MITLL/CTF Tutorial

Binary Analysis and Exploitation

William Robertson
17 Oct 2012

Northeastern University

MITLL/CTF — Fall 2012 — Binary Exploitation 137

Welcome

- Tonight, we discuss the analysis and exploitation of
binary programs.

- This is a big topic!

- We're only going to scratch the surface.
— Lectures are great, but practice is how you win.

— The gameplan.

MITLL/CTF — Fall 2012 — Binary Exploitation
2/37

Welcome

- Tonight, we discuss the analysis and exploitation of
binary programs.

- This is a big topic!

- We're only going to scratch the surface.
— Lectures are great, but practice is how you win.

— The gameplan.

1. Review the process execution model and x86-32 ISA.

MITLL/CTF — Fall 2012 — Binary Exploitation
2/37

Welcome

- Tonight, we discuss the analysis and exploitation of
binary programs.

- This is a big topic!

- We're only going to scratch the surface.
— Lectures are great, but practice is how you win.

— The gameplan.

1. Review the process execution model and x86-32 ISA.
2. Understand the structure of binaries.

MITLL/CTF — Fall 2012 — Binary Exploitation
2/37

Welcome

- Tonight, we discuss the analysis and exploitation of
binary programs.

- This is a big topic!

- We're only going to scratch the surface.
— Lectures are great, but practice is how you win.

— The gameplan.

1. Review the process execution model and x86-32 ISA.
2. Understand the structure of binaries.
3. Learn static and dynamic techniques for analyzing binaries.

MITLL/CTF — Fall 2012 — Binary Exploitation
2/37

Welcome

- Tonight, we discuss the analysis and exploitation of
binary programs.

- This is a big topic!

- We're only going to scratch the surface.
— Lectures are great, but practice is how you win.

— The gameplan.

N =

Review the process execution model and x86-32 ISA.
Understand the structure of binaries.

Learn static and dynamic techniques for analyzing binaries.
Cover basic attacks and remediation.

MITLL/CTF — Fall 2012 — Binary Exploitation

2/37

Welcome

- Tonight, we discuss the analysis and exploitation of
binary programs.

- This is a big topic!

- We're only going to scratch the surface.
— Lectures are great, but practice is how you win.

— The gameplan.

unhwnN =

Review the process execution model and x86-32 ISA.
Understand the structure of binaries.

Learn static and dynamic techniques for analyzing binaries.
Cover basic attacks and remediation.
Practice on a vulnerable program as a running example.

MITLL/CTF — Fall 2012 — Binary Exploitation
2/37

Process Execution
A process is a virtual address space and one (or
more) threads of control.

- Memory.

— Stack.

— Function activation records.
— Local variables.

- CPU.

- General purpose registers (eax, ecx).
- Stack pointer (esp).

- Frame pointer (ebp).

- Instruction pointer (eip).

- Flags (eflags).

MITLL/CTF — Fall 2012 — Binary Exploitation
3/37

Process Memory Layout

0xffffc000
Stack
Lib B Data
Lib B Code
Lib A Data
Lib A Code
Heap
0x804c000
App Data
0x804a000
App Code
PP 0x8048000

MITLL/CTF — Fall 2012 — Binary Exploitation
4/37

x86-32 Instruction Set

Program code is simply a set of instructions.

- Instructions composed of mnemonics and operands.

- Operands can be of different types.

- Immediate values.

— Registers.

- Memory addresses.

- Indirect memory references.

- Different syntaxes.

- We'll be using Intel syntax.
- Operands are ordered as dest, src.

MITLL/CTF — Fall 2012 — Binary Exploitation
5/37

Instruction Classes

Arithmetic.

Data transfer.

Conditional tests.

Control transfer.

MITLL/CTF — Fall 2012 — Binary Exploitation
6/37

Instruction Classes

— Arithmetic.
e.g., sub esp, 0x10
e.g. xor eax, eax

- Data transfer.

— Conditional tests.

