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INTRODUCTION 

Methane (CH4) is the most abundant organic species in the Earth's atmo­
sphere. It is a greenhouse gas, as are water vapor (H20), carbon dioxide 
(C02), nitrous oxide (NzO), ozone (03), and the chlorofluorocarbon com­
pounds. It absorbs long wave radiation emitted from the Earth's surface 
in the 4 - 100 /lm atmospheric window and therefore affects atmospheric 
temperature directly (Lacis et al 1981, Ramanathan 1 988, Hansen et a1 
1988). It is chemically reactive, and influences the abundance of ozone in 
the troposphere and in the stratosphere (Johnston 1984), and it is a major 
source of stratospheric water (Ehhalt 1979, Pollock et al 1980). Methane 
thus affects temperature indirectly through its chemical interactions. 

Systematic measurements of the global tropospheric CH4 mixing ratios 
since 1978 reveal a steady increase with time by about I % per year, due 
to anthropogenic activities (Blake & Rowland 1988, Steele et al 1987). The 
history of CH4 atmospheric mixing ratios has been reconstructed from 
measurements of air occluded in ice cores for glacial and interglacial times, 
as well as during the more recent 200 years through the industrial era 
(Chappellaz et a1 1990; Pearman et al 1986; Etheridge et al 1988; Stauffer 
et a1 1985; Craig & Chou 1982; Rasmussen & Khalil 1 98 1a, 1981c; Robbins 
et al 1973). Large natural and anthropogenically influenced variations are 
observed over different time scales. 

In the troposphere CH4 is oxidized to CO and ultimately to CO2 and 
H20. This oxidation reaction sequence is initiated by the hyroxyl (OH) 
radical. This constitutes the major sink for CH4• The atmospheric lifetime 
for methane is 8-12 yr. Methane emitted from inundated anoxic environ-
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408 WAHLEN 

ments can be substantially reduced by bacterial methane oxidation in oxic 
layers above. A small sink can be attributed to bacterial oxidation on 
relatively dry soils (Born et al 1990), which relies on consumption of 
atmospheric methane. Some methane is exported to the stratosphere. In 
the lower stratosphere the same oxidation reaction as in the troposphere 
occurs, initiated by OH; at higher altitudes reactions with excited oxygen 
atoms [OeD)] and with chlorine atoms lead to mixing ratio profiles that 
decrease with altitude. 

Methane is produced by bacteria under anaerobic conditions in wet 
environments such as wetlands, swamps, bogs, fens, tundra, rice fields, 
and landfills. It is also produced in the stomachs of ruminants (cattle and 
other cud-chewing mammals), and possibly by termites. Most of this 
biogenic methane is generated by two major bacterial pathways, namely 
by fermentation of acetate and by reduction of CO2 with H2 (Whiticar et 
a1 1986, Wolin & Miller 1987, Cicerone & Oremland 1988). Other sources 
of CH4 are from leakage of natural gas upon drilling and distribution, and 
from coal mining. A further source is from biomass burning where CH4 
is a product of incomplete combustion (Crutzen et al 1979). The annual 
production rates and the magnitude of the different sources and sinks are 
still somewhat uncertain. 

ATMOSPHERIC DISTRIBUTION OF METHANE 

The Recent A tmospheric Record 
The presence of methane in the Earth's atmosphere was discovered by 
Migeotte (1948), from infrared absorption features in the solar spectrum. 
Hutchinson (1954), Koyama ( 1964), Fink et al (1965), Lamontagne et al 
(1974), Ehhalt ( 1974), Ehhalt & Schmidt ( 1978), and Ehhalt ( 1979) gave 
the first accounts on atmospheric methane and attempted to delineate, in 
principle, its sources and sinks. 

