
Design
The final design of VenView synthesizes the map view of open venues with venue listings.

Figure 1: Final design of our project combines map view of open venue with venue listing
per day of trip.

Process
Previous iterations cross referenced these separate views. However when we implemented an
older design, we found the screen space limiting.

Figure 2: GR4 design included a graph and a grid of buttons.

This grid of buttons was partially inspired by HipMunk’s booking interface. The plan was to
cross reference venue locations (pinpointed in the map view) with rows in this grid that indicated
(over the course of the music tour’s length) available gig openings. Clicking one of the buttons
in this grid view would trigger the booking step (task 2).

We decided for GR4 to additionally indicate (to the user) how much each available booking
would pay by labeling the “to book” buttons with one to three $’s. The idea behind
providing it was to avoid labeling all the buttons with redundant information (eg. “book-this-
opening”, “click-here”, etc.). It was also to guide the user to select which venue to book based
on money earning given all the openings displayed. Unfortunately by the time of our paper
prototype, we had not yet considered this level of fidelity for this part of the design. As a result
we were unable to test whether our dollar sign symbol scheme would work. However feedback
from our heuristic evaluation of GR$ showed that users were confused by the grid of $ buttons
We considered instead to indicate the number of “slots” available for each day at a particular
venue on the booking button label.

Ultimately, we eliminated the grid of buttons altogether. Instead we display a map and list of
venues day by day in the schedule. This was motivated by our decision to consolidate calendars.
It also solved many of the usability issues with booking found in the heuristic evaluation and
saved a lot of screen real estate. Feedback from our paper prototype also showed that users
tended plan their trip day by day so displaying this information day by day made sense.

Previously, we had envisioned animating the columns designating a particular day so that once
the user clicked a particular booking-button, the column for that day would flip and display
specific opening times in addition to gigs the user had previously booked for that day. In
addition to this, we had planned to provide a scheduled view so that the user could view his
entire schedule after booking all desired gigs (task 3).

Our new approach uses only the full schedule view because it was counter intuitive to show
a single day and the entire tour schedule separately. Additionally feedback from our paper
prototype suggested that users wanted to be able to compare the booking they were currently
making with those they had already booked on previous days.

Figure 3: GR5: Map and a list associated with each day

Additionally, up to GR5 , the map view had become more of an accessory to the user’s action.
The user was mainly engaged with the listing view which only provided schedule information.
This detracted from our original objective which was to inform musicians’ tour schedule based
on geography.

When we paper prototyped VenView we extensively tested how intermediate locations would be
added and how to recognize the list of venues. The first element that really clicked for our final
implementation was the left column where users provided the dates of their tour and locations.
Since what made the interface up to this point exciting, was seeing the map populated with
available venues it made sense to demonstrate this responsiveness in our interface more often.
Therefore, our final design re-populates the map for each day of the tour. The pins only indicate
venues with available bookings for that day within the specifications set by the user in the left
hand column (genre, venue capacity, path style) .

Figure 4: GR5 Design: Clicking on the marker in the map, or the venue name on the list,
highlights it, and displays opening as a button.

When we originally interviewed musicians they mentioned that a longer tour in addition to
intermediate cities they’d also constrain where they traveled to based on particular venues they
would want to hit. Since in the the map view, a user can only reveal the name of the venue by
clicking on a specific pin we decided to accompany the view with the list of the venue names.
Users book a venue by clicking the time label button beneath the venue name in this list. After a
user has booked a specific slot this button changes into an un-book button for that slot.

We decided to break the calendar view into fifteen minute intervals based on our preliminary
interviews with musicians who said this was the most minimum time that a gig could last. This
abstraction allowed for us to constrain slots so that only exactly one gig could be booked per slot.

Figure 5: GR5 design: clicking on book immediately pops up calendar showing the
scheduled event. We divided the calendar view into fifteen-minute slots motivated by our
interviews with musicians.

Implementation

Route and Venues along the route
- Our application used the Google Maps API to get routes. It used the intermediate cities
entered by the user as Waypoints to request from the Google direction renderer.
- The number of intermediate cities had to be limited to three to reduce calculations. The
calculations ensure right behavior when removing the first city and adding a new one. i.e. The
new one would be placed at the end and not as the first. It also ensures that the cities are fed to
the waypoints in a route in the right order.
- The application used the Google Places API search to get venues within a 500 radius
around the origin and destination. The initial design was meant to use this search service to get
venues along the path, using the (longitude, latitude) of points along the path. However, Google
restricts users from iterative calls to a service and the data along the path had to be hardcoded.
That problem took a long time to figure out, it should of have been specified in the Google API
documentation.