— Control transfer.

MITLL/CTF — Fall 2012 — Binary Exploitation
6/37

Instruction Classes

— Arithmetic.
e.g., sub esp, 0x10
e.g. xor eax, eax

- Data transfer.
e.g., mov edx, [esp+0x20]
e.g., add [esp+0x8], 0x04

— Conditional tests.

— Control transfer.

MITLL/CTF — Fall 2012 — Binary Exploitation
6/37

Instruction Classes

— Arithmetic.
e.g., sub esp, 0x10
e.g. xor eax, eax

- Data transfer.
e.g., mov edx, [esp+0x20]
e.g., add [esp+0x8], 0x04

— Conditional tests.
e.g. cmp ecx, [ebp-0x18]
e.g., test eax, eax

— Control transfer.

MITLL/CTF — Fall 2012 — Binary Exploitation
6/37

Instruction Classes

— Arithmetic.
e.g., sub esp, 0x10
e.g. xor eax, eax

- Data transfer.
e.g., mov edx, [esp+0x20]
e.g., add [esp+0x8], 0x04

— Conditional tests.
e.g. cmp ecx, [ebp-0x18]
e.g., test eax, eax

— Control transfer.
e.g. jnz 0x08048427
e.g., call [eax+edx*0x04]

MITLL/CTF — Fall 2012 — Binary Exploitation
6/37

Function Invocation

Functions invoked by pushing arguments on the stack.

callinstruction transfers control to the function.

callinstruction also pushes the return address.

Calling convention.

- Arguments pushed on the stack from right-to-left.
— Caller responsible for cleanup. (Why?)

Return value in eax.

MITLL/CTF — Fall 2012 — Binary Exploitation
7/37

Function Prologue, Epilogue

- Before functions can begin execution, a stack frame
must be created.

1. Save the previous frame pointer (push ebp).
2. Set the frame pointer (mov ebp, esp).
3. Allocate space for local variables (sub esp, 0x400).

- After a function is complete, the stack frame must be
destroyed.

— Deallocate local storage (add esp, 0x400).
- Restore the original frame pointer (pop ebp).

— ret restores control to the caller. (How?)

MITLL/CTF — Fall 2012 — Binary Exploitation
8/37

call <func> B <« <bp

XTI «— esp

call <func> B <« <bp

EXTET «— esp

call <func>

mov ebp, esp
P
EXTETE < esp

call <func>
push ebp

mov ebp, esp
sub esp, 0x100

EN
X «— cbp

local vars

<«— esp

call <func>
push ebp

mov ebp, esp
sub esp, 0x100

EN
X «— cbp

local vars

<«— esp

call <func>
push ebp

mov ebp, esp
sub esp, 0x100

add esp, 0x100

XX b
XS < esp

local vars

call <func>
push ebp

mov ebp, esp
sub esp, 0x100

add esp, 0x100
pop ebp

saved eip
saved ebp

local vars

<+— ebp

<+— esp

call <func>
push ebp

mov ebp, esp
sub esp, 0x100

add esp, 0x100

pop ebp
ret

B <— ebp

-<— esp

saved elp

local vars

Executable Formats

- Binary programs consist of code, data, and (some)
metadata.

- Variety of formats:

PE32 (Windows)
ELF (UNIX)

— COFF (UNIX)
a.out (UNIX)

— We will focus on Linux-based ELF binaries.

- But, the main principles apply to other formats.

MITLL/CTF — Fall 2012 — Binary Exploitation
10/37

Executable Formats

- Binary programs consist of code, data, and (some)
metadata.

- Variety of formats:

- PE32 (Windows)
— ELF (UNIX)

— COFF (UNIX)

- a.out (UNIX)

— We will focus on Linux-based ELF binaries.

- But, the main principles apply to other formats.
- You're likely to see these during the competition.

MITLL/CTF — Fall 2012 — Binary Exploitation
10/37

ELF

Executable and Linkable Format.

