox{3d_{xy}, 3d_{yz}, 3d_{xz} \] |
Wiki Markup |
---|
{html} |
...
<p>{html} |
Latex |
---|
\[ 3d_{x^2-y^2}, 3d_{z^2-r^2} |
...
\] |
Degeneracy of one particle in a 3-D
...
Infinite
...
Well
...
Potential
...
This
...
is
...
a
...
generalization
...
of
...
the
...
one-dimensional
...
case.
...
Assume
...
that
...
the
...
three
...
directions
...
are
...
independent,
...
and
...
write
...
the
...
energy
...
eigenvalues.
Latex |
---|
\[ E_{n_x,n_y,n_z}=\frac{h^2}{8ma^2} (n_x^2+n_y^2+n_z^2)} \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ n_x,n_y,n_z=1, 2, 3 ,... |
...
\] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ n_x^2+n_y^2+n_z^2 = R^2 \] |
How many ways can we get the same
Latex |
---|
\[ R \] |
? Consider an example of
Latex |
---|
\[ R=6 \] |
. Create a table of possibilities and find that
Latex |
---|
\[ w=3 \] |
.
|
|
| ||||||
---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | ||||||
1 | 2 | 1 | ||||||
2 | 1 | 1 |
Generalized for any R in 3-D
How do we find the generalized
Latex |
---|
\[ w(\varepsilon) \] |
in 3D? Show is two dimensions and envision in three dimensions. Degeneracy is how many dots land on the arc of R in the n space. Below is a diagram in the case of two dimensions. Look at positive vales of
Latex |
---|
\[ n_x \] |
and
Latex |
---|
\[ n_y \] |
. For small quantum numbers, there is an irratic step function, but the function is smooth for large functions.
The degeneracy in three dimensions is equal to the number of points on the sphere with radius R in the first quadrant.
Latex |
---|
\[ How many ways can we get the same R? Consider an example of R=6. Create a table of possibilities and find that w=3. n_x n_y n_z 1 1 2 1 2 1 2 1 1 h2. Generalized for any \_R\_ in \_3-D\_ How do we find the generalized w(\varepsilon) in 3D? Show is two dimensions and envision in three dimensions. Degeneracy is how many dots land on the arc of R in the n space. Below is a diagram in the case of two dimensions. Look at positive vales of n_x and n_y. For small quantum numbers, there is an irratic step function, but the function is smooth for large functions. !R_versus_nx_and_ny.PNG! The degeneracy in three dimensions is equal to the number of points on the sphere with radius R in the first quadrant. R^2 = n_x^2+n_y^2+n_z^2 \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ R^2 = \frac{8ma^2 \varepsilon}{h^2} |
...
\] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon > 0 |
...
\] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon = \varepsilon_x + \varepsilon_y + \varepsilon_z \] |
When
Latex |
---|
\[ When R \] |
or
Latex |
---|
\[ E \] |
is
...
large,
...
it
...
can
...
be
...
treated
...
as
...
a
...
continuous
...
variable.
...
Determine
...
the
...
number
...
of
...
lattice
...
points between
Latex |
---|
\[ between R \] |
and
Latex |
---|
\[ R + dR \] |
or
Latex |
---|
\[ \varepsilon \] |
and
Latex |
---|
\[ \varepsilonand \varepsilon + d \varepsilon \] |
.
...
Look
...
at
...
the
...
number
...
of
...
points
...
within
...
the
...
sphere;
...
consider
...
the
...
number
...
of
...
points
...
with
...
energy
...
less than
Latex |
---|
\[ than \epsilon \] |
.
...
If
...
the
...
number
...
of
...
points
...
is
...
dense,
...
it
...
can
...
be
...
set
...
to
...
the
...
volume,
...
and
...
below
...
is
...
an
...
expression for
Latex |
---|
\[ for \phi (\epsilon) \] |
,
...
which
...
is
...
defined
...
as
...
the
...
number
...
of
...
points within
Latex |
---|
\[ within R. \] |
.
