
SCENARIO:
Christoph, Urs, and and Zach met at the Berklee College of Music in Boston three years
ago and formed a Jazz Trio, The Colorblind James Experience. Generally, they perform
in the greater Boston area. However, this summer they’re performing at the New Orleans
Jazz Festival. Given that their travel and other expenses won’t be comped, they’d like to
book venues along the way. The two weeks before their show in New Orleans are flexible
and they’d like to optimize their trip so as to hit as many venues as possible along the
way. In order to do this, they pull up VenView, enter their start and end destinations and
specify the two weeks that they have free. They narrow their search to include only small
jazz venues and browse the possibilities, adjusting the cities they’d like to hit and spots
they definitely don’t want to miss. Using VenView’s database, The Colorblind James
Experience, efficiently culls a list of available venues. Using this information they’re able
to pad their tour and reach new audiences they would not have met otherwise.
The Colorblind James Experience, incorporates VenView into their local routine as well.
By searching only in Boston, they’re able to quickly find available venues quickly even
given their complicated school schedules.

Prof. Evan Ziporyn is a composer, clarinetist, pianist and lecturer. His schedule is packed
with events far and wide. While he’s grateful to say that he doesn’t have trouble booking
gigs, he isn’t able to manage his visits that efficiently. He specializes in new music and
loves exposing small audiences to his work and that of his peers. But often, smaller
venues simply can’t afford to foot the cost, especially with the increasing price of gas.
Prof. Ziporyn uses VenView to research cities he has already booked gigs with. VenView
displays venues specific to his genre nearby. Prof. Ziporyn narrows the results and
contacts the venues based on the information supplied by VenView at a cost they can
afford.

TASKS:
1. Based on users’ time availability, search all the potential venues users can perform at
around one city. Narrow search results based on venue specifications, such as genre
played at venue, capacity, etc.
2. Create a music tour by searching all venues from a start location, A, to an end location,
B. The user can add a city to visit in the middle between A and B.
3. Select venues the users want to perform at and finalize the trip.

DESIGN 1: Node form:
Christophe chooses Boston as a location he wants to perform in from the dates of 3/23 to
3/28. When he clicks enter, the available venues near the entered location, Boston, appear
on the screen.

Christophe only performs Jazz, so he narrows the available venues to those specialized in
Jazz. Additionally he wants to play at a smaller venue, so he selects the venue size to fit
200 people. The results refresh to fit these parameters.
Christophe decides on the venue he wants to perform at, so he marks it with a red star.

When Christophe gets to Boston, instead of performing, he and his band members, Zach
and Urs, decide to go on a tour to NYC. So they click the music tour click and a second
text box appears for them to enter NYC in. Additionally, an add cities click appears as
well to enable them to specify any cities they want to visit between Boston and NYC.
They keep the dates as is, from 3/23 to 3/28.
They enter their end location as NYC and click enter. A path from Boston to NYC
appears on the screen. The path maximizes the number of venues between Boston and
NYC.

Christophe and his friends decide they want to pass by New Haven on the way to perform
for their friends in Yale. So they click the add cities click, and a number of text boxes
appear. In one of them they enter: “New Haven”, then they click enter. A path from
Boston to NYC appears, that passes through New Haven.
Christophe and his friends mark the venues they want to pass by with red stars. When
they are done, they click the finalize trip button. Then the path refreshes to show them
their finale path with all stops on it. (Diagram not available)

Analysis:
Learnability:
Pros:

- The interface is consistence with other mapping services, in the way in which it
allows multiple locations and cities.

Cons:
- The relative distance provided for the user might be misleading, instead of using a

map, Design 1 uses relative nodes. So the distance from i.e. Boston to New Haven
will be equal to New Haven to NYC. When it might not be in real life.

Efficiency:
- The design gives feedback to the user in regards to the instant refreshed results

after a narrowed search.
- It does not require the user to go back to a previous screen to change input

information; all the information can be changed from the same screen.
Safety:

- There is not direct change of data inputted by the venues.

DESIGN 2: List Form:
This form pays special attention to a user’s schedule.

Left Column: Displays venues with open slots in the specified place and timeline.

When an OPEN slot is selected, conflicting slots are grey-ed out.

When multiple cities are selected, the left sliding bar appears. The purple tick displays the
“current location” (relative to the user’s inputted cities, A and B) and the green tick keeps
track of locations relative to A and B that have already been selected. In the screenshot
below, Days1-Days3 are greyed out since a show was already booked in Boston on Day3.

Below, the user has selected an opening at Winsor Hall for Day 4. The conflicting
opening is greyed out and a green tick is added besides the “current location” (in purple).

VenView has updated the displayed venues to location B (New York).
The view also reflects the user’s previous selection (green tick), and updated current
location (in purple).

