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Abstract
One of the most widely employed methods in metagenomics is the amplification and
sequencing of the highly conserved ribosomal RNA (rRNA) genes from organisms in
complex microbial communities. rRNA surveys, typically using the 16S rRNA gene for
prokaryotic identification, provide information about the total diversity and taxonomic
affiliation of organisms present in a sample. Greatly enhanced by high-throughput
sequencing, these surveys have uncovered the remarkable diversity of uncultured
organisms and revealed unappreciated ecological roles ranging from nutrient cycling
353
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to human health. This chapter outlines the best practices for comparative analyses of
microbial community surveys. We explain how to transform raw data into meaningful
units for further analysis and discuss how to calculate sample diversity and community
distance metrics. Finally, we outline how to find associations of species with specific
metadata and true correlations between species from compositional data. We focus
on data generated by next-generation sequencing platforms, using the Illumina plat-
form as a test case, because of its widespread use especially among researchers just
entering the field.
1. INTRODUCTION

Prokaryotic cells make up the majority of biomass on the planet
(Whitman, Coleman, & Wiebe, 1998) and influence every ecosystem from

the world’s oceans to the human gut. Metagenomics approaches, including

amplicon-based techniques targeting the conserved small subunit ribosomal

RNA genes (commonly 16S rRNA in prokaryotes), facilitate research of the

structure, function, and stability of microbial communities (Amann,

Ludwig, & Schleifer, 1995; Pace, 1997; Woese, Kandler, &Wheelis, 1990).

Although 16S rRNA surveys of microbial communities are widely used

to characterize the composition and diversity of microorganisms present in a

sample, there are many problems associated with transforming 16S rRNA

sequences into proxies for species, given the ambiguity of bacterial species.

Additionally, although there is no consensus for what constitutes a microbial

species, the operational taxonomic unit (OTU) is a widely used construct of

clustered sequence data that approximates “species” in subsequent analysis

steps. OTUs are typically formed by grouping together sequences that are

within a defined genetic cut-off, even though such grouping does not accu-

rately reflect current opinion about microbial species (Gevers et al., 2005),

typically overestimates sample diversity (Huse, Welch, Morrison, & Sogin,

2010), and inappropriately assumes that diverse organisms evolve at similar

rates. Single base changes and chimeras can create artificial diversity during

both PCR and sequencing (Qiu et al., 2001; Zhou et al., 2011). Further-

more, prior to sequencing, the preparation of samples incorporates many

known biases due to differential access to microbial DNA for amplification

(Forney, Zhou, & Brown, 2004). Steps should be taken to reduce these

errors and biases whenever possible—from library preparation to computa-

tional processing and analysis.

Despite these limitations, 16S rRNA surveys have emerged as the most

popular approach to study microbial communities, largely due to the speed,
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convenience, and low cost of this analysis as a result of next-generation

sequencing technologies. These technologies allow researchers to compare

hundreds of community profiles marked with molecular barcodes in a single

sequencing run. As such, rRNA surveys have been used to complete

comprehensive body site sampling in healthy adults through the Human

Microbiome project (Huttenhower, Gevers, Knight, Abubucker, Badger,

Chinwalla et al., 2012) and to sequence hundreds of thousands of environ-

mental samples from across the world through the Earth Microbiome

project (http://www.earthmicrobiome.org/), as well as countless other

projects characterizing microbial community variation in space or time.

This chapter outlines the bioinformatics approaches used to compare

microbial communities using high-throughput sequencing technologies,

focusing on data generated by the Illumina sequencing platform

(San Francisco, CA). We use an example of a 16S rRNA survey generated

using Illumina sequencing, although many of the principles are relevant to

other platforms. We focus on the following topics in the comparative analyses

of microbial communities:

• Background

• Sequence processing

• Comparative analyses
2. SEQUENCING TERMINOLOGY

Identifying microorganisms present in a natural community using a
sequencing-based 16S rRNA survey begins with the construction of a

library. A library is a collection of DNA fragments that represents the

sequence diversity in a sample. These fragments are enriched from the rest

of the community genomic DNA by PCR using primers which match the

microbial population or gene of interest. For Illumina sequencing, the com-

plete molecular construct contains the amplified genomic DNA, sequences

that identify the sample it originated from (i.e., index or barcode sequences)

and sequences required by the platform to adhere library fragments to the

solid matrix and provide a priming site for the sequencing reaction. Adding

a barcode sequence to the molecular construct identifying which sample the

library originated from allows for hundreds of libraries to be sequenced in

the same reaction, commonly called multiplexing. Illumina offers paired-

end sequencing, which provides a sequence for the forward and reverse

strands of a template, enabling resequencing of very short template

http://www.earthmicrobiome.org/
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sequences for improved accuracy, or longer effective reads with enhanced

positional information for longer template sequences.
3. SEQUENCE PROCESSING

Methodological artifacts must be minimized through quality filtering,
while computational analyses require sequences to be organized into appro-

priate groups, and biological interpretation is facilitated by assignment of a

meaningful taxonomic label to each group. Errors at any of these steps can

lead to inappropriate interpretation. There are many different methods for

analyzing and grouping sequence data. We will outline our approach,

highlighting alternatives to commonly applied techniques when appropri-

ate. Both the mothur (Schloss et al., 2009) and QIIME (Caporaso et al.,

2010) software packages provide a comprehensive suite of tools for 16S

rRNA analysis, including fastq quality filtering, OTU assignment, and clas-

sification for comparative analyses. The standard protocols associated with

each package includemany of the steps outlined below to process 16S rRNA

sequence data.

We will use an example dataset throughout this chapter for illustration pur-

poses. These libraries were prepared using a two-step PCR approach with

primers targeting rRNA sequence positions 515 and 786 of the Escherichia coli

genome (region V4) similar to a previously published method (Knight et al.,

2011). The raw data and library construction protocol can be downloaded

from the distribution-based clustering (DBC) Web site (https://github.

com/spacocha/Distribution-based-clustering/blob/master/MIE_dir/). Librar-

ieswere sequencedon an IlluminaMiSeq instrument (Illumina, SanDiego,CA)

with 2�251 paired end reads with an 8 base indexing run. Our samples were

multiplexed with additional samples, including a defined mock community.

1.1 million reads were obtained from 20 freshwater samples and

approximately 230,000 from the mock community.

Below, we will outline steps necessary to process the sequencing data

into manageable units for further analysis, although our most recent protocol

for sequence processing andOTUcalling with DBC can be found at https://

github.com/spacocha/Distribution-based-clustering/. The basic outline

includes:

• Quality filtering, dereplication, and trimming of sequences

• Creating OTUs

• Removing artifacts and assigning informative labels to OTUs

https://github.com/spacocha/Distribution-based-clustering/blob/master/MIE_dir/
https://github.com/spacocha/Distribution-based-clustering/blob/master/MIE_dir/
https://github.com/spacocha/Distribution-based-clustering/
https://github.com/spacocha/Distribution-based-clustering/
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3.1. Quality filtering, dereplication, and trimming
of sequences

The overall quality of the run was visualized from the fastq file with the

program FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) (Fig. 18.1). Across any sequencing platform, the average quality

decreases with the length of DNA that is sequenced. One way to increase

the quality of bases toward the end of a read and increase the read

length is to use overlapping paired-end sequencing, commonly applied

with Illumina. The observation of the same base in the reverse orientation

can be used to reduce the error rate. Paired-end sequences can be

joined with programs such as SHE-RA (Rodrigue et al., 2010), PandaSeq

(Masella, Bartram, Truszkowski, Brown, & Neufeld, 2012), or within

mothur using make.contigs. Alternatively, nonoverlapping, paired-end

sequences have been concatenated and analyzed together (Werner, Zhou,

Caporaso, Knight, & Angenent, 2012). Otherwise, two separate analyses

can be done independently on the 50 and 30 reads. Although the information

content is typically increased with overlapping reads, our protocol is stan-

dardized to use information from each end independently.

