Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

TITLE IN HELVETICA, FONT 18, BOLD
USE TWO OR MORE LINES IF THE TITLE IS EXCESSIVELY LONG
Name of Faculty, FONT 16, Bold

Title of Faculty, Font 14, normal

Name of University, Font 14, normal
TODAY, September 24 at 4 PM, Font 16, bold
Room 66-110, Font 16, bold

 

Justyfy, Helvetica 12 - Text text Text textext text Text textext text Text textext text Text textText text Text textext text Text textext text Text textext text Text text Text text Text textext text Text textext text Text textext text Text text cText text Text textext text Text textext text Text textext text Text textText text Text textext text Text textext text Text textext text Text text Text text Text textext text Text textext text Text textext text Text textt ext text Text textext text Text textext text Text textext text Text textText text Text textext text Text textext text Text textext text Text text Text text Text textext text Text textext text Text textext text Text text cText text Text textext text Text textext text Text textext text Text textText text Text textext text Text textext text Text textext text Text text Text text Text textext text Text textext text Text textext text Text text

 

Refreshments will be served. Please join us!

 

This talk is jointly sponsored by MRL, DMSE, and ChemE.

To subscribe or unsubscribe from this email list, please visit
http://mailman.mit.edu.ezproxyberklee.flo.org/mailman/listinfo/matseminars.

 

Send email following this format to matseminars (bcc) five business days before and the day before or morning of the talk.
Materials Science and Engineering Seminar Series, Spring 2008
 
Friday, May 9 at noon
Room 6-120
Refreshments at 11:30 in the Chipman Room (6-104)
 
David J. Srolovitz
Dean of Yeshiva College
Yeshiva University
 
Grain Growth, Shape and Topology in all Dimensions: Beyond von Neumann-Mullins

Abstract:
Cellular microstructures are ubiquitous in nature.  They can be found in polycrystalline microstructures, foams, plant epidermis, ferroelectrics, complex fluids, and even in ice cream.  In many situations, the cell/grain/bubble walls move to reduce their surface area (a surface tension effect), with a velocity proportional to the wall's mean curvature.  As a result, the cells evolve and coarsen.  Using this relation, and little else, von Neumann gave an exact formula for the growth rate of a cell in a 2-d cellular structure, which is the basis of modern grain growth theory.  Borrowing ideas from geometric probability, we present an exact solution for the same problem in 3-d using the "mean width."  We then describe why the mean width is the natural linear measure of grain size and topology and is useful across broad swaths of the sciences. Next, we extend this 50 year-old theory into all d≥2.  Finally, we discuss using these ideas to more efficiently simulate grain growth.

Please join us!