ELF header.

- ELF magic, architecture, flags, entry point, etc.

Program header.

- Refers to segments.
- Segments related to runtime process memory layout, i.e.,
code and data.

Section header.

- Refers to sections.
- Linking and relocation data.
- Debugging information.

MITLL/CTF — Fall 2012 — Binary Exploitation
11/37

ELF

Lots of interesting info can be found just by
dumping the contents of a binary!

- Several ways to dump an ELF file.

— strings
- readelf
— objdump

- strings is useful for recovering embedded data.

— objdump can interpret the contents of segments and
sections.

— More on that later...

MITLL/CTF — Fall 2012 — Binary Exploitation

12/37

Lab Exercise

Examine a binary and find a password.

Binary Analysis

- Given a binary, we want to learn something about it.

- Understand its intended behavior and security policies.
- Recover some sensitive data, hijack control flow to execute
malicious code, ...

— Two main approaches.

- Statically (disassembly and some automated analysis).
- Dynamically (observe execution over concrete inputs).

MITLL/CTF — Fall 2012 — Binary Exploitation
14/37

Disassembly

- Disassembly recovers instructions from machine code in
binary format.

- Useful for getting an idea of what the program does.

— Tools.

— objdump
— ndisasm (useful for shellcode)
— IDA Pro (expensive, but nice)

MITLL/CTF — Fall 2012 — Binary Exploitation
15/37

Disassembly

Disassembly recovers instructions from machine code in
binary format.

Useful for getting an idea of what the program does.

Tools.

— objdump
— ndisasm (useful for shellcode)
— IDA Pro (expensive, but nice)

Tonight, we'll focus on objdump.

MITLL/CTF — Fall 2012 — Binary Exploitation
15/37

Program Entry Points

— ELF header specifies a start address.

- First, libc code sets up the C runtime environment.
- Then, control transfers to the program.

- By convention, execution begins at main.

- From main, goal is to trace potential execution paths.
- Typically look for inputs to the program. (Why?)

- Types of input to watch for.

- Console.
- File.
- Network.

MITLL/CTF — Fall 2012 — Binary Exploitation
16/37

Lab Exercise

Find a vulnerability.

Stack Overflows

- Fundamental problem is that control flow information is
stored inline with app data.

- Low-level languages like C don't strictly enforce integrity of
control data.

— There are a number of easy ways to corrupt this data.

- For instance, by writing past the end of a stack-allocated
buffer.
- strcpy, memcpy, app-level loops.

— Overflows can allow untrusted users to control return
address values.

- What happens when a ret instruction is executed?
- Return value overwrites are not the only possibility, of
course.

MITLL/CTF — Fall 2012 — Binary Exploitation
18/37

N <— ebp

XN «— esp

N <— ebp

EXTET «— esp

N
P
BT <— esp

saved eip
saved ebp EEElYe]d

local vars

<«—esp

saved eip
saved ebp R e ebp

local vars

I <«— ebp

saved eip B smel<Y0]
saved ebp

local vars

Stack Overflow Details

- Developing exploits often involve computation of
offsets from known addresses.

- Computing offsets statically is possible, but not the most
efficient way.

- Instead, debugging is usually very helpful.
— The de facto tool on UNIX is gdb.

- Let’s discover the proper offsets using gdb.

- We'll defer the payload until later; for now, we just want to
control eip.

MITLL/CTF — Fall 2012 — Binary Exploitation

20/37

Lab Exercise

Hijack control flow.

Finishing the Exploit

— We have control of execution!

- Options?

MITLL/CTF — Fall 2012 — Binary Exploitation
22/37

Finishing the Exploit

— We have control of execution!
- Options?

1. Inject a payload (e.g., shellcode).

MITLL/CTF — Fall 2012 — Binary Exploitation
22/37

Finishing the Exploit

— We have control of execution!
- Options?