Raw data are first quality filtered, dereplicated, and trimmed. Improve-

ment in diversity estimates can be gained after quality filtering (Bokulich

et al., 2013) although overfiltering can lead to a loss of information.

We use the mock community to determine the optimal amount of quality

filtering. Our mock community is created from purified, linearized

plasmids containing 16S rRNA sequences from a clone library. Thus,

the concentration and sequence of each template is known, which can

be used to evaluate quality-filtering performance. We use QIIME’s

split_libraries_fastq.py to demultiplex and quality filter the sequences,

although other programs can be used to accomplish a similar filtering.

[Note: we used a custom perl script (fastq2Qiime_barcode.pl) to modify

the output of the Illumina data to correspond with the format required

by split_libraries_fastq.py. This may not be necessary in all cases,

depending on the form of the data from the sequencer and the position

of the barcode sequence.]

Overfiltering can skew the abundance ratios in 16S-rRNA amplicon

data and underfiltering allows many more errors into the analysis. We have

identified two parameters in QIIME’s split_libraries_fastq.py that increase

the quality of the resulting data: (1) the maximum number of bad bases

allowed before trimming (–max_bad_run_length) and (2) the threshold

quality score (–last_bad_quality_char).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Figure 18.1 The per base sequence quality as determined by FastQC for (A) the 50

(forward) read and (B) 30 (reverse) end of a paired-end 250�250 MiSeq (Illumina)
sequencing run. Raw base qualities are highest from approximately 20 (after the primer)
to 70 bps or so.
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Figure 18.2 Intermediate quality filtering results in a dataset that is most similar to the
input (defined, mock) community. (A) The solid line shows the distance of the resulting
data from the input sequences after quality filtering using various quality thresholds (right
axis). The dotted line shows the total number of unique sequences remaining after every
filtering step (left axis). X-axis is the ASCII characters (Illumina’s version 1.5 encoding) used
in the split_library_fastq.py program of QIIME (–last_bad_char), representing different fil-
tering stringencies ranging from E to Z, corresponding to Phred scores of 5 to 26 and
probabilities of error from 0.3165 to 0.0025, respectively. (B) The solid line shows the dis-
tance of the resulting data from the input sequencing after allowing a specified number of
bases to fall below the quality threshold before truncating the sequence (right axis). The
dashed line shows the total number of unique sequences remaining after each step (left
axis). X-axis is the number of consecutive bases with quality scores below the quality
threshold that are allowed before truncating the sequence in the split_libraries_fastq.
py program of QIIME (–max_bad_run_length). JSD, Jensen Shannon divergence.
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We vary these two parameters and compare the resulting sequences to

the known, mock community to identify the optimal filtering criteria.

We found that with a quality threshold of Phred 17 (–last_bad_char Q; error

rate�0.02) and truncating the sequence when two bases fall below the qual-

ity filter (–max_bad_run_length 2) results in a mock community that has the

smallest distance from our input (Fig. 18.2).
3.2. Creating OTUs
Grouping sequences into OTUs is important, because all downstream ana-

lyses are dependent on them, but there is little consensus on how this should

be done. Somemethods group sequences into clusters with sequences from a

well-curated database as the “seed” (e.g., QIIME’s “closed-reference” cluster-

ing). While this method is quick and convenient, it is not recommended

because it can discard novel sequences in the dataset, evenwhen they are abun-

dant. This can be overcome with the “open-reference” approach (http://

qiime.org/tutorials/open_reference_illumina_processing.html), where novel

sequences are instead retained. Other programs cluster sequences de novo,

forming OTUs based on their relation to other sequences in the dataset

[e.g., average-linkage clustering in mothur (Schloss et al., 2009), heuristics

such as USEARCH (http://www.drive5.com/usearch/) and ESPRIT (Sun

et al., 2009)].