Systematic worldwide time series measurements of the troposheric CH4 
mixing ratio from different latitudes started in 1978. These early measure­
ments established that the global average CH4 mixing ratio has been 
increasing approximately linearly by about 1 % per year over the past 
decade and a half (Rasmussen & Khalil 1981b, 1981c, 1984; Steele et al 
1987; Blake & Rowland 1988). Figure 1 (from Blake & Rowland 1988) 
illustrates this trend. Today's average global mixing ratio is about 1750 
ppb, corresponding to a global atmospheric inventory of about 4900 
Tg of CH4• This increase is attributed to the anthropogenically-affected 
methane sources (see separate section) such as those from rice production, 
ruminants, and biomass burning. In part, such an increase may be due to 
the decreasing oxidative capacity of the atmosphere, i.e. if the abundances 
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Figure 1 Average worldwide increase of the atmospheric methane mixing ratio after Blake 

& Rowland (1988). (Reproduced with the permission of SCience, American Association for 

the Advancement of Science.) 

of CO, CH4, and nonmethane hydrocarbons increase with time, then the 
amount of atmospheric OH decreases as it is consumed in oxidation 
reactions with these trace gases (Thompson 1992 ; see also Methane Sinks). 
Other data (Steele et al 1992) indicate a substantial slowing of the global 
accumulation rate since 1983. The rcason for this is not clear. 

These studies also show that there is a marked interhemispheric gradient 
in the tropospheric mixing ratio of methane, with the ratio in the northern 
hemisphere being about 80--100 ppb or 5% higher than in the southern 
hemisphere on average. This reflects the larger sources of methane in the 
northern hemisphere (approximately a factor of three over the southern 
hemisphere) which, given the 8-12 year atmospheric methane lifetime and 
an interhemispheric atmospheric air exchange coefficient of 1/1-1/1.3 yr-I, 
results in the observed interhemispheric gradient of the atmospheric mixing 
ratios of methane. 

Time series measurements in remote locations at different latitudes 
also reveal a seasonal cycle in the atmospheric methane mixing ratios 
(Rasmussen & Khalil 198 1b, Khalil & Rasmussen 1983, Steele et a1 1987, 
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410 WAHLEN 

Quay et a11991, Fung et a11991, Steele et aI 1992). The amplitudes of the 
seasonal CH4 mixing ratios are strongest in the northern high latitudes 
(30-40 ppb) and diminish toward the equator. In the southern hemisphere 
they are smaller (10-20 ppb) and quite constant with latitude. The findings 
are illustrated in Figure 2 (from Fung et a11991) which contains the data 
of Steele et al (1987) and additional data from the NOAAjCMDL network 
for the years 1984-1987. Atmospheric mixing ratios are lowest during local 
summer and fall in both hemispheres, and higher during the remainder of 
the year. This is interpreted to be caused by methane oxidation by OR 
radicals which are more abundant in summer. Other factors may play a 
role: Vertical atmospheric mixing is stronger in summer than in winter, as 
evidenced by seasonal variations in measurements of the chemically inert 
85Kr (M. Wahlen et aI, unpublished data; P. Povinec, personal com­
munication). 

In the stratosphere the chemical destruction of methane by OR, OeD), 
and Cl becomes evident in profiles of decreasing mixing ratios with altitude, 
as vertical mixing is highly reduced. At about 25 km altitude the CR4 
mixing ratios are reduced by about a factor of two over tropospheric 
values (Ehhalt & Heidt 1973, Ehhalt & Thonnissen 1980). 

Ie(x) 

..... 

! i'()J 

is 
16CG 

6? 
1SCX:l 

Figure 2 Temporal and latitudinal variation of the tropospheric methane mixing ratio 
(from Fung et al 1 991). ( Reproduced with the permission of the American Geophysical 
Union.) 
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GLOBAL METHANE 411 

Reanalyses of solar absorption spectra taken in 1951 at Jungfraujoch 
(Switzerland) and at Kitt Peak in 1981 bridge the records between ice-core 
observations and direct atmospheric observations (Rins1and et al 1985). 
The results were 1.14 ppm (April 1951) and 1.58 ppm (February 1981), 
respectively. 

The Longer Term Record 

The atmospheric methane mixing ratios over various periods in the past, 
up to 160,000 years ago, have been reconstructed from the analyses of air 
trapped in bubbles of deep ice cores, using wet extraction techniques and 
flame ionization gas chromatography. These studies reveal substantial 
variations of the atmospheric mixing ratios through time. 