Analysis:
The familiar form of a scheduling table and the well-defined text fields for user input
make this form highly learnable. The interface is also quickly responsive (regions grey
out depending on the user’s selections) which helps the user discover the interface’s
behavior. The main ambiguous point to this interface is that the left column displays only
venues that are available within the given time frame for a specific location—specified
by the slider between user-inputted locations, A and B.
 This design is highly efficient since it enables users to quickly draft a schedule for
their tour. However, because the domain of what the user can select depends on their
previous selections (earlier shows before later shows), it is not as quick to update non-

sequentially. For instance, the user will have to clear their previous selections in order to
enable earlier shows for a later location to become available.
 Overall, our app does not enable users (musicians) to directly book a venue. While
this means that our data is reliable because it is only controlled by the venues, the
turnaround time for our data is slowed. This affects the security because multiple
musicians may think they can book a venue, when in fact they cannot. This sacrifices the
reliability of our interface and may perhaps discourage musicians from using it.

DESIGN	 3:	 map:	 	
The	 Colorblind	 James	 experience	 would	 like	 to	 look	 at	 all	 the	 available	 open	 venues	
around	 Boston	 next	 Saturday	 night.	 They	 want	 something	 only	 5	 miles	 within	 the	
vicinity	 because	 they	 don’t	 have	 a	 car.	 So	 they	 enter	 the	 location,	 the	 distance	 which	
they	 are	 willing	 to	 travel.	 They	 also	 enter	 how	 they	 want	 to	 filter	 the	 search	 or	 order	
search	 results.	 All	 the	 user	 input	 entered	 is	 highlighted	 in	 this	 page	 below	 .	 They	 can	
add	 more	 constraints	 if	 they	 like	 on	 this	 search	 by	 clicking	 on	 the	 plus	 sign.	 	 After	
they	 click	 on	 the	 blue	 button	 to	 Get	 Venues,	 all	 the	 Venues	 	 will	 appear	 on	 the	 map,	
as	 well	 as	 a	 list	 below	 with	 a	 scrollbar	 	 If	 they	 click	 on	 any	 of	 the	 venues	 they	 get	 a	
pop	 up	 and	 they	 can	 see	 details	 regarding	 the	 venue.	 	 To	 remove	 any	 of	 the	 search	
constraints	 they	 can	 just	 click	 on	 the	 little	 x	 near	 the	 field.	 	
	
	

	
	 	
The	 Colorblind	 James	 are	 planning	 a	 road	 trip	 from	 Boston	 to	 New	 York	 where	 they	
have	 a	 performance	 scheduled.	 They	 are	 wondering	 if	 they	 can	 schedule	 other	 gigs	
within	 a	 certain	 radius	 of	 the	 path	 they	 travel.	 If	 they	 click	 on	 Add	 more	 locations	
they	 get	 to	 the	 screen	 below.	 In	 that	 screen	 they	 can	 enter	 the	 city,	 as	 well	 as	 the	
dates	 at	 which	 they	 planning	 to	 stay	 in	 the	 city.	 The	 best	 car	 route	 is	 then	 shown,	
and	 all	 venues	 within	 a	 certain	 radius	 appear.	 The	 user	 inputs	 are	 identical,	 except	
the	 additional	 location	 on	 the	 path.	 	
	
	

	
	
To	 add	 a	 certain	 venue,	 the	 Colorblind	 James	 can	 then	 just	 click	 on	 Add	 button	
below	 the	 venue.	 In	 this	 case	 Colorblind	 James	 decide	 to	 add	 Newburgh	 hall	 as	 well	
as	 Bristol	 jazz	 club	 as	 venues	 on	 their	 trip.	 If	 they	 click	 on	 the	 add	 button	 for	 each	 of	
these	 venues,	 and	 then	 on	 the	 get	 Venues	 button	 again,	 the	 page	 then	 reloads,	
showing	 the	 selected	 venues	 in	 the	 map	 as	 blue.	 The	 selected	 venues	 are	 also	 shown	
with	 blue	 boxes	 around	 them.	 They	 can	 now	 remove	 each	 venue	 now	 clicking	 on	 the	
remove	 button	 below	 each	 of	 the	 venue	 that	 are	 already	 selected.	 	
	
	

	
	
Analysis:	
Learnability:	 This	 design	 is	 very	 learnable	 because	 it’s	 very	 similar	 to	 the	 commonly	
used	 google	 maps	 interface.	 	
Efficiency:	 this	 design	 is	 not	 so	 optimal	 in	 terms	 of	 efficiency	 because	 it	 will	 often	
have	 to	 recalculate	 routes	 whenever	 the	 user	 specifies	 a	 new	 location	 or	 a	 certain	
venue.	 It’s	 difficult	 for	 this	 design	 to	 address	 other	 issues	 such	 as	 if	 the	 user	 intends	
to	 use	 public	 transport	 or	 plane	 travel	 from	 both	 A	 to	 B.	 In	 addition	 this	 design	 does	
not	 address	 the	 issue	 of	 actually	 scheduling	 or	 booking	 a	 certain	 venue.	 	
Safety:	 This	 design	 is	 also	 not	 safe	 in	 the	 sense	 it	 will	 not	 keep	 track	 of	 all	 the	
constraints	 or	 venues	 that	 you	 select.	 If	 you	 click	 on	 the	 little	 x,	 it	 removes	 it	 from	
the	 list	 and	 it’s	 difficult	 to	 retrieve	 the	 search	 results	 again.	 	