We favor an approach called DBC. DBC is an alternative method of for-

ming OTUs de novo that is accurate and discriminating. This approach is dif-

ferent from other clustering methods because it uses the additional

information contained in the distribution of sequences across libraries. Using

the distribution and genetic information, DBC can reduce much of the false

diversity created by sequencing error for a mock community. It can also pro-

vide the power to identify differentially distributed sequences that would oth-

erwise be clustered together because of their sequence similarity. Amanuscript

describing the details of DBC will appear in the near future (Preheim,

Perrotta, Martin-Platero, & Gupta, submitted for publication) and the most

up-to-date, detailed protocol for running this algorithm can be found at

the Web site (https://github.com/spacocha/Distribution-based-clustering).

DBCworks to group genetically similar sequences that have a similar dis-

tribution across samples. The sequence by library matrix is used along with

the pairwise genetic distance file to inform the clustering. The DBC algo-

rithm can accept both aligned and unaligned phylogenetic distances, using

the lowest of both to improve OTU calling. We used mothur align.seqs to

http://qiime.org/tutorials/open_reference_illumina_processing.html
http://qiime.org/tutorials/open_reference_illumina_processing.html
http://www.drive5.com/usearch/
https://github.com/spacocha/Distribution-based-clustering
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create an alignment to a reference dataset (http://www.mothur.org/wiki/

Silva_reference_alignment), generated from the mothur formatted Silva

alignment and trimmed to the positions of our amplicon. Typically, we gen-

erate a distance matrix using FastTree—make_matix (Price, Dehal, & Arkin,

2009), although other distance programs can be used. The distribution

similarity is evaluated for two sequences using the chi-squared test and

the Jensen–Shannon divergence.

DBC is typically run in parallel for datasets of any significant size. This

requires that the data are preclustered to a very low identity (�90% identity

clusters), and each cluster is analyzed independently to form the final OTUs.

Thus, the DBC algorithm evaluates whether to divide sequences found

within each 90% cluster into additional OTUs based on the distribution

and genetic information provided. OTUs called within the 90% clusters

independently are merged into a final cluster list.

3.3. Artifact removal and classification of OTUs
Artifacts can inflate the total number of OTUs and diversity estimates. DBC

can reduce the impact of sequencing errors, but non-rRNA sequences and

chimeras may still be present which will inflate total diversity.We follow the

recommendations on the mothur Web site (Schloss et al., 2009; http://

www.mothur.org/wiki/MiSeq_SOP) and use align.seqs command with

the modified reference alignment (Schloss, 2009).We discard sequences that

do not start and end at the same position in the alignment using mothur:

screen.seqs command with start and end options. Chimeras create false

diversity, but are not easily distinguished from true rRNA sequences. They

should be identified with specialized software such as UCHIME (Edgar,

Haas, Clemente, Quince, & Knight, 2011) and removed from further anal-

ysis. In the example dataset, 6.2% of the resulting OTUs were chimeric,

using the forward read only (35% from the overlapped reads).

Assigning a taxonomic label to each OTU created during clustering can

help to interpret downstream analyses, especially when comparing against

thepublished literature.Overlapped, paired-end sequences facilitate taxonomy

assignment because their greater length increases the power of taxonomic clas-

sification.When overlapping is not possible and short reads must be used, tax-

onomic classification can be optimized for the specific design and read length

(Mizrahi-Man, Davenport, & Gilad, 2013). The Ribosomal Database Project

(RDP) naive Bayesian Classifier (Wang, Garrity, Tiedje, & Cole, 2007) is one

of the most popular approaches, although others are available, such as

Greengenes (DeSantis et al., 2006). TheRDP classifier typically performs well

http://www.mothur.org/wiki/Silva_reference_alignment
http://www.mothur.org/wiki/Silva_reference_alignment
http://www.mothur.org/wiki/MiSeq_SOP
http://www.mothur.org/wiki/MiSeq_SOP
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on assigning short sequences at the family level (Claesson et al., 2010). How-

ever, when applying to short sequences, it is best to refine the training set that

theRDPclassifier uses for classification to includeonly the sequenced region as

other regions may be characterized by quite different compositions (Werner

et al., 2012). Concatenated, nonoverlapping sequences can be classified with

Rtax (Soergel, Dey, Knight, & Brenner, 2012), which can be implemented

through QIIME.

