Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migrated to Confluence 4.0
Wiki Markup
{composition-setup

Image Removed

Part A

Deck of Cards
idbigdeck
Card
labelPart A
Excerpt

A person pushes a box of mass 15 kg along a smooth floor by applying a perfectly horizontal force F.

The box accelerates horizontally at a rate of 2.0 m/s2. What is the magnitude of F?

Solution

Toggle Cloak
idsysa
System: Cloak
idsysa
Box as .

Toggle Cloak
idinta
Interactions:
Cloak
idinta

External influences from the person (applied force) the earth (gravity) and the floor (normal force).

Toggle Cloak
idmoda
Model: Cloak
idmoda
.

Toggle Cloak
idappa
Approach:

Cloak
idappa
Card
labelPart B

Part B

A person pushes a box of mass 15 kg along a smooth floor by applying a perfectly horizontal force F. The box moves horizontally at a constant speed of 2.0 m/s in the direction of the person's applied force. What is the magnitude of F?

Solution

Toggle Cloak
idsysb
System, Interactions and Model:
Cloak
idsysb

As in Part A.

Toggle Cloak
idappb
Approach:

Cloakidappb
}{composition-setup}

!pushingbox.png!

{deck:id=bigdeck}
{card:label=Part A}

h3. Part A

{excerpt}A person pushes a box of mass 15 kg along a smooth floor by applying a perfectly horizontal force _F_.{excerpt}  The box accelerates horizontally at a rate of 2.0 m/s{color:black}^2^{color}.  What is the magnitude of _F_?

h4. Solution

{toggle-cloak:id=sysa} *System:* {cloak:id=sysa} Box as [point particle].{cloak}

{toggle-cloak:id=inta} *Interactions:* {cloak:id=inta}External influences from the person (applied force) the earth (gravity) and the floor (normal force).{cloak}

{toggle-cloak:id=moda} *Model:* {cloak:id=moda}[Point Particle Dynamics].{cloak}

{toggle-cloak:id=appa} *Approach:*  

{cloak:id=appa}

The word *smooth* in the problem statement is a keyword, telling us that the floor exerts no horizontal force on the box.  Thus, [Newton's 2nd Law|Newton's Second Law] for the _x_ direction can be written:

{latex}\begin{large}\[ \sum F_{x} = F = ma_{x} = \mbox{30 N}\] \end{large}{latex}

{cloak}

{card}
{card:label=Part B}

h3. Part B

A person pushes a box of mass 15 kg along a smooth floor by applying a perfectly horizontal force _F_.  The box moves horizontally at a constant speed of 2.0 m/s in the direction of the person's applied force.  What is the magnitude of _F_?

h4. Solution

{toggle-cloak:id=sysb} *System, Interactions and Model:*  {cloak:id=sysb} As in Part A.{cloak}

{toggle-cloak:id=appb} *Approach:*  

{cloak:id=appb}

Just as above, [Newton's 2nd Law|Newton's Second Law] for the _x_ direction can be written:

{latex}\begin{large}\[ \sum F_{x} = F = ma_{x}\] \end{large}{latex}

This time, however, the acceleration requires some thought.  The speed of the box and its direction of motion are constant.  Thus, by definition, the acceleration is zero.  This implies:

{latex}\begin{large}\[ F = ma_{x} = \mbox{(15 kg)(0 m/s}^{2}) = \mbox{0 N} \] \end{large}{latex}

{info}This result is probably not consistent with your everyday experience.  The reason for this is that it is very difficult to find a box and floor combination with zero friction.  Instead, consider the effort that would be required to keep an air-hockey puck moving at constant speed on the air-table (friction is very small) or to keep a soccer ball rolling at constant speed on a smooth, level floor (friction is unimportant since the ball is rolling).{info}

{cloak}
{card}
{deck}