Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Wiki Markup
{composition-setup}{composition-setup}
{excerpt:hidden=true}*System:* Any system can be treated as a [point particle] located at the [center of mass]. --- *Interactions:* Any.{excerpt}

{table:rules=cols|cellpadding=8|cellspacing=0|border=1|frame=void}
{tr:valign=top}{td:width=275px|bgcolor=#F2F2F2}
{live-template:Left Column}
{td}
{td}

h2h1. DescriptionPoint andParticle AssumptionsDynamics

{excerpt:hidden=true}*System:* Any system can be treated as a [point particle] located at the [center of mass]. --- *Interactions:* Any.{excerpt}

This modelh4. {toggle-cloak:id=desc} Description and Assumptions

{cloak:id=desc}
This [model|model] is applicable to a [point particle] (or to a [system|system] of objects treated as a [point particle|point particle] located at the system's [center of mass]) when the [external forces|external force] are known or needed.  It is a subclass of the model [Momentum and External Force] defined by the constraint _dm/dt_ = 0.
{cloak}

h2h4. {toggle-cloak:id=cues} Problem Cues

{cloak:id=cues}
This [model|model] is typically applied to find the [acceleration|acceleration] in cases where the [forces|force] will remain constant, such as an object moving along a flat surface like a ramp or a wall.  It is also useful in combination with other [models|model], such as when finding the [normal force|normal force] exerted on a passenger in a roller coaster at the top of a loop-the-loop (in which case, it would be combined with [Mechanical Energy and Non-Conservative Work]).

----
||Page Contents||
|{toc:style=none|indent=10px}|

h1. Prerequisite Knowledge

h3. Prior Models{cloak}

h4. {toggle-cloak:id=pri} Prior Models

{cloak:id=pri}

*  [One-Dimensional Motion with Constant Acceleration|1-D Motion (Constant Acceleration)].

{cloak}

h3h4. {toggle-cloak:id=vocab} Vocabulary

{cloak:id=vocab}
{contentbylabel:vocabulary,dynamics|showSpace=false|showLabels=false|maxResults=50|operator=AND}

h1. {cloak}

h2. Model

h4. {toggle-cloak:id=sys} {color:red}Compatible Systems{color}

{cloak:id=sys}
A single [point particle|point particle], or a system of constant mass that is treated as a point particle located at the system's center of mass.
{cloak}

h1h4. {toggle-cloak:id=int} {color:red}Relevant Interactions{color}
{cloak:id=int}
[External forces|external force] must be understood sufficiently to draw a [free body diagram] for the system.  [Internal forces|internal force] will always cancel from the equations of Newton's 2nd Law for the system and can be neglected.
{cloak}
h1. Model

h3. 
h4. {toggle-cloak:id=law} {color:red}Law of Change{color}

{cloak:id=law}
{latex}\begin{large} \[ \sum \vec{F}^{\rm ext} = m\vec{a} \]  \end{large} {latex}

{note}As with all vector equations, this Law of Interaction should really be understood as three simultaneous equations:\\

{latex}\begin{large}\[ \sum F^{\rm ext}_{x} = ma_{x}\]
\[ \sum F^{\rm ext}_{y} = ma_{y}\]
\[\sum F^{\rm ext}_{z} = ma_{z}\]\end{large}{latex}{note}
{cloak}

h1h4. {toggle-cloak:id=diag} {color:red}Diagrammatical Representations{color}

{cloak:id=diag}
{contentbylabel:dynamics,representation|showSpace=false|showLabels=false|maxResults=50|operator=AND}
{cloak}
h1
h2. Relevant Examples


h4. {toggle-cloak:id=all} All Related Examples
{cloak:id=all}
{contentbylabel:dynamics,example_problem|showSpace=false|showLabels=false|maxResults=50|operator=AND}

----{cloak}

{search-box}
\\
\\
{td}
{tr}
{table}
{live-template:RELATE license}

\\