We typically match OTU representatives with Sanger-sequenced envi-

ronmental clones from the same sample to increase the phylogenetic infor-

mation associated with the most abundant organisms. This may be

particularly useful in environments that are not well studied (i.e., the bottom

of a lake), as opposed to more commonly analyzed samples (i.e., human

microbiome). Although this type of analysis is not high-throughput, it does

enhance the information gained from either the Sanger-sequenced or the

Illumina-sequenced libraries alone and can be a powerful additional tool

for the analysis of the most abundant sequences.

After completing these steps, the representative sequences, an OTU by

library matrix and associated phylogenetic information from either the

matching Sanger clones or the RDP classification can be used in down-

stream analysis.

4. COMMUNITY ANALYSIS

Because there are many options available to compare microbial com-
munities, it is critical to match the tools utilized with the specific biological

questions being pursued. Data generated from most high-throughput

sequencing platforms (e.g., Illumina or 454) will be similar after OTU

calling and classification, so many of the tools and reviews of community

analyses in relation to pyrosequencing data can be applied to Illumina

datasets as well. QIIME community analysis (http://qiime.org/tutorials/

tutorial.html) can be used to guide the user through common types of

analyses. Therefore, the goal of this section is to identify caveats of a few

commonly applied analyses and provide an implementation of appropriate

alternatives in areas such as:

• Diversity estimates

• Community distance metrics

• Associations of OTUs with metadata

• Correlation analysis

http://qiime.org/tutorials/tutorial.html
http://qiime.org/tutorials/tutorial.html
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4.1. Diversity estimates
Estimating the total diversity (often called alpha diversity) within a com-

munity is a common first step to summarize community composition.

True diversity reflects both the number of species present and the

evenness of their distribution. However, because molecular surveys only

capture a fraction of all species actually present in a community, all met-

rics reflect only an estimate of true diversity and will be sensitive to the

sampling depth used. This complicates comparisons across samples with

different sampling depths as more deeply sequenced samples may spuri-

ously appear to be more diverse, independently of their actual composi-

tion. There are several metrics used to measure diversity, including the

Shannon and Simpson indices (Hill, 1973), which measure both richness

and evenness, and the Chao-1 estimator, which estimates species richness

from the rarefaction of observed sequences (Chao, 1984; Chao, Colwell,

Lin, & Gotelli, 2009). Shannon and Simpson indices are strongly pre-

ferred due to their reduced sensitivity to sampling depth (Haegeman

et al., 2013).

To demonstrate the potential for artifacts of sequencing depth to con-

found meaningful analysis of diversity, we compared the sensitivity of rich-

ness and Shannon and Simpson diversity to sampling depth (Fig. 18.3).

Using the OTU versus library matrix generated from the DBC algorithm

above, we chose a library with 80,047 reads to compute the Chao-1 richness

and Shannon and Simpson diversity metrics in PySurvey (sample_diversity

with indices¼[‘richness’], methods¼[‘Chao1’] and indices¼[‘shannon’,

‘simpson’]). We then take random subsamples of the full dataset to simulate

sequencing experiments with fewer reads, ranging from 1000 reads up to the

full set 80,047 reads at 500 read intervals. We compute estimates of the three

metrics in 100 iterations of random samples at each sequencing depth.While

the Shannon and Simpson estimates of effective species quickly stabilize

around 101 and 26, respectively, the species richness estimated by

Chao-1 continues to rise with sequencing depth. Thus, while indices based

on both species richness and abundance are relatively insensitive to sequenc-

ing depth, indices such as the Chao-1 estimator that measure only species

richness remain highly sensitive to sequencing depth, even at high coverage.

