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Biological memory can be defined 
as a sustained cellular response to a 
transient stimulus. To understand this 
phenomenon, we must consider how 
the properties of different biological 
systems achieve memory of a stimu-
lus, essentially permitting a cell to pro-
duce a lasting response. One way that 
cells accomplish this task is through 
transcriptional states, which involve 
populations of molecules regulating 
gene expression. If the transcriptional 
response is bistable, a chemical state 
becomes defined as on or off and, given 
certain parameters, this state can be 
inherited through DNA replication and 
cell division. In this way, a cell can pro-
duce a lasting memory of a biological 
response.

Synthetic biologists are especially 
interested in transcriptional responses 
as a means of cellular memory because 
(1) much of a cell’s information process-
ing is performed through transcription, 
and (2) the basic machinery for such 
biological behavior is well-understood. 
As such, transcription provides us with 
a set of characterized genetic units, 
including promoters, activators, and 
repressors that can be recombined 
to create new transcriptional circuits. 
Furthermore, the way nature combines 
these biological parts to produce spe-
cific outputs, including cellular mem-
ory, has been extensively studied. 
Thus, we have at our fingertips the 
tools with which to design synthetic 
memory systems.

The construction of synthetic memory 
circuits will improve our understand-
ing of natural networks, further aiding 
the creation of useful, new biological 
tools. For example, a device capable 
of remembering a biological experi-

ence might be utilized in the long-term 
study of particular cells within a hetero-
geneous population following a defined 
event or applied in industry for the sus-
tained production of desired proteins 
after induction by a brief stimulus. Such 
bioengineered networks exemplify a 
primary objective of synthetic biology: 
to advance simple synthetic devices 
into expertly constructed circuits with 
important applications.

How Cells Make Memories
Nearly 50 years ago, François Jacob and 
Jacques Monod determined qualitatively 
how a cell might achieve biological mem-

ory through its transcriptional circuitry 
(Monod and Jacob, 1961). However, a 
quantitative understanding of these cir-
cuits has been achieved only recently 
(Alon, 2006). Synthetic biology bridges 
the gap between biology and mathemat-
ics, requiring our understanding of cel-
lular memory to encompass more than 
half a century of scientific work. Here, we 
will briefly address the concepts that are 
fundamental to the achievement of bio-
logical memory through transcription.
The Hill Function
Cells must sense and dynamically 
respond to both internal and external 
signals. This often requires the synthesis 

Making Cellular Memories
Devin R. Burrill1 and Pamela A. Silver1,*
1Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
*Correspondence: pamela_silver@hms.harvard.edu
DOI 10.1016/j.cell.2009.12.034

The induction of a protracted response to a brief stimulus is a form of cellular memory. Here 
we describe the role of transcriptional regulation in both natural and synthetic memory networks 
and discuss the potential applications of engineered memory networks in medicine and industrial 
biotechnology.

Figure 1. Gene Circuits for Cellular Memory
(A) Dynamics of regulated gene circuits described by Hill functions. (Left) The concentration of product Y 
is plotted as a function of the concentration of activator X, as described by Hill functions with n = 1, 2, and 
4. β is the maximal expression level from Y’s promoter when X is bound, and K defines the concentration 
of X needed to reach the threshold activation of Y. (Right) The concentration of product Y is plotted as a 
function of the concentration of repressor X, as described by Hill functions with n = 1, 2, and 4. β is the 
maximal expression level from Y’s promoter when X is unbound, and K defines the concentration of X 
needed to reach the threshold for repression of Y.
(B) Network motifs that achieve biological memory.
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or modification of transcription factors, 
which form an interaction network whose 
design determines the speed and sus-
tainability of protein output in response 
to an environmental input (Monod and 
Jacob, 1961; Alon, 2006). Depending on 
whether transcription factor X is an acti-
vator or repressor, the concentration of 
gene product Y increases or decreases 
from a basal level as a function of the 
concentration of X binding to Y’s pro-
moter [f(X)]. The production of Y is fur-
ther balanced by Y’s degradation and 
dilution rates (defined as α, with units of 
1/time):

( ) ( )Y s f X f X 	 (1)

