Review papers: aa
- Run I Tevatron W Mass measurement: Annual Review: Ann. Rev. Nucl. Part. Sci. 58 (2008) 147.
- Run II Tevatron W Mass measurement: Annual Review: Ann. Rev. Nucl. Part. Sci. 50 (2000) 207.
- Tevatron Inclusive Jet and Di-Jet Production: Annual Review: Ann. Rev. Nucl. Part. Sci. 49 (1999) 633.
- Electroweak Studies at Z Factories: Annual Review: Ann. Rev. Nucl. Part. Sci. 48 (1998) 463.
- QCD Tests at the Tevatron and SPS: Annual Review: Ann. Rev. Nucl. Part. Sci. 43 (1993) 585.
- Hadron Collider Physics: Annual Review: Ann. Rev. Nucl. Part. Sci. 41 (1991) 97.
Discovery of the W bosons (UA1/UA2):
Discovery of the Z boson (UA1/UA2):
Precise measurement of the W mass by UA1:
Precise measurement of the W mass by UA2 (First with an accuracy of 1GeV):
Tevatron Run I (1991-1995) results on the W mass with a precision of 100MeV:
- CDF: Phys. Rev. D64 (2001) 052001.
- D0: Phys. Rev. D58 (1998) 092003.
- D0: Phys. Rev. D58 (1998) 012002.
- D0: Phys. Rev. D62 (2000) 092006.
- D0: Phys. Rev. D66 (2002) 012001.
Pawel Nadolsky, RhicBos, predictions for STAR
- Longitudinal parity-violating asymmetry in W-boson mediated jet pair production (Presentation),
E. Berger and P. Nadolsky, Phys. Rev. D78, 114010 (2008)
Papers about ubar/dbar x-section
Computation of AL from RHICBOS - Bernd
Latex |
---|
~\\ \\ L0 interpretation of parity violating $A_L$ for Ws 1) definition of sign of $A_L$: \begin{equation} A_L=\frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \end{equation} \\ Explore limits at $y=0, x_a=x_b=x$ \begin{equation} A^{W+}_L=\frac{u(x)\Delta\bar{d}(x) - \bar{d}(x)\Delta u(x)}{2u(x)\bar{d}(x)}; \;\;\; A^{W-}_L=\frac{d(x)\Delta\bar{u}(x) - \bar{u}(x)\Delta d(x)}{2d(x)\bar{u}(x)}\\ \end{equation} from this follows: \begin{equation} A^{W+}_L=\frac{1}{2}(\frac{\Delta\bar{d}}{\bar{d}}(x) - \frac{\Delta u }{u}(x)); \;\;\; A^{W+}_L<0 \;\; for \;\;\Delta u>0 \end{equation} and: \begin{equation} A^{W-}_L=\frac{1}{2}(\frac{\Delta\bar{u}}{\bar{u}}(x) - \frac{\Delta d }{d}(x)); \;\;\; A^{W-}_L>0 \;\; for \;\;\Delta d<0 \end{equation} |