Although the Simpson index is less dependent on sequencing depth, it is also

less sensitive to rare OTUs. For this reason, Shannon is the preferred metric

for rRNA community analysis—achieving a balance of sensitivity to rare

OTUs without undue dependency on sequencing depth.
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Figure 18.3 Richness is a function of sequencing depth, whereas Shannon and Simpson
diversity indices stabilize with sequencing depth. (A) Chao-1 estimator (Chao1) of rich-
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4.2. Community distance metrics
Many applications call for estimating the distance between two distinct com-

munities, a task that is impacted by sampling noise and “compositional”

effects, which refer to biases that arise from the fact that only relative abun-

dances rather than absolute values are measured (i.e., relative frequencies for

all species must sum to 100%). Measures of distance between communities

can be categorized based on the properties of the communities they account

for: incidence (presence/absence), abundance (absolute or relative), and/or

phylogenetic relatedness. Generally, incidence-based distances, where all

components contribute equally, are especially challenging to estimate reli-

ably (Chao, Chazdon, Colwell, & Shen, 2005), whereas measures which

give larger weights to more abundant components are more readily esti-

mated (Bent & Forney, 2008). This is analogous to the alpha diversity exam-

ple in Fig. 18.3, where species richness is much more challenging to estimate

than the Shannon entropy or the Simpson diversity.

To overcome the sampling noise-associated 16S rRNA survey data, we

propose adopting the square root of the Jensen–Shannon divergence JSD1/2,

defined as:

d2JS x,y
� �

¼ 1

2

XD
i¼1

xi log2

xi

Mi

þyi log2

yi

Mi

� �
,

Mi ¼ xiþ yi

2
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JSD has a clear information theoretic interpretation and is commonly

used to measure differences between distributions. In this context, it gives

the logarithm base 2 of the effective number of distinct communities (com-

munities that have no species in common) and is the beta component of the

Shannon entropy (Jost, 2006). The square root is of JSD is used, as it trans-

forms JSD into a proper metric (Endres & Schindelin, 2003), enhancing

interpretability. JSD accounts for the problem of compositional effects, as

it is a measure of divergence between distributions, and maintains accurate

and robust performance on datasets that confound Euclidean distances.

JSDwasused to compare the samples froma stratified lake.Countswerenor-

malized [fracs_f¼ps.normalize(counts)] and the JSD1/2 was used to compare

communities fromdifferent extraction techniques and different depths in a strat-

ified lake [D¼ps.dist_mat (fracs_f , axis¼‘rows’, metric¼‘JSsqrt’)] and plotted

with PySurvey [ps.plot_dist_heatmap (D, plot_rlabels¼True,

rlabel_width¼0.06)]. Twomajor zones were identified, as the longest branches

in the tree, dividing the upper (1–7 m) and lower (9–19 m) samples. Addition-

ally, four total subzones were identified (sub1, 1–5 m; sub2, 7 m; sub3, 9–11 m;

sub4, 13–19 m). Although the different extraction techniques (MoBio vs.

Qiagen) tended toclusterwithother samples fromthe sameextraction technique

within subzones sub1 and sub4, samples otherwise clusteredbydepth (Fig. 18.4).
4.3. Associations of OTUs with metadata
Multivariate statistical techniques have been developed specifically to handle

high-dimensional data, including Principal Coordinates Analysis. These

techniques work by first reducing the dimensionality of the data by identi-

fying principal “axes” of differentiation among communities, which repre-

sent distinct combinations of bacterial species. These tools are particularly

effective when the variable of interest (e.g., pH, disease state) is associated

with major changes in community structure, but are less effective at

detecting subtle variations in community structure. Furthermore, they have

trouble pinpointing the specific bacterial species that drive these associations.

Recently, statistical learning techniques have been employed to detect asso-

ciations between bacterial species and environmental metadata. Statistical

learning has many advantages over multivariate statistical approaches,

including the ability to detect both major and minor variations in microbial

community structure, the ability to detect nonlinear associations involving

combinations of bacterial species, and the ability to pinpoint the specific

bacterial species that underlie these associations.