Venues: map and list
- The system used random algorithms to choose venues open in a certain day, and similarly
to choose the time openings of those venues ensuring no collision in time openings, yet allowing
venues to be open on more than one day. This information was saved in a list that resets every
time the application is restarted.

- The application used Google markers to indicate venues that are open along the path at a given
day. It used different colored markers to indicate venues: that are open, that have been booked in
another day, and venues that are currently selected.
- The behavior between the list and the map: the application stored a list of venue names per day,
and the longitude and latitude of a respective venue. This information was used to calibrate the
venues on the list and the venues on the map. i.e. selecting a venue on the map would make the
list scroll to it, highlight it and show its available bookings. Vice versa, selecting it on the list
would make the marker on that venue change color to green and an information window would
appear on the map, to give the user feedback of the venu’s location on the map.

Standard Behavior
The application was made consistent with other applications by having any selected element be
deselected if the user clicked on another element. i.e. if the user clicked anywhere on the map
and a marker was selected, it would be unselected and all expected behavior would propagate to
be reflected on the list. Additionally, when the user is in the “view schedule” mode and he clicks
outside the schedule, the schedule automatically closes.

Booking
After the user enters the travel information, we generated random number of booking objects
for each venue, on each day of that trip. These bookings are all assumed to be open and are
associated with the venue object and its marker on the map. These bookings are then displayed
in the html table for each venue on that day. Upon clicking on a venue, the marker on the
map is then highlighted, and the available slots to book are displayed. Vice versa, when a
marker is clicked the associated venue in the table is also highlighted, and the available times
are displayed.When a user selects the booking, the opening slot is immediately designated
as ‘booked’, and the schedule pops up showing the booking. In addition the marker is
highlighted in a darker color to designate that the venue is booked.

Scheduling
Scheduling was done by just drawing formatted html table as a calendar. When a venue is
booked, the cells associated with that time in the table are just highlighted and formatted to
reflect that booking. The schedule pops up immediately as feedback for booking.

Implementation problems affecting usability:
The inability to detect and warn of conflicts in scheduling really affected the security of using
application.
Additionally, in order to allow for multiple window sizes and because we used blanket, we
were unable to create schedule rectangles of set width/height/location. This meant that schedule

rectangles representing a booked-gig could not be interactive as we had originally planned.
Instead we filled in corresponding cells in the schedule table and made the schedule purely a
view (the user could not unbook slots from the schedule-popup).

Evaluation
“Describe how you conducted your user test. Describe how you found your users and how
representative they are of your target user population (but don't identify your users by name).
Describe how the users were briefed and what tasks they performed; if you did a demo for them
as part of your briefing, justify that decision. List the usability problems you found, and discuss
how you might solve them.”
Testers were mostly friends willing to test our UI. One user was a musician we had interviewed
in GR1 and was happy to look at our final design. Tests were conducted by just briefing the user
verbally with a quick description of the UI, and what it can accomplish. Next they were given
three tasks to accomplish: 1) Find the venues along a tour they are planning. 2) Book at least one
of the venues. 3) Check their schedule. Then the user was given the freedom to explore the UI
while the observer took notes, and the facilitator just guided the user at some points if they had
questions or were stuck.

Tester 1
User was a pianist friend. She does not perform very often but was quick to impersonate the role
of an independent musician on tour.

Heuristic evaluation
Did not notice date at top of the map: Heuristic: Safety, Learnability, Severity: Major
User was unable to distinguish at first that the map was for only one day. She ended up booking
two venues that are very far apart on the same day.
Solve this by doing some user testing on how best to display the date to the user.
Had trouble locating venue: Heuristic: Efficiency. Severity: Minor
User spent a long time zooming in after selecting the venue to locate it on the map.
Solve this by: Zooming the map view into the venue whenever it is selected in the list adjacent to
the graph.
Users double booked: Heuristic: Safety. Severity: Catastrophic
User double booked an evening because the application did not have the capability to report a
conflict. They were then confused about what happened. “Where did my event go?”
Solve this by reporting conflicts in scheduling to the user. We would have to research what the
best way of reporting conflicts.
User was surprised the calendar was static. Heuristic: Matches the real world.
User tried desperately to click on the calendar to view more details or to see if they can edit the
booking.
Solve this by trying to create a more interactive schedule that matches the real world display of
calendars often allowing users to see details of the event and edit them.

Unclear what path style refers to in the design. Heuristic: Help + Documentation, overall
Learnability. Severity: Major
Unfortunately this was a suability problem detected earlier which we didn’t get a chance.