Ice core work compellingly demonstrates that the atmospheric CH4 
mixing ratio has more than doubled from preindustrial times to today 
(Craig & Chou 1982, Rasmussen & Khalil 1984, Stauffer et al 1985, 
Pearman et al 1986, Etheridge et al 1988, Pearman & Fraser 1988). This 
is attributed to anthropogenically influenced sources such as methane from 
rice production, animals, and from biomass burning. Figure 3 illustrates 
the increase of atmospheric CH4 mixing ratios from about 750 ppb to 
today's value over the last two centuries (Houghton et a1 1990). 
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Figure 3 Atmospheric methane mixing ratios for the last several hundred years as deduced 

from measurements in air occluded in ice cores, and direct atmospheric observations over 

the last two decades (from Houghton et al 1 990). (Reproduced with permission of the 
University Press, Cambridge.) 
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412 WAHLEN 

Longer term records are from Antarctica and Greenland ice cores (Ray­
naud et al 1988, Stauffer et al 1988, Barnola et al 1987, Chappellaz et al 
1990). They reveal that the atmospheric CH4 mixing ratios varied by a 
factor of two between the last glacial maximum (about 3 50 ppb) and the 
Holocene (about 6 50 ppb). The same variations are observed for the 
penultimate glacial and the previous warm period. There are large oscil­
lations in the methane mixing ratio during the period of the last glacial 
maximum. These oscillations, ranging from glacial low values to almost 
Holocene high values, seem to positively correlate with temperature vari­
ations, as displayed in Figure 4. Temperature variations are derived from 
measurements of D/R in the ice, and a change between glacial and inter­
glacial times of 6-8°C is indicated for Antarctica. Thus there seems to be 
a fundamental link between temperature and atmospheric CH4, which 
seems to react to temperature change quickly. This is most likely related 
to changes in the global methane source strength, and/or to changes in the 
atmospheric OH mixing ratios. Preindustrial and Holocene methane levels 
can be reasonably explained by stripping anthropogenically influenced 
sources, according to population growth. To maintain glacial time CH4 
mixing ratios when the high to mid-northern latitudes were covered with 
ice would, however, require increased fluxes (over today's) from natural 
wetlands at low latitudes, which could be accomplished by increased pre­
cipitation. This pattern is somewhat supplemented by the observation that 
precipitation rates were higher at low latitudes in glacial times than in 
interglacial times-opposite to what is observed in polar regions. Evidence 
comes from observations in low latitude ice cores (L. Thompson, personal 
communication) where concentrations of sulphates and nitrates and the 
abundance of particulates were found to be lower during glacial times. 
Methane hydrate destabilization upon the decay of the glacial sheets is 
another possible explanation for increased atmospheric CH4 during warm 
times (Kvenvolden 1988), but experimental evidence is lacking. 

Spectral analyses of the Vostok CH4 and temperature records reveal the 
presence of all major Milankovitch periodicities, namely approximately 
100, 41, 23, and 1 9  kyr. These findings illustrate the important role of 
methane in the past, present, and future greenhouse effect. Presently, 
climate forcing by methane is considered to be about 30% of that by CO2 
(Raynaud et al 1988, Chapellaz et al 1990, Lorius et al 1990). 

METHANE SINKS 

Atmospheric Chemistry 

Methane is predominantly destroyed in the troposphere by oxidation 
reactions initiated by the OR radical: 
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Figure 4 The long term ( 1 60,00 years BP) atmospheric CH. record as deduced from 
measurements of the mixing ratio in the air occluded in ice from the Vostok ice core 
(lOp); CO 2 mixing ratios in the same core (bottom); temperature variation as deduced from 
measurements of D/H in the ice of the core (from Chappellaz et al 1990). (Reproduced with 
permission from Science, American Association for the Advancement of Science.) 
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414 WAHLEN 

CH4+OH =:> CH3+H20. 