1. Inject a payload (e.g., shellcode).
2. Returninto libc.

MITLL/CTF — Fall 2012 — Binary Exploitation
22/37

Finishing the Exploit

— We have control of execution!
- Options?

1. Inject a payload (e.g., shellcode).
2. Returninto libc.
3. ROP.

MITLL/CTF — Fall 2012 — Binary Exploitation
22/37

Finishing the Exploit

— We have control of execution!
- Options?

1. Inject a payload (e.g., shellcode).
2. Returninto libc.
3. ROP.

- Let’s write a simple payload.

- Metasploit payloads are lame, and often don’t work.

MITLL/CTF — Fall 2012 — Binary Exploitation
22/37

Finishing the Exploit

— We have control of execution!
- Options?

1. Inject a payload (e.g., shellcode).
2. Returninto libc.
3. ROP.

- Let’s write a simple payload.

- Metasploit payloads are lame, and often don’t work.
- If you're bored...impress me. ;-)

MITLL/CTF — Fall 2012 — Binary Exploitation
22/37

B <— ebp

pl. addr. B pl 1Y)

ret

payload

Developing a Payload

- Goal: Read a protected file.

- Payload outline.

1. Open thefile.
2. Read 32 bytes.
3. Write to stdout.
4. Exit cleanly.

- How do we perform 1/0?

MITLL/CTF — Fall 2012 — Binary Exploitation
24/37

Developing a Payload

- Goal: Read a protected file.

- Payload outline.

1. Open thefile.
2. Read 32 bytes.
3. Write to stdout.
4. Exit cleanly.

- How do we perform 1/O? System calls.

MITLL/CTF — Fall 2012 — Binary Exploitation
24/37

Linux System Calls

System calls are the primary mechanism for invoking OS
services.

— Always present, less chance of interposition.
— But, lower level of abstraction.

System calls indexed by number in eax.

Parameters (usually) passed in registers.

— ebx, ecx, edx, esi, edi, ebp

System call invoked by raising int 0x80.

— Also other mechanisms like syscall.

MITLL/CTF — Fall 2012 — Binary Exploitation
25/37

Linux System Calls

execve:
xor esi,
push esi
mov edx,
mov ebx,
push ebx
mov ecx,
mov eax,
int 0x80

esi

esp
sh_path

esp

MITLL/CTF — Fall 2012 — Binary Exploitation

26/37

Linux System Calls (Take Il)

execve:
Xor esi, esi
push esi
mov edx, esp
jmp .path
.path_ret
mov ecx, esp
mov ebx, [ecx]
mov eax, 11
int 0x80
.path:
call .path_ret
db ”/bin/sh”, 0x00

MITLL/CTF — Fall 2012 — Binary Exploitation
27/37

Assembling

- Given a payload, we need to assemble it into an
executable blob.

- The tools of choice are nasm or yasm.

- Since we are directly executing the payload in an
existing process, we don’t want an ELF object.

- Instead, we want raw binary output.

- And, we need some extra directives to specify
architecture and ELF section.

— bits 32
— section .text

MITLL/CTF — Fall 2012 — Binary Exploitation
28/37

Linux System Calls (Take IlI)

bits 32
section .text

execve:
xor esi, esi
push esi
mov edx, esp
jmp .path
.path_ret
mov ecx, esp
mov ebx, [ecx]
mov eax, 11
int 0x80
.path:
call .path_ret
db "/bin/sh”, 0x00

; $ yasm —f bin -o payload.bin payload.asm

MITLL/CTF — Fall 2012 — Binary Exploitation

29/37

Packed Payloads

- Typically, the raw payload blob requires
post-processing.

- Zero-clean?
- Newline-clean?
- Signature-based detection?

— These issues can be resolved manually.
- But, metasploit includes a nice tool to do it for us.

$ msfencode —-i $input —o $output —-b ’'\x00\x@a’' -t raw

- Resulting blob is a decoding loop followed by our
encoded payload.

