{excerpt:hidden=true}Several examples illustrating how to find the normal force in not-so-common situations.{excerpt}
{composition-setup}{composition-setup}
{table:border=1|cellpadding=8|cellspacing=0|frame=void|rules=cols}
{tr:valign=top}
{td:width=350|bgcolor=#F2F2F2}
{live-template:Left Column}
{td}
{td}
{deck:id=bigdeck}
{card:label=Part A}
h2. Part A
!thatnormal1.png|width=500!
A person holds a 10 kg box against a smooth (i.e. frictionless) wall (as it slides down) by applying a perfectly horizontal force of 300 N. What is the magnitude of the normal force exerted on the box by the wall?
h4. Solution
{toggle-cloak:id=sysa} *System:* {cloak:id=sysa}Box as [point particle].{cloak}
{toggle-cloak:id=inta} *Interactions:* {cloak:id=inta}External influences from the earth ([gravity|gravity (near-earth)]), the wall ([normal force]) and the person ([applied force]).{cloak}
{toggle-cloak:id=moda} *Model:* {cloak:id=moda}[Point Particle Dynamics].{cloak}
{toggle-cloak:id=appa} *Approach:*
{cloak:id=appa}
{toggle-cloak:id=diaga} {color:red} *Diagrammatic Representation* {color}
{cloak:id=diaga}
We begin with a free body diagram for the box:
!thatfbd1.jpg!
{note}It is important to note that any surface has the potential to exert a normal force and that the normal is always perpendicular to the plane of the surface. If the wall did not exert a normal force, the box would simply pass through it.{note}
{cloak:diaga}
{toggle-cloak:id=matha} {color:red} *Mathematical Representation* {color}
{cloak:id=matha}
From the free body diagram, we can write the equations of [Newton's 2nd Law|Newton's Second Law].
{latex}\begin{large}\[\sum F_{x} = F_{A} - N = ma_{x}\]
\[ \sum F_{y} = - mg = ma_{y}\]\end{large}{latex}
Because the box is held against the wall, it has no movement (and no acceleration) in the _x_ direction (_a_~x~ = 0). Setting _a_~x~ = 0 in the _x_ direction equation gives:
{latex}\begin{large}\[ N = F_{A} = \mbox{300 N} \]\end{large}{latex}
{cloak:matha}
{cloak:appa}
{card}
{card:label=Part B}
h2. Part B
!thatnormal2.jpg|width=500!
A person moves a 10 kg box up a smooth wall by applying a force of 300 N. The force is applied at an angle of 60° above the horizontal. What is the magnitude of the normal force exerted on the box by the wall?
h4. Solution
{toggle-cloak:id=sysb} *System:* {cloak:id=sysb}Box as [point particle].{cloak}
{toggle-cloak:id=intb} *Interactions:* {cloak:id=intb}External influences from the earth ([gravity|gravity (near-earth)]), the wall ([normal force and friction]) and the person ([applied force]).{cloak}
{toggle-cloak:id=modb} *Model:* {cloak:id=modb}[Point Particle Dynamics].{cloak}
{toggle-cloak:id=appb} *Approach:*
{cloak:id=appb}
{toggle-cloak:id=diagb} {color:red} *Diagrammatic Representation* {color}
{cloak:id=diagb}
We begin with a free body diagram for the box:
!thatfbd2.jpg!
{cloak:diagb}
{toggle-cloak:id=mathb} {color:red} *Mathematical Representation* {color}
{cloak:id=mathb}
From the free body diagram, we can write the equations of [Newton's 2nd Law|Newton's Second Law].
{latex}\begin{large}\[\sum F_{x} = F_{A}\cos\theta - N = ma_{x}\]
\[ \sum F_{y} = F_{A}\sin\theta - mg = ma_{y}\]\end{large}{latex}
Because Because the box is held against the wall, it has no movement (and no acceleration) in the _x_ direction (_a_~x~ = 0). Setting _a_~x~ = 0 in the _x_ direction equation gives:
{latex}\begin{large}\[ N = F_{A}\cos\theta = \mbox{150 N} \]\end{large}{latex}
{cloak:mathb}
{cloak:appb}
{card}
{card:label=Part C}
h2. Part C
!thatnormal3.jpg|width=500!
A person scrapes a 10 kg box along a low, smooth ceiling by applying a force of 300 N at an angle of 30° above the horizontal. What is the magnitude of the normal force exerted on the box by the ceiling?
h4. Solution
{toggle-cloak:id=sysc} *System:* {cloak:id=sysc}Box as [point particle].{cloak}
{toggle-cloak:id=intc} *Interactions:* {cloak:id=intc}External influences from the earth ([gravity|gravity (near-earth)]), the wallceiling ([normal force and friction]) and the person ([applied force]).{cloak}
{toggle-cloak:id=modc} *Model:* {cloak:id=modc}[Point Particle Dynamics].{cloak}
{toggle-cloak:id=appc} *Approach:*
{cloak:id=appc}
{toggle-cloak:id=diagc} {color:red} *Diagrammatic Representation* {color}
{cloak:id=diagc}
We begin with a free body diagram for the box:
!thatfbd3.jpg!
{note}The ceiling must push down to prevent objects from moving up through it.{note}
{cloak:diagc}
{toggle-cloak:id=mathc} {color:red} *Mathematical Representation* {color}
{cloak:id=mathc}
From the free body diagram, we can write the equations of [Newton's 2nd Law|Newton's Second Law].
{latex}\begin{large}\[\sum F_{x} = F_{A}\cos\theta = ma_{x}\]
\[ \sum F_{y} = F_{A}\sin\theta - mg - N = ma_{y}\]\end{large}{latex}
Because Because the box is held against the ceiling, it has no movement (and no acceleration) in the _y_ direction (_a_~y~ = 0). Setting _a_~y~ = 0 in the _y_ direction equation gives:
{latex}\begin{large}\[ F_{A}\sin\theta - mg - N = 0 \]\end{large}{latex}
which we solve to find:
{latex}\begin{large}\[ N = F_{A}\sin\theta - mg = \mbox{52 N}\]\end{large}{latex}
{tip}We can check that the _y_ direction is in balance. We have N (52 N) and mg (98 N) on one side, and _F_~A,y~ on the other (150 N).{tip}
{cloak:mathc}
{cloak:appc}
{card}
{deck}
{td}
{tr}
{table}
{live-template:RELATE license} |