The reaction sequence eventually leads to formaldehyde, then CO, and 
ultimately to CO2 and H20, consuming additional OH radicals (Ravi­
shankara 1988). The methane chemistry is closely linked with that of CO, 
as methane oxidation produces as much as 30% of the atmospheric CO. 
Moreover, atmospheric NO, abundances influence the CH4 oxidation 
chemistry, and the methane oxidation chain can either produce or consume 
ozone (Thompson & Cicerone 1 986). In the presence of adequate NO" 
methane oxidation produces 03• When NOx is low, methane oxidation 
consumes 03• The oxidation of methane, CO, and nonmethane hydro­
carbons in principle controls the tropospheric levels of OH. Thus increas­
ing sources of methane (and possibly CO and nonmethane hydrocarbons) 
could deplete atmospheric OH, and by feedback, contribute to their atmo­
spheric mixing ratio increase. There is no plausible way to experimentally 
distinguish between increasing CH4 sources and decreasing OH, unless the 
global distribution of OH abundances can be more precisely determined 
and monitored. Recently two new techniques have been compared to 
measure the number density of OH in the lower troposphere (Mount & 
Eisele 1992) with sensitivities accurate enough to test photochemical model 
predictions. These initial measurements indicate OH number densities 
below those predicted by photochemical models. 

One approach to constructing global OH fields by photochemical 
models uses compounds for which the source strength and the destruction 
reaction rate constant is well known. Such a compound is methyl­
chloroform (Mayer et a1 1982, Prinn et a1 1987) for which the release rates 
and the oxidation reaction constant with OH are fairly well known. Scaling 
the methane destruction and atmospheric lifetime results in the values 
cited above. A recent redetermination of the CH4 + OH reaction constant 
by Vaghjiani & Ravishankara ( 1991) indicates a lower rate constant by 
about 20%, which would increase the CH4 atmospheric lifetime or lower 
the global source strength, respectively. However, more recently a re­
determination of the rate constant for the reaction of OH with methyl­
chloroform found a lower value by 15% (Talukdar et al 1992). As this 
reaction rate constant together with the methylchloroform release rate is 
used to construct the OR fields, the above two reaction rate constant 
redeterminations cancel the effect on the global methane source/sink rate 
and lifetime, and effectively restore the previous values. 

Some tropospheric methane (5-15% ) is mixed into the stratosphere 
where it is destroyed by OR, OeD), and C!. Reaction with Cl is important, 
as it sequesters ozone-destroying CI into relatively unreactive HC!. 
Furthermore stratospheric CH4 oxidation is a substantial source of strato­
spheric H20 (Pollock et al 1 980). 
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Bacterial Methane Oxidation 

GLOBAL METHANE 415 

Bacterial oxidation of methane under aerobic conditions, occurring above 
anaerobic methane production zones in wet environments, influences the 
net flux of methane emitted to the atmosphere (Harriss et al 1982, Keller 
et al 1983, King et al 1 98 9, Whalen & Reeburgh 1990a). This is particularly 
evident in lakes and in the oceans where methane produced in anaerobic 
sediments cannot escape to the atmosphere due to aerobic methane oxi­
dation in the oxic water column (Oremland et al 1 987). Direct uptake 
and consumption of atmospheric CH4 on relatively dry soils have been 
observed by Keller et al (1983, 1990), Whalen & Reeburgh (1990a), Born 
et al (1990), and Striegl et al (1992). Born et al (1990) estimate that 
this sink globally amounts to about 1-15% of the chemical sink in the 
atmosphere. 

METHANE SOURCES 

Numerous studies have investigated the strengths of various methane 
sources contributing to the atmospheric inventory. This has been done in 
a number of ways: by experimental measurements of methane emission 
rates from various ecosystems and methane producing processes, by inves­
tigations of the isotopic composition of methane sources and of atmo­
spheric methane, by biostatistical analyses, and by modeling of the global 
methane mixing ratio distributions using Global Circulation Models. The 
results of some of the more recent investigations are summarized in Table 
1. These investigations show that there are basically four major CH4 
sources of about equal size contributing to the atmospheric inventory. 
These are: methane from natural wetlands and tundra, from ruminants, 
from rice production, and from fossil methane (natural gas and from coal 
mining). Smaller sources are from biomass burning and from landfills. 
Termites were once thought to be a major source (Zimmerman et al1982) 
but this source is now considered a minor one. Additional minor sources 
are from freshwater and the oceans. Methane from clathrate destabil­
ization is a potential source which has yet to be quantified (Kvenvolden 

1988). Table 1 summarizes some recent methane budgets based on various 
techniques. 