Figure 18.4 A heatmap depicting different biogeochemical zones of a stratified lake. The bacterial community for each depth was compared
to all other libraries using the square root of the Jensen–Shannon divergence (JSD1/2) and plotted as a heatmap. Bacterial communities cluster
into two major zones (upper, oxic and lower, anoxic zone) as shown by the largest branch on the dendrogram (i.e., tree) and four subzones.
Libraries are labeledwith the depth (inmeters) and the extraction technique. MB, MoBio PowerWater DNA extraction kit; Q, Qiagen Blood and
Tissue Kit. For example, 1.MB refers to 1 m depth in the water extracted with the MoBio kit and 19.Q refers to 19 m depth with the Qiagen kit.
The dendrogram above and to the left of the heatmap are identical.
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One statistical learning technique that is well suited to microbial com-

munity analysis is Random Forest classification, which is implemented in

the SLIME software package. For example, SLIMEwas recently used to dis-

criminate patients with inflammatory bowel disease from healthy controls

and to identify the specific bacterial taxa underlying this association (Papa

et al., 2012). SLIME can detect associations using categorical or quantitative

metadata and runs permutation tests to assess statistical significance. It is best used

for relatively large datasets where the total number of samples exceeds 50. The

input for this analysis is a table of OTU counts and corresponding metadata. It

will proceed to test the significance of every column of metadata, reporting the

P-value of each association, the most important bacterial taxa, and advanced

metrics such as the area under the curve and other classification results.
4.4. Correlation analysis
Microorganisms interact with each other in various ways, through compe-

tition for shared resources, antagonistic mechanisms (e.g., antibiotic produc-

tion), or in mutual or symbiotic associations. Correlation analysis can

identify possibly interacting OTUs by identifying groups that change across

a large sample in a similar way. However, correlations from low-diversity

samples are often artifacts related to the compositional nature of sampling

and sequencing (Friedman & Alm, 2012). For example, variation in a single,

dominant OTU causes all other OTUs to have a spurious negative correla-

tion to this dominant strain, although their absolute abundance may not

have changed. As a result, standard correlation metrics (Pearson, Spearman,

etc.) should not be used to compare OTUs. Instead, SparCC (https://

bitbucket.org/yonatanf/sparcc) can be used to infer correlations from

compositional data with high accuracy, even in low-diversity samples, and

can be thought of as a replacement for Pearson correlations. Nonetheless, cor-

relations do not imply causality and can arise when two OTUs respond to a

third unmeasured environmental factor. Thus, additional experiments are

needed to verify results from SparCC or other similar methods.

We used SparCC to identify correlated OTUs using the OTU by

library matrix (created as stated earlier) after filtering out OTUs with

fewer than 100 counts (-c 100) across at least two libraries (-s 2) using

QIIME’s filter_otu_table.py (removing the first line of the resulting table).

We then ran SparCC on the data, using 50 bootstraps and a “one-sided”

test. Interestingly, of the two pairs with correlations of 0.7, one is

classified as Saprospiraceae (ID0000005M), which have been found attached

https://bitbucket.org/yonatanf/sparcc
https://bitbucket.org/yonatanf/sparcc
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to filamentous bacteria (Xia, Kong, Thomsen, & Nielsen, 2008). The

other bacteria could not be classified (ID0000388M). This analysis provides

the underlying information to identify important interactions in the

environment.

5. SUMMARY

In this chapter, we provide an overview of the methods used to inter-
pret high-throughput microbial community analysis, with a focus on data

from the widely used Illumina sequencing platform. We explain how to

transform Illumina sequence data into meaningful units for further analysis,

including a specialized OTU calling method (DBC). We discuss why

Shannon diversity is a more appropriate measure of diversity than richness

and use the JSD1/2 as a metric for distance between microbial communities.

Finally, we use Random Forest classification to identify associations between

specificOTUs andmetadata and use SparCC to identify true correlations from

proportional composition data. Armed with these tools and the increasing

power of high-throughput sequencing, we expect that researchers will con-

tinue to discover exciting new connections between bacterial communities

and their diverse environments.
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