To more thoroughly understand how 
a transcriptional input produces spe-
cific gene outputs, one can use the Hill 
function in the above equation to define  
and describe the equilibrium binding of a 
transcription factor to its target promoter 
(Alon, 2006). Although a Hill function 
for a transactivating transcription factor 
(Equation 2) varies slightly from that of a 
transrepressor (Equation 3), the compo-
nents of each are similar (Figure 1A):
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There are three key parameters: K, 
β, and n. K is the activation/repression 
coefficient, defining the concentration 
of X needed to reach the threshold for 
activation or repression of Y; K’s value 
is largely related to the chemical affin-
ity between X and its binding site on 
Y’s promoter (Alon, 2006). The term β 
defines the maximal expression level 
from Y’s promoter (in units of mRNAs/
time), obtained when an activator is 
bound or a repressor is unbound. The 
most pertinent parameter is n, the Hill 
coefficient. This value governs how a 
network responds to transcriptional 
input: a smaller n (n = 1) results in a more 
graded response, whereas a larger n 
(n = 4) produces a bistable, switch-like 
response (Figure 1A). The latter behav-
ior is essential to biological memory 
because a bistable response allows a 
system to shift to an alternative steady 
state that might persist over time.

Where Does That “n” Come From?
To achieve a sufficiently high Hill coeffi-
cient, biological systems employ a num-
ber of mechanisms. First, there must be 
nonlinearity within a transcriptional circuit, 
meaning a functional element that guar-
antees that a threshold-like response to a 
stimulus is required (Ninfa and Mayo, 2004). 
This effect can be achieved through the 
affinity, cooperativity, or multimerization of 
transcription factors at their binding sites 
within target gene promoters. Transcrip-
tion factors vary widely in their degrees of 

cooperativity and affinity for their binding 
sites, and the degree of binding can also 
differ depending on the number of binding 
sites present in a given promoter. These 
factors help to ensure a lasting response 
to a transient stimulus and are especially 
effective at reducing stochastic fluctua-
tion between steady states, an undesir-
able behavior in a transcriptional circuit 
designed to produce a lasting response.

Another requirement for attaining a 
large Hill coefficient is that the genetic 
elements we have touched upon thus far 

Figure 2. Natural Mechanisms of Memory
(A) The phage lambda system switches between two states based on a mutal repression loop between 
lambda repressor and Cro (Ptashne, 2004).
(B) Replication-coupled nucleosome assembly maintains silent chromatin. Some silent nucleosomes 
(gray) contain histone (H3-H4)2 tetramers with histone H3 lysine 9 methylation marks (H3-K9me, yellow). 
Positive feedback can arise if newly synthesized nucleosomes (green) become methylated by histone 
methyltransferases bound to heterochromatin-associated protein 1 (red) on adjacent nucleosomes, al-
lowing methylated regions to persist through DNA replication and cell division (adapted from Vermaak 
et al., 2003).
(C) Bistable networks based on positive feedback govern maturation of oocytes from the frog Xenopus 
(adapted from Xiong and Ferrell, 2003). 
(D) Information storage in the brain is thought to involve bistable feedback networks (Ogasawara and 
Kawato, 2009).
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must be arranged in specific motifs that 
permit bistable responses (Monod and 
Jacob, 1961). To achieve this goal, nature 
often employs transcriptional positive 
feedback (Ferrell, 2002; Alon, 2006). In 
this network design, production of protein 
Y only increases once the concentration 
of X approaches the expression threshold 
for Y’s promoter, resulting in a sigmoidal 
response curve (Demongeot et al., 2000). 
Positive feedback can be produced by 
either a single transcription factor self-
activating in response to a stimulus (posi-
tive autofeedback) or two transcription 
factors regulating each other through two 
positive or negative interactions (double-
positive/double-negative feedback) (Fig-
ure 1B). When protein concentrations 
reach certain thresholds, all three motifs 
result in a switch between two steady 
states. If the switch is sharp enough, a 
gene can become locked into an alternate 
steady state, even in the absence of the 
original inducer (Ferrell, 2002).

Finally, to achieve the desired Hill 
coefficient, it is important to remem-
ber that transcription-based memory is 
derived from proteins that are degraded 
at some natural rate and diluted through 
cell growth. If the rates of degrada-
tion and dilution are faster than protein 
production rates, levels of transcription 
factor X may not be sufficiently high to 
achieve or maintain the desired bistable 
output. As this would result in a failure to 
achieve memory once the initial stimulus 
is removed, it is a critical parameter for 
the bioengineer to keep in mind.

