Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

Excerpt
hiddentrue

Integrate to find the moment of inertia of a solid sphere.

...

width60%

...

Calculate

...

the

...

moment

...

of

...

inertia

...

of

...

a

...

solid

...

sphere

...

of

...

radius

...

R

...

and

...

uniform

...

density

...

ρ rotated

...

about

...

an

...

axis

...

passing

...

through

...

its

...

center.

...

Solution

System,

...

Interactions

...

and

...

Model:

...

Not

...

applicable.

...

We

...

solve

...

this

...

problem

...

using

...

the

...

definition

...

of

...

the

...

moment

...

of

...

inertia

...

.

...

Approach:

...

We

...

will

...

have

...

to

...

perform

...

an

...

integral

...

over

...

the

...

volume

...

of

...

the

...

sphere

...

to

...

calculate

...

the

...

moment

...

of

...

inertia.

...

The

...

integral

...

is

...

best

...

performed

...

in

...

cylindrical

...

coordinates

...

with

...

the

...

z-axis

...

chosen

...

to

...

lie

...

along

...

the

...

axis

...

of

...

rotation,

...

since

...

it

...

takes

...

the

...

form:

{
Latex
}
\begin{large}\[ I =\int\int\int r^{2}\:\rho\:r\:dr\:d\theta\:dz \] \end{large}
{latex} {info}In spherical
Info

In spherical coordinates,

the

integrand

is

complicated

by

the

fact

that

the

radial

coordinate

measures

deviation

from

the

center

point

instead

of

the

axis

of

rotation.

{info}

The

...

best

...

way

...

to

...

configure

...

this

...

integral

...

is

...

to

...

integrate

...

over

...

angle

...

first,

...

then

...

radius,

...

and

...

finally

...

the

...

z-coordinate.

...

The

...

sphere

...

is

...

continuous

...

so

...

the

...

limits

...

on

...

theta

...

are

...

always

...

zero

...

to

...

2

{
Latex
}
$\pi$
{latex}

,

...

and

...

the

...

sphere

...

is

...

axially

...

symmetric

...

so

...

the

...

integrand

...

has

...

no

...

dependence

...

on

...

θ. Thus,

...

we

...

can

...

simply

...

perform

...

this

...

integral

...

to

...

obtain:

{
Latex
}
\begin{large} \[ I = 2\pi \int \int r^{3}\:\rho\:dr\:dz \]\end{large}
{latex}

It

...

is

...

simplest

...

to

...

next

...

perform

...

the

...

integral

...

over

...

r

...

.

...

Here

...

we

...

have

...

some

...

trouble,

...

however,

...

since

...

the

...

limits

...

on

...

r

...

will

...

be

...

a

...

function

...

of

...

z

...

.

...

Basically,

...

we

...

are

...

cutting

...

the

...

sphere

...

up

...

into

...

a

...

stack

...

of

...

circles

...

perpendicular

...

to

...

the

...

z-axis.

...

If

...

we

...

move

...

through

...

the

...

stack

...

from

...

bottom

...

to

...

top,

...

the

...

circles

...

first

...

grow

...

larger

...

(as

...

we

...

near

...

the

...

center)

...

and

...

then

...

reduce

...

in

...

size

...

again

...

until

...

their

...

radius

...

disappears

...

at

...

the

...

"north

...

pole"

...

(the

...

top

...

of

...

the

...

sphere).

...

Based

...

upon

...

the

...

well-known

...

definition

...

of

...

a

...

spherical

...

surface

...

in

...

rectangular

...

coordinates:

{
Latex
}
\begin{large}\[ x^2 + y^2 + z^2 = R^2 \]\end{large}
{latex}

and

...

using

...

the

...

relationship

...

between

...

cylindrical

...

coordinates

...

and

...

rectangular

...

coordinates:

Latex
{latex}
\begin{large}\[ r^{2} = x^2 + y^2\]\end{large}
{latex}

we

...

can

...

see

...

that

...

the

...

radius

...

of

...

the

...

circle

...

perpendicular

...

to

...

the

...

z-axis

...

at

...

a

...

given

...

z-value

...

will

...

be:

{
Latex
}
\begin{large} \[ r_{max} = \sqrt{R^{2} - z^{2}} \] \end{large}
{latex}

Thus,

...

we

...

can

...

set

...

up

...

the

...

limits

...

of

...

our

...

integral

...

as:

{
Latex
}
\begin{large}\[ I = 2\pi \int_{-R}^{R}\int_{0}^{\sqrt{R^{2}-z^{2}}} \:r^{3}\:\rho\:dr\:dz \]\end{large}
{latex}

Performing

...

the

...

r

...

integral

...

gives:

{
Latex
}
\begin{large} \[ I = 2\pi \int_{-R}^{R} \:\frac{1}{4}(R^{2} - z^{2})^{2} \:\rho\:dz = 2\pi \int_{-R}^{R} \:\frac{1}{4}(R^{4} - 2R^{2}z^{2} + z^{4}) \:\rho\:dz \] \end{large}
{latex}

and

...

finishing

...

with

...

the

...

z

...

integral:

{
Latex
}
\begin{large}\[ I = \pi \rho (R^{5} - \frac{2}{3} R^{5} + \frac{1}{5} R^{5}) = \frac{8}{15}\rho R^{5} \]\end{large}
{latex}

The

...

answer

...

can

...

be

...

put

...

in

...

terms

...

of

...

the

...

mass

...

of

...

the

...

sphere

...

by

...

noting

...

that

...

for

...

a

...

uniform

...

sphere:

{
Latex
}
\begin{large}\[ M = \frac{4\pi}{3} \rho R^{3}\]\end{large}
{latex}

so:

{40%
Latex
}
\begin{large} \[ I = \frac{2}{5} MR^{2}\]\end{large}
{latex}
Column
width

unmigrated-inline-wiki-markup

...

{html}
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-11762009-2");
pageTracker._trackPageview();
} catch(err) {}</script>
{html}