Wetlands, Soils, and Tundra 

Extensive efforts have been made to characterize methane fluxes from 
wet and inundated environments, where methane is produced under anaer­
obic conditions by bacteria mainly via acetate fermentation and CO2 
reduction (see e.g. Keller et al 1986; Sebacher et al 1 986; Crill et al 1988a, 
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Table 1 Sources and sinks of methane 

Source 

Natural wetlands (bogs, swamps, tundra, etc) 
Rice paddies 
Enteric fermentation (animals) 
Fossil methane: 

Gas drilling, venting, transmission 
Coal mining 

Biomass burning 
Landfills 
Termites 
Oceans and fresh waters 
Hydrate destabilization 

Total 

sink 
Reaction with OH in atmosphere 
Removal by soils 

Atmospheric increase 

Cicerone & Oremland 
1988 

115 100-200 

110 60-170 

80 65-100 

45 25- 50 

35 25- 45 

55 50-100 

40 30- 70 

40 10-100 

15 6- 45 
5? 0-100 

540 400-640 

500 405-595 

40- 46 

Annual release and range 
(Tg CH./yr) 

Wahlen et al 1 989 
Houghton et al 

1990 

147 (incl. landfills) 
136 

ll9 

123 

55 

580 

55 

115 

110 

80 

45 

35 

40 

40 

40 

15 

5 

525 

500 

30 

44 

100-200 

25-170 

65-100 

25- 50 

19- 50 

20- SO 
20- 70 

10-100 

6- 45 

0-100 

290-965 

400-600 

15- 45 

40- 48 

Fung et al 1991 
(scenario 7) 

115 

100 

80 

40 

35 

55 
40 

20 

10 

5 

510 

450 

10 

""" 
.-
0\ 

� :I: r tTl Z 
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GLOBAL METHANE 417 

1988b; Burke et al 1988; Bartlett et al 1988; Quay et al 1988; Whalen & 
Reeburgh 1988, 1990a, 1990b; Moore et al 1990; Roulet et al 1992a, 
1992b). Methane flux measurements for a given ecosystem scatter widely 
over several orders of magnitude, both in time and space. They exhibit 
seasonal variations, but there are no other clear correlations with any 
parameters (such as temperature or precipitation) which could be used to 
obtain reliable global scale extrapolations. Global extrapolations for the 
methane flux from these sources therefore remain somewhat uncertain. 
Matthews & Fung (1987) and Aselmann & Crutzen (1989) have presented 
global extrapolations for these sources using average flux values and global 
distribution of these ecosystems, as well as net primary productivity. The 
resulting annual CH4 production, approximately 110 Tg yr-I is within the 
range indicated in Table 1. 

Methane production from tundra would be expected to increase with 
global warming. Warming would lower permafrost levels and make large 
stores of carbon available for bacterial methane production. 

Rice Fields 

Rice fields which are flooded for extended periods of the growing season 
provide, like natural wetlands, anaerobic conditions for bacterial methane 
production. Methane fluxes from rice fields have been investigated by 
Cicerone et al 1981; Holzapfel-Pschorn & Seiler 1986; Schuetz et a11989, 
1990; Schuetz & Seiler 1989; and Sass et al 1990. Methane fluxes seem to 
vary during the growing season, and are affected by environmental factors 
and agricultural practices. Different fertilization procedures seem to affect 
the methane production as well. Global extrapolations are difficult, given 
the limited data base. Experimental data from the major rice growing 
countries (China and Southeast Asia) are lacking. Matthews et al (1991) 
compiled a global data base for methane by rice production with an 
estimated source strength of about 100 Tg yc I. Methane production from 
rice cultivation is expected to increase with world population growth 
and therefore will influence the atmospheric CH4 inventory in the future. 
Holzapfel-Pschorn & Seiler (1986) estimated that this source has been 
increasing worldwide by about 1.6% per year since 1940. 

Animals 

Methane is produced by enteric fermentation in the stomachs of ruminants. 
Methane production by domestic and wild ruminants is by the CO2 
reduction pathway (Wolin & Miller 1987). Crutzen et al (1986) and Lerner 
et al (1988) have investigated this source on a global scale. The annual 
CH4 production from this source is estimated at about 80 Tg yr-I• This 
CH4 source is thought to contribute to the atmospheric mixing ratio 
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increase over the recent past as domestic ruminants likely scale with popu­
lation growth. 