Biological Memory in Nature
Many natural examples of biological 
memory have been discovered to pos-
sess feedback, bistability, and coop-
erativity. We will highlight some of this 
work and include examples that are not 
strictly transcription based but nonethe-
less employ parallel mechanisms. These 
natural systems inform the design of syn-
thetic memory circuits, and the diversity 
of mechanisms highlights the general 
importance of this biological phenom-
enon.
Phage Lambda, the Lac Operon, and 
the Cell Cycle
Some of the earliest work in molecular 
genetics elucidated the role of bistable 
networks in the regulatory system of the 
phage lambda, the lac operon, and the 

cell cycle. For example, Eisen et al. (1970) 
described a multiply mutated lambda 
lysogen in which the toxic functions of 
the phage were eliminated, leaving only 
the regulatory essence of lambda’s two-
state system; considering that this was 
prior to the use of restriction enzymes 
in genetic constructions, this work argu-
ably represents an early example of syn-
thetic biology limited by the technology 
available at that time. The phage lambda 
system switches between two states 
based on a repression loop between 
the mutual antagonists lambda repres-
sor and Cro (Ptashne, 2004) (Figure 2A) 
and involves both positive autoregulation 
and double-negative feedback. Likewise, 
in the bacterium Escherichia coli, the lac 
operon (required for lactose metabolism) 
can exist in on or off states mediated 
through the positive feedback loop of 
lactose transport (Muller-Hill, 1996). Work 
in oocyte extracts from the frog Xeno-
pus has revealed that positive feedback 
loops govern cell-cycle progression by 
creating a bistable system wherein lev-
els of specific proteins alternate between 
two steady states, determining discrete 
phases and forward movement through 
the cycle (Novak and Tyson, 1993; Thron, 
1996).
Nucleosomal Modification
Positive feedback is also thought to be 
utilized in nucleosomal modification. The 
mechanism is believed to allow chromo-
somal regions to adopt stable and heri-
table states, resulting in bistable gene 
expression that persists through DNA 
replication and cell division (Dodd et al., 
2007; Barrett and Wood, 2008). Positive 
autoregulation can arise if nucleosomes 
carrying a specific modification recruit 
enzymes that catalyze similar modifi-
cations of neighboring nucleosomes, 
allowing a nucleosomal cluster to stably 
maintain itself in a particular modification 
state (Stefanko et al., 2009). This phe-
nomenon may be involved in the silencing 
of H3-H4 histones by methylation marks 
(di- or trimethylation of histone H3 lysine 
9), to which heterochromatin-associated 
protein 1 (HP1) can bind (Vermaak et 
al., 2003) (Figure 2B). It is hypothesized 
that histone methytransferases bound to 
HP1 can transmit methylation marks to 
adjacent, newly replicated nucleosomes, 
creating an epigenetic feedback loop of 
silenced chromatin.

Cell Differentiation
Given the involvement of feedback motifs 
in epigenetic determination, it is not at all 
surprising to find this mechanism further 
used in eukaryotic cell differentiation, a 
process determined by epigenetic pat-
terning. For example, transition between 
two stages of Xenopus oocyte maturation 
is induced by progesterone. Once the pro-
gesterone has dissipated, commitment to 
maturation is maintained via positive feed-
back within a mitogen-activated protein 
(MAP) kinase cascade (Figure 2C). The 
role of positive feedback in binary cell-
fate switches has been further observed 
in mouse and human embryonic stem (ES) 
cells. Genome-wide transcriptional studies 
have identified OCT4, SOX2, and NANOG 
as critical players in the circuitry respon-
sible for cell differentiation (Boyer et al., 
2005; Loh et al., 2006). Dynamic modeling 
has revealed that these transcription fac-
tors interact via positive feedback loops, 
resulting in a bistable switch that regulates 
when and how an ES cell differentiates 
(Chickarmane et al., 2006).
The Immune and Nervous Systems
Finally, a discussion of memory stor-
age in the immune and nervous systems 
naturally arises. These systems are alike 
in many ways, including their capacity to 
manage vast quantities of information. 
The immune system is required to con-
sistently recognize foreign antigens from 
countless sources, and each individual 
neuron is required to receive information 
from numerous synaptic connections. 
To file this data, each system employs 
mechanisms for molecular memory. 
One tool used by the immune system 
is somatic V(D)J recombination, which 
bistably rearranges genes in response to 
specific foreign antigens, permitting lym-
phocytes to produce the necessary pro-
teins for mounting immune responses. 
This mechanism results in both an imme-
diate immune response and a popula-
tion of long-lived memory cells that can 
mount stronger responses if the initial 
pathogen is ever again detected (Muotri 
and Gage, 2006). To handle the brain’s 
computing load and to store information 
despite molecular turnover, one mecha-
nism used by neurons might be positive 
feedback (Tanaka and Augustine, 2008; 
Ogasawara and Kawato, 2009). This 
activity may serve as a general method 
for perpetuating signal transduction net-
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works in the brain, thus further estab-
lishing memory networks as remarkable 
biological tools (Figure 2D).

