{table:align=right|cellspacing=0|cellpadding=1|border=1|frame=box|width=40%}
{tr}
{td:align=center|bgcolor=#F2F2F2}*[Model Hierarchy]*
{td}
{tr}
{tr}
{td}
{pagetree:root=Model Hierarchy|reverse=true}
{td}
{tr}
{table}
h2. KeysDescription toand ApplicabilityAssumptions
{excerpt}This model is [generally applicable|generally applicable model] (assuming knowledge of the external forces and system constituents), but.{excerpt}
h2. Problem Cues
This model is especially useful when describing the momentum of systems where external forces are absent (system momentum will be constant) or estimating the force in a process that occurs in a very short time interval as in collisions (impulse will be easier to determine than force).{excerpt}
|| Page Contents ||
| {toc:style=none|indent=10px} |
----
h2. AssumedPrerequisite Knowledge
h4. Prior Models
* [Point Particle Dynamics]
h4. Vocabulary
* [system]
* [force]
* [impulse]
* [momentum]
* [velocity]
----
h2. Model SpecificationSystem
h4. System StructureConstituents
*[Constituents|The system constituent]:* System ismust be effectively composed of [Pointpoint particles|point particle].
{note}Rigid, though rigid bodies may be treated as point particles with positions specified by the center of mass positions of the rigid body when this model is used.{note}
\\
*[Interactions|interaction]:* Only [external forces|external force] need be considered, since [internal forces|internal force] do not change the system's momentum.
\\
h4. Descriptors
*[State Variables|state variable]:* and Parameters
Mass (_m{_}{^~}j^j~) and velocity (_v{_}{^~}j^j~) for each object or momentum (_p{_}{^~}j^j~) for each object inside the system.
*[Interaction Variables|interaction variable]:* h2. Interactions
h4. Relevant Types
Only [external forces|external force] need be considered, since [internal forces|internal force] do not change the system's momentum.
h4. Interaction Variables
External forces (_F{_}{~^}ext,k~ext^~k~) or, alternately, impulses may be specified (_J{_}{~^}ext,k~ext^~k~).
----
h2. Model Equations
h4. Relationships Among State Variables
If not directly given, momenta can be obtained using the definition:
{latex}\begin{large}\[ \vec{p}^_{\:j} = m^m_{j}\vec{v}^_{\:j}\]\end{large}{latex}
The relationship implied by the model is most easily expressed in terms of the *system momentum*, which is the vector sum of the constituent momenta. For a system composed of _N_ point particles:
{latex}\begin{large}\[ \vec{p}^_{\:\rm sys} = \sum_{j=1}^{N} \vec{p}^_{\:j} \]\end{large}{latex}
{warning}The number of point particle constituents in the system is not necessarily fixed. A [totally inelastic collision], for example, could be viewed as a process where two separate system constituents exist in the initial state, but only one is present in the final state.{warning}
\\
h4. MathematicalLaws Statement of the ModelChange
h5. Differential Form
{latex}\begin{large}\[ \frac{d\vec{p}^_{\:\rm sys}}{dt} = \:\sum_{k=1}^{N_{F}} \vec{F}^{ext}_{ext,k} \]\end{large}{latex}
\\
or, alternately:
h5. Integral Form
{latex}\begin{large}\[ \vec{p}^_{\:\rm sys}_{f} = \vec{p}^_{\: \rm sys}_{i} + \sum_{k=1}^{N_{F}} \vec{J}^{ext}_{ext,k} = \vec{p}^_{\:\rm sys}_{i} + \int \sum_{k=1}^{N_{F}} \vec{F}^{ext}_{ext,k}\:dt \]
\end{large}{latex}
----
h2. Relevant Examples
{contentbylabel:constant_momentum,momentum_force,impulse|showSpace=false|showLabels=true|excerpt=true|operator=OR|maxResults=50}
----
{search-box}
\\
\\
| !copyright and waiver^copyrightnotice.png! | RELATE wiki by David E. Pritchard is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License|http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. |
\\ |