Fossil Methane 

Fossil methane is being released to the atmosphere in the drilling and 
exploration of oil and natural gas. Losses furthermore occur in trans­
mission and distribution of natural gas. Fossil methane is also released 
from coal mining. There is some discrepancy between fossil methane 
releases accounted for by statistical analyses and those derived from the 
analyses of 14CH4 which is most suitable to estimate this methane source 
(see Isotopic Tracing of the Methane Cycle). 

Landfills 

Anaerobic conditions in soil-covered landfills favor biogenic methane and 
CO2 production which is vented to the atmosphere. Biogenic methane 
production from biodegradable carbon lasts for a long time (about two 
decades). Bingemer & Crutzen (1987) evaluated the production from waste 
and its degradable carbon content. They estimated the global methane 
production rate from this source to be 30-70 Tg yC I, and found the 
annual methane emission rate to be somewhat lower due to methane 
oxidation. 

Biomass Burning 

Biomass burning produces CH4 in incomplete combustion. Crutzen et al 
(1979) realized this to be a substantial source for atmospheric methane. 
Crutzen & Andreae (1990) estimate that biomass burning in the tropics is 
contributing 11-53 Tg of methane per year to the atmospheric inventory. 
Craig et al (1988), Cicerone & Oremland (1988), and Quay et al (1991) 
estimate the biomass burning contribution to be about 50 Tg yr-I. 

ISOTOPIC TRACING OF THE METHANE CYCLE 

Rust (1981) and Stevens & Rust (1982) first proposed the isotopic approach 
to a CH4 budget using 13c. This approach was carried further to include 
14C and deuterium in methane (Burke et a11988 ; Wahlen et a11989, 1990 ; 
Quay et al 1991; Manning et al 1990 ; Levin et al 1992). The isotopic 
composition is influenced by many steps in the carbon cycle: Atmospheric 
CO2 is converted to organic matter, organic matter is broken down into 
decomposition products, and methane is generated from these products 
by bacteria in a number of ways. Methane generation also includes aspects 
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of the hydrologic cycle as hydrogen derived from water is incorporated 
into the final product methane. All these transformations will introduce 
isotopic fractionations which are influenced by a number of factors. While 
most of the details are not known, it appears that the isotopic composition 
of methane from a particular source is determined by the composition 
of the substrate material and the isotopic fractionation of the methane 
generating pathway. 

In principle therefore it is possible to derive a global methane budget 
from the comparison of the isotopic composition of methane from the 
various sources to that of the atmospheric inventory. This requires the 
knowledge of the isotopic fractionation in the atmospheric destruction 
reaction for methane. This fractionation was determined variously in the 
laboratory for l3C (Rust & Stevens 1980, Davidson et al 1987, Cantrell et 
al 1990) and was found to be from 3 to 10 permil. Substantially larger 
fractionation has been observed from measurements in the lower strato­
sphere by Wahlen et al (1990). 

Carbon-14 can be used to assess the contributions by fossil methane to 
the atmospheric inventory. Fossil CH4 from natural gas exploration and 
distribution, from coal mining, and possibly from seepage of natural gas 
reservoirs on land and near shore is free of l4C, while biogenic methane 
contains more or less contemporary 14C of about 120 pMC (percent modem 
carbon). Via 14C analyses, the biogenic contribution has been determined 
to be 21 ±3% of the annual input to the atmosphere by Wahlen et al 
(1989), 17-25% by Manning et al (1990), and 16± 12% by Quay et al 
(1991). There is some complication due to a substantial anthropogenic 
contribution to the atmospheric 14CH4 inventory from emissions from 
pressurized light water reactors (Kunz 1985) which adds to the uncertainty. 
Figure 5 shows the reconstruction of the atmospheric 14C inventory from 
dated samples including the turnover of 14C by nuclear atmospheric input 
from bomb testing, with and without the nuclear reactor contribution. 
Statistical analyses of fossil methane releases (Cicerone & Oremland 1988, 
Barns & Edmonds 1990, Fung et al 1991) are lower than those observed 
by 14c. The discrepancy may be explained by releases of 14C-depleted 
methane from ecosystems where old carbon is being processed. It is also 
possible that additional fossil CH4 is released through seepage from natural 
gas reservoirs on land and near shore. 