Synthetic Memory Circuits, Thus Far
Using natural memory circuits as guides, 
a variety of synthetic memory pathways 
have been engineered from transcrip-
tion-based parts in bacterial, yeast, and 
mammalian cells.
Bacterial Memory Devices
One of the first simple bistable devices 
was constructed in E. coli by Gardner et 
al. (2000). The modules consist of double-
negative feedback systems using well-
described prokaryotic gene repressor 
proteins. This device demonstrates bista-
bility: once the switch is flipped toward 
one steady state, it remains there in the 
absence of the original stimulus, until a 
second stimulus shifts the system to an 
alternate steady state. This behavior is 
ensured by cooperativity in the binding of 
repressors to DNA and by trial-and-error 
testing of promoters of different strengths 
(Gardner et al., 2000; Xiong and Ferrell, 
2003). The Gardner circuit was the first 
demonstration that bistable responses 
can indeed be engineered into a synthetic 
system. Others have extended this work 
by building similar networks that are more 
robust due to further quantitative under-
standing of the modular components that 
constitute such systems (Atkinson et al., 
2003; Isaacs et al., 2003).

These preliminary memory switches 
allowed for the later construction of bac-
terial memory networks with novel func-
tions. This was best demonstrated when 
Kobayashi et al. (2004) used a lacI/lambda 
repressor toggle switch as a memory 
circuit embedded within a larger circuit 
based on the E. coli SOS signaling path-
way, enabling the memory circuit to sense 
DNA damage and retain memory of this 
event (Kobayashi et al., 2004). The group 
further constructed a strain in which bio-
film formation is induced post-DNA dam-
age, thereby demonstrating that artificial 
regulatory circuits can be used to produce 
permanent phenotypic changes.
Yeast Memory Devices
The early successes in bacteria laid 
the groundwork for similar projects in 
the budding yeast Saccharomyces cer-
evisiae. Work on yeast memory mod-
ules largely began with Becskei and 
colleagues, who constructed a simple 

switch in which a tetracycline-depen-
dent activator turns on its own synthesis 
(Becksei et al., 2001). This design permits 
cells to switch between on and off states 
in response to increasing levels of tetra-
cycline, largely due to the inherent coop-
erativity of the activator and eukaryotic 
transcription (Becksei et al., 2001).

Ingolia and colleagues sought to deter-
mine how easily a monostable signaling 
pathway might become bistable by engi-
neering positive feedback into the system 
(Ingolia and Murray, 2007). To address 
this question, they chose the budding-
yeast mating-pheromone response, a 
well-studied MAP kinase system stimu-
lated by exogenous pheromone (Ingo-
lia and Murray, 2007). Using the natural 
phosphorylation cascade, the authors 
expressed a dominant active allele of a 
key pathway protein. Once triggered, the 
pathway can sustain itself because the 
dominant protein is able to feed back into 
the natural pathway, thereby producing a 
positive autoregulatory circuit. Further-
more, the tunability of the feedback loop 
was demonstrated via mutations that 
alter the basal and induced expression 
levels of the feedback promoter.

The application of quantitative app
roaches to reliable circuit design is well-
illustrated by the work in yeast by Ajo-
Franklin et al. (2007). Using quantitative 
modeling of transcription dynamics, the 
authors constructed a synthetic memory 
circuit based on transcriptional positive 
feedback. The device bistably responds 
to a pulse of galactose by producing a 
transcriptional activator that induces a 
downstream autofeedback loop. Given 
certain system parameters, the loop 
activity persists in the absence of galac-
tose and the inducing transactivator, 
such that the circuit imparts memory 
of galactose exposure onto cells and 
their progeny. Computational modeling 
using quantitative descriptions of vari-
ous tested transactivators suggested 
that low basal expression coupled with 
switch-like activation is required to main-
tain memory; growth rate was also found 
to significantly impact memory loop pro-
tein sustainability following cell division.
Mammalian Memory Devices
The design strategies and critical param-
eters discovered in nature and tested 
synthetically in bacteria and yeast have 
been further applied toward the engi-