Latex |
---|
\[ \phi (\epsilon) = \frac{1}{8} \left ( \frac{4 \pi R^3}{3} \right ) \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \phi (\epsilon) = \frac{\pi}{6} \left ( \frac{8 m a^2 \epsilon}{h^2} \right )^{\frac{3}{2}} \] |
The number of states in a slice, or the number of states between
Latex |
---|
\[ \epsilon \] |
and
Latex |
---|
\[ </math><br></center>The number of states in a slice, or the number of states between <math>\epsilon</math> and <math>\epsilon + \delta \epsilon \epsilon</math>, is of ] |
, is of interest.
...
A
...
formula
...
is
...
below
...
for
...
the
...
number
...
of
...
states
...
that
...
become
...
available
...
when
...
increasing
...
energy
...
by
...
a
...
small
...
amount.
...
There
...
is
...
an
...
assumption that
Latex |
---|
\[ that <math>\delta \epsilon \epsilon</math>] |
is
...
very
...
small,
...
and
...
there
...
is
...
a
...
Taylor
...
expansion.
Latex |
---|
\[ w<center><br><math>w( \epsilon, \Delta \epsilon )= \phi (\epsilon + \Delta \epsilon) - \phi (\epsilon)</math><br><math>w( \epsilon, \Delta \epsilon] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) = \frac {\pi}{6} \left ( \frac{m a^2}{h^2} \right )^{\frac{3}{2}} \left ( \left (\epsilon + \Delta \epsilon \right )^{\frac{3}{2}} - \epsilon^{\frac{3}{2}} \right ) |
...
\] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) = \frac{\pi} |
...
{6}\left ( \frac{8 m a^2 \epsilon}{h^2} \right )^{\frac{3}{2}} \left ( \left (1 + \frac{\Delta \epsilon}{\epsilon} \right )^{\frac{3}{2}} - 1 \right ) |
...
\] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) = \frac{\pi}{4} \left ( \frac{8 m a^2 \epsilon |
...
}{h^2} \right )^{\frac{3}{2}} \epsilon^{\frac{3}{2}} \Delta \epsilon \] |
Look at the order of magnitude of this. Consider just the kinetic energy in three dimensions. The formula for kinetic energy is
Latex |
---|
\[ Look at the order of magnitude of this. Consider just the kinetic energy in three dimensions. The formula for kinetic energy is\epsilon = \frac{3}{2} k T \] |
.
...
Temperature
...
can't
...
be
...
assigned
...
to
...
just
...
one
...
particle.
...
Consider
...
one
...
particle
...
in
...
contact
...
with
...
heat
...
bath,
...
a
...
gas
...
particle
...
in
...
a
...
box.
...
Latex |
---|
\[ T=300K \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ m=10^{-22} g \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ a=10 cm \] |
Wiki Markup |
---|
{html}<p>{html} |
...
Latex |
---|
\[ \Delta \epsilon = 0.01 \epsilon |
...
\] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ w( \epsilon, \Delta \epsilon ) \approx 10^{28} |
...
\] |
There is a huge number of additional points. The number of states that can be accessed is enormous. The numbers are very dense using room temperature. When calculating with interacting particles the results are about the same.
Summary
- for small R --> w is erratic
- for large R --> w is more smooth
For 3D case
Latex |
---|
\[ n_x^2+n_y^2+n_z^2 = R^2 = \frac{8ma^2 \varepsilon}{h^2} \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon > 0 \] |
Wiki Markup |
---|
{html}<p>{html} |
Latex |
---|
\[ \varepsilon = \varepsilon_x + \varepsilon_y + \varepsilon_ |
...
z \] |
Additional math topics
A listing is below of additional math topics covered. Additional information is posted at thecourse website.
- Average of
Latex \[ u \]
- Mean of a function
Latex \[ f(u) \]
moment of distributionLatex \[ m^{th} \]
central moment of a distributionLatex \[ m^{th} \]
- Integration of function with probability density
- Gaussian distribution
- Stirling's approximation
- Binomial/multinomial distribution
October 20, 2006