MITLL/CTF — Fall 2012 — Binary Exploitation
30/37

Lab Exercise

Develop a working exploit.

Remediation

— Let’s switch hats to defense.

- Strategies for preventing exploits?

MITLL/CTF — Fall 2012 — Binary Exploitation
32/37

Remediation

— Let’s switch hats to defense.

- Strategies for preventing exploits?

1. Remove or disable the service.

MITLL/CTF — Fall 2012 — Binary Exploitation
32/37

Remediation

— Let’s switch hats to defense.

- Strategies for preventing exploits?

1. Remove or disable the service.
2. Do nothing and get hacked.

MITLL/CTF — Fall 2012 — Binary Exploitation
32/37

Remediation

— Let’s switch hats to defense.

- Strategies for preventing exploits?

1. Remove or disable the service.
2. Do nothing and get hacked.
3. Sandbox?

MITLL/CTF — Fall 2012 — Binary Exploitation
32/37

Remediation

— Let’s switch hats to defense.

- Strategies for preventing exploits?

N =

Remove or disable the service.
Do nothing and get hacked.
Sandbox?

Patch the binary.

MITLL/CTF — Fall 2012 — Binary Exploitation
32/37

Remediation

— Let’s switch hats to defense.

- Strategies for preventing exploits?

Remove or disable the service.
Do nothing and get hacked.
Sandbox?

Patch the binary.

N =

- Let’s go for patching.

MITLL/CTF — Fall 2012 — Binary Exploitation
32/37

Remediation

— The fundamental problem is that the maximum length
passed to strncpy is wrong.

- Based on the source buffer’s length, not the destination
buffer!

- lIdea: Instead of calling strlen, let’s patch in a valid
maximum length.

— For this, we need a hex editor of some kind.
- | prefer xxd.

MITLL/CTF — Fall 2012 — Binary Exploitation

33/37

Remediation

— The fundamental problem is that the maximum length
passed to strncpy is wrong.

- Based on the source buffer’s length, not the destination
buffer!

- lIdea: Instead of calling strlen, let’s patch in a valid
maximum length.

— For this, we need a hex editor of some kind.
- | prefer xxd.

- Approach.

1. Remove the strlen invocation.
2. Put 256 on the stack as a parameter.
3. Pad code out using nop instructions.

MITLL/CTF — Fall 2012 — Binary Exploitation

33/37

Lab Exercise

Patch the vulnerability.

Conclusions

- We reviewed process execution, binary program
structure, and the x86-32 ISA.

- We learned simple static and dynamic techniques for
analyzing binaries.

- We developed an end-to-end exploit for a basic stack
overflow.

- We remediated a vulnerability by directly patching the
binary.

MITLL/CTF — Fall 2012 — Binary Exploitation
35/37

Next Steps

- This is just the tip of the iceberg!

— More attacks.

Heap overflows.

— Format strings.

atexit, .ctor, .dtor, PLT/GOT overwrites.
Return-oriented programming.

— Defenses.

- Stack, heap cookies.

- Address space layout randomization (ASLR).
- Non-executable memory.

- Control flow integrity (CFI).

— Obfuscation (packing, anti-debugging).

MITLL/CTF — Fall 2012 — Binary Exploitation
36/37

Next Steps

This is just the tip of the iceberg!

More attacks.

Heap overflows.

— Format strings.

atexit, .ctor, .dtor, PLT/GOT overwrites.
Return-oriented programming.

Defenses.

- Stack, heap cookies.

- Address space layout randomization (ASLR).
- Non-executable memory.

- Control flow integrity (CFI).

— Obfuscation (packing, anti-debugging).

Low-level exploitation is fun, and the skills are in
demand.

MITLL/CTF — Fall 2012 — Binary Exploitation
36/37

Thanks for your attention!

Questions?

<wkr@ccs.neu.edu>

	Intro
	Execution Model
	Executable Structure
	Static Analysis
	Dynamic Analysis
	Exploitation
	Remediation
	Conclusions

