General Circulation – Hadley Cells

Drew Whisenant

Atmospheric Data

Zonally Averaged Temperature

Zonally Averaged Temperature

- Recall Fronts
 - Cold, dense air mass over the poles
 - Similar situation at equator
 - Warm, less dense air
 - Shifted South in January; North in July
 - Thermal Gradients
 - Also present for the Hadley cell
 - Greatest between 30 and 60 degrees North or South

January

January

- Vertical Velocities
 - Positive near the equator (rising)
 - Negative just outside equatorial region (falling)
 - Positive again outside of the negative region (rising)
 - Convection phenomenon
- Meridional Wind
 - Illustrative of convection observed from the vertical velocities (omega) data

July

July

- Vertical Velocities
 - Similar to January data
 - Error in output; pressure range too great
- Meridional Wind
 - Similar to January Data

Zonal Wind

Zonal Wind

- Velocity Data
 - Greatest velocities occur between 30 and 60 degrees North and South
 - Shifting results from seasonal variation between the two hemispheres
 - Greatest velocities correspond to the regions of sharpest gradient as in the case of the frontal study
 - Obeys thermal wind relationship

Thermal Wind

$$\frac{\partial u}{\partial p} = \frac{R}{fp} \left(\frac{\partial T}{\partial y} \right)_p$$

- R Ideal Gas Constant
- u zonal wind
- p pressure

- T temperature
- y latitude
- f Rotational factor

Experimental Data

Laboratory Experiment

- Low rotation
 - Less than 1 rpm
- Two sets of sensors
 - Four each
 - Perpendicular
- Ice placed in canister

Temperature Data

Temperature Data

Temperature Data

- Nonlinear decrease
 - First observed in second sensor from canister
 - Representative of convection
 - Colder, dense water sinks and passes the second senor
 - Same is true for third sensor, in both cases
 - First sensor exposed to warmer water
 - Same is true for fourth sensor, in both cases
 - Data not observed for fourth sensors due to time constraints
 - Explanatory of slight periodicity observed in temperature
 - Sharpest temperature gradients are somewhere between the canister and second sensor

Thermal Wind

$$\frac{\partial u}{\partial z} = -\frac{g\alpha}{2\Omega} \frac{\partial T}{\partial r}$$

Magnitude Negatively Correlated

Very small

From
Temperature
Data

Velocity Data

Velocity Data

- Initial Negative Velocity
 - Indicative of positive temperature gradient
 - Matches the observation from the temperature data
 - Very strongly negative
 - Indicative of strong thermal gradient
 - Again, as observed
- Large Positive Velocity
 - Near the edge
 - Indicative of negative thermal gradient
 - Expected result from initial convection
 - Difficult to explain; Need more temperature data

Thermal Wind

From Velocity Data

Very small

From
Temperature
Data

Magnitude Negatively Correlated

Conclusions

- Atmosphere
 - Similar to polar front
 - Greatest velocities with sharpest gradients
 - Thermal wind behavior
 - Apparent convection
 - Falling and rising air
- Experiment
 - At low rotation, able to mirror polar front experiment
 - Greatest velocities with sharpest gradients
 - Reflects thermal wind behavior
 - Observed convection
 - Farther sensors undergo temperature decrease earlier
- The experiment is a controlled environment in which to accurately develop the theory to explain atmospheric phenomena in the case of General Circulation