neering of mammalian cells. Of note is the 
toggle switch in Chinese hamster ovary 
cells, the design of which is largely based 
on the bacterial toggle switch (Kramer et 
al., 2004). Using transrepressors depen-
dent on streptogramin and macrolide 
antibiotics, the system responds in a 
bistable manner to specific inducers. 
This response allows for switch-specific 
expression of a human glycoprotein both 
in culture and mice, impressively demon-
strating the possibility of epigenetic trans-
gene control through bistable circuits. 
Fussenegger’s group has designed a 
number of such modules, primarily using 
antibiotics to control positive or double-
negative feedback networks (Kramer et 
al., 2003; Weber et al., 2007; Tigges et al., 
2009). This work lays the groundwork for 
the further bioengineering of mammalian 
systems and their application in research 
and clinical settings.
Transcriptional Memory Devices 
versus Circuits Based on DNA 
Recombination
The synthetic circuits discussed thus 
far all employ transcriptional circuitry 
that mimics natural networks to produce 
biological memory. It should be noted 
that memory devices have also been 
constructed using systems based on 
DNA recombinases (such as Cre or Flip-
pase-mediated recombination), which 
leave a permanent mark in the genome 
(Mortensen, 2006; Friedland et al., 2009). 
Although this approach is useful, there 
are potential problems as DNA rearrange-
ments and recombinase expression can 
have undesirable consequences if not 
properly regulated. Additionally, trans-
gene expression via recombination is 
more difficult to tune or reverse due to its 
permanency, allowing less flexibility for a 
synthetic biologist interested in exploring 
the design capabilities of network-based 
memory. Both methods are entirely valid. 
Each is appropriate in different situations 
and should be applied with careful con-
sideration.

Why Make Memories?
Having observed the successful inte-
gration of nature’s tools into a variety 
of synthetic memory devices, we might 
now ask, what can we do with this? The 
ability to construct robust, synthetic 
circuits enables us to engineer cells 
capable of recording stimulus exposure 
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or maintaining desired levels of gene 
expression over time, in the absence 
of inducer. Advances in synthesis and 
new recombinant DNA technology allow 
the production of such devices from 
highly interchangeable units, permitting 
responses to an array of stimuli in a vari-
ety of cell types (Shetty et al., 2008). A 
modular approach to the induction of a 
high-fidelity memory device might allow 
researchers to identify cell populations 
responsive to specific events and track 
their progression through the cellular 
response. This would be of particu-
lar use if a device employs fluorescent 
markers that permit quantitative, single-
cell tracking of cells within a responding 
population, as suggested by Ajo-Frank-
lin et al. (2007). These device character-
istics may address whether a response 
to a defined event correlates with later 
cell behavior. Capturing this cellular 
phenomenon could have great impact 
on the study of any disease involving 
the inheritance of a cellular state, such 
as cancer.

In addition to being readouts of cel-
lular experience, memory modules can 
potentially use their output as regulatory 
input to perform new functions. Harness-
ing the ability to achieve long-term main-
tenance of desired relative protein levels, 
memory circuits might precisely regulate 
output or rapidly alternate between mul-
tiple outputs. Along these lines, one can 
imagine a memory module contributing 
to gene therapy or the synthetic differ-
entiation of mammalian stem cells in a 
certain fashion after experiencing a brief 
stimulus.

Importantly, given the parallels to nat-
ural mechanisms of cell-based inheri-
tance, such circuits may increase our 
understanding of biological processes 
such as cellular differentiation and tissue 
formation. For example, at decreased 
levels of activation, a positive feed-
back module can spontaneously switch 
between steady states. This can lead to 
variable gene expression and possibly 
undesired phenotypes including dis-
ease; in fact, unstable autocrine feed-
back loops have been linked to some 
cases of tumorigenesis (Schulze et al., 
2001). By studying the engineering of 
feedback loops, we may better under-
stand how their malfunction affects bio-
logical events.

Finally, memory modules are poten-
tially useful in industrial biotechnology. 
The feedback loop permits sustained 
induction of recombinant proteins 
without massive quantities of inducer. 
Promoters that respond to a plethora 
of stimuli (such as specific small mol-
ecules, pH, temperature, or anaerobio-
sis) already exist or can be engineered, 
allowing for a variety of production con-
ditions. Of course, for these ventures to 
be successful, certain factors will have 
to be considered, including the impact 
of induction on protein yields and how 
recombinant gene expression affects 
cell growth and physiology. If properly 
engineered, however, memory modules 
may help overcome high production 
costs associated with requiring large 
quantities of chemical inducer.

The precise design and implemen-
tation of systems exhibiting complex 
dynamic behavior remains a major 
goal of synthetic biology. An educated 
choice of network components and 
their fluid assembly into constructs 
with predictable behavior may enable 
synthetic circuits to increase our under-
standing of biology and improve our 
ability to engineer cells. The potential 
lying within memory modules may help 
progress the field of synthetic biology 
toward a new phase of device produc-
tion. This phase will ideally incorporate 
detailed quantitative and qualitative 
approaches into the creation of highly 
robust, reliable memory circuits with 
important, applicable functions. In sum, 
both nature’s wisdom and previously 
designed memory modules can provide 
bioengineering insight to accelerate our 
progress toward the creation of devices 
capable of producing cellular memories 
that can last a lifetime.
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