The stable isotopic composition of methane sources and of atmospheric 
methane have been investigated by Schoell (1980), Stevens & Rust (1982), 
Stevens & Engelkemeir (1988), Tyler (1986), Tyler et al (1988), Chanton 
et al (1988), Wahlen et al (1989), and Quay et al (1991). The atmospheric 
l3C concentration is about -47 permil (PDB). Biogenic methane is largely 
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Figure 5 Reconstruction of the turnover of atmospheric bomb-produced 14C into 14CH. in 
the atmosphere (from Wahlen et al 1 989). 14CH4 is expressed in pMC, (percent Modern 
Carbon). Upward corrections are for urban samples which contain excess CH. of fossil 
origin. ( Reproduced with permission of Science, American Association for the Advancement 
of Science.) 

depleted in 13C due to fractionation. There are seasonal variations in the 
atmospheric 13C records which are attributed to the OR destruction (Quay 
et aI 1991). Furthermore there is a hemispheric difference in b13C reflecting 
a heavy southern hemispheric source from biomass burning (Quay et al 
1991 ) . 

Figure 6 shows the power of the isotopic approach (from Wahlen 1 992, 
Wahlen et al 1990). The isotopic composition of the various methane 
sources arc quite distinct. There are more sources than isotopes, thus the 
system is underdetermined. Nevertheless, strong contraints on the global 
methane budget can be obtained from the isotopic composition. 

CLIMATIC IMPACT OF CH4 

The effect of the combined radiatively important trace gases to the terres­
trial greenhouse forcing has been estimated to be 45-60% by Lorius et al 
(1990) from analyses of the gas composition in ice cores. Rodhe (1 990) 
has studied the relative role for the different gases. The findings are sum­
marized in Table 2, which shows the relative importance of CR4. The 
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Figure 6 Systematics among the stable isotope composition of methane from various 

sources and from atmospheric methane (Wahlen et ai, unpublished data). Boxes show the 

mean values for sets of samples for "c and D in methane. 

first and second columns show the abundances and the observed annual 
increase in the atmospheric mixing ratio of the various gases. Column 3 
shows the decay time against additional emission to the atmosphere. These 
times are essentially exponential, except for CO2, due to the carbon chem­
istry in the ocean. Column 4 illustrates the relative importance to the 
greenhouse effect on a molecular basis. The last column indicates the 
relative contribution to the terrestrial greenhouse effect by the various 
trace gases, indicating that methane contributes about 25% of that of CO2• 

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

19
93

.2
1:

40
7-

42
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

9/
28

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



422 WAHLEN 

Table 2 Trace gas contributions to the greenhouse effectt 

Species 
Mixing ratio 

(ppb) 

Rate of 
increase 

(% per year) 
Decay time 

(yr) 

Relative contribution 

(to CO2) on a per mole 

basis 

(Mol-I) 

Contribution 

to greenhouse 

effect 

(%) 

CO2 353 X 103 0.5 120 1 

CH4 1.7 X 103 1 10 25 

N20 310 0.2 150 200 

°3 
• 10-50 0.5 0.1 2000 

CFC-11 b 0.28 4 65 12000 

CFC-12 b 0.48 4 120 15000 

t After Rodhe (\990). 
a In the troposphere. 
b Chlorofluorocarbons. 

SUMMARY 

Methane is a radiatively and chemically important constituent of the 
Earth's atmosphere, and it substantially contributes to the terrestrial green­
house effect. Atmospheric mixing ratios of methane are increasing rapidly 
today, and large natural fluctuations, by a factor of two, have occurred in 
different climatic periods in the past. Over the recent 200 years, atmo­
spheric methane mixing ratios have increased more than a factor of two 
over preindustrial values due to anthropogenic influence. While the gross 
features of the global methane budget are known, the details about indi-
vidual source strengths are still poorly understood. 

. 
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