Tester 2:
MIT course 6 friend in concert choir. Not exactly a touring artist but a performer and familiar
with concerts.
Placement of “View Schedule” button. Heuristic: Efficiency, Severity: minor.
User wasn’t able to see it. User reported that it would have been better if it was placed on top of
the list and not under it.
Solve this by doing user testing to see the best place for the “view schedule” button and place it
there.
Legend for marker colors. Heuristic: Learnability, Severity: minor
Solve this by inserting one under the “enter” button when the map appears
Color Choice. Dark Blue not best color for permanent reservations. Heuristic: Learnability.
Severity: Cosmetic
Solve this by doing user testing to see the best color and use it
Cross-application Calendar. Be able to download scheduled events into Google Calendar.
Heuristic: Efficiency. Severity: major.
Solve this by implementing google calendar in the application. That way it’s easier for the user.
Lack of geography knowledge. Doesn’t know cities between two states to enter as intermediate
cities. Heuristic: Efficiency, Severity: major.
Solve this by making the map visible at an earlier stage of entering inputs. As in when the origin
and destination are entered, the map appears showing the intermediate cities.
Ordered list. list orders venues from origin to destination [Good: intuitive]

Tester 3
Swiss saxophonist who we interviewed for GR1 and inspired much of the UI design. We got in
touch and he was interested in seeing our work. He tours frequently.
Unclear that available destinations should only be in the USA: No warning exists to indicate
to the user that she should only pick locations within the USA. Heuristic: Learnability, Severity:
Minor.
Solve by: having some warning message if the user tries to enter locations outside of teh US
Path between pins seemed to indicate time/Unclear that map only indicated 1 day: It was
not completely obvious that the displayed pins represented only one day. Since the user picked a
long tour time + distance, she inferred that the represented pins must not be all available within
the time span, but because the pins were drawn relative to a path, she thought some amount of
time > 1 day was being represented.
Heuristic: Learnability Severity: Major
Solve by:

-Incrementally drawing the path once venues have been booked.
-Displaying open venues only a certain radius from the inferred position of the user (eg

on day 1 of a five day tour, do not show openings at the final destination).

List and Pins correlate: Number of pins match the number of venues listed. Once a pin
is clicked, its corresponding venue is clicked (available times are displayed). Heuristic:
Learnability + Efficiency (clicking either view begins “booking” transaction.

Unclear that Names Listed are Venue Names: Heuristic: Learnability, Severity: Major
Solve by: Labeling column of venue names.

Unclear as to how to initiate booking process: User guessed that clicking venue names would
display more info about the venue, not necessarily initiate the booking-process for that venue.
Solve by: Labeling Venue-name column with “Book a Venue,” or automatically reveal available
times for the first venue in the list (display buttons for different available times as if the first item
had already been clicked to entice the user to either book those times or click other items in the
list to display more information).

Tester 4
MIT friend with a music minor. Performed with gamelan group at MIT but otherwise does not
tour.

Unclear location of venues. User doesn’t know where the venues are in the list. She prefers
headers in the list separating venues in the origin, destination and the ones between cities.
Heuristic: Learnability. Severity: Major.
Solve this by putting headers in the list that are greyed out, just to help the user visualize where
the venues are.

Address information. The information window has to have information about the venue.
Heuristic: Learnability. Severity: minor.
Solve this by putting the venue information. That way it is more consistent with Google Maps as
well.

Day on top of the map unclear. The user wasn’t able to tell that it’s a day by day map until a
while after she started. Heuristic: Learnability. Severity: minor.
Solve this by making the dates and days bigger and clearer. The user eventually figured it out. It
is only a matter of first time using.

Reflection

While we did each step of the spiral design process and tested with users along the way as
described in lecture, I think we failed to think deeply enough about the implementation along
the way. Had we thought more about the details of our implementation ahead of time, we would
have perhaps updated to our final view earlier on in the process and would have been able to
iterate on the exact details of it further. Other aspects of our design did benefit from this process
(such as the left-hand column view in which additional intermediate cities are added).

When paper prototyping our design in GR3, we found some usability issues but we struggled
to solve them. One of our biggest struggles was how to display the two dimensions, time and
space (map) for the venues effectively and intuitively. We were unable to let go of any of these
dimension, because they were both essential to the tasks. So when GR4 approached we realized
the problems but still had not pinned down how to solve them. In addition the design that seemed
feasible by paper proved much more difficult on computer because of screen real estate as well
as implementation. As a result GR4 had many usability issues. The final design that we came
up with for GR5 addressed many of the issues we discovered in our user testing and heuristic
evaluation. However, because we came up with it so late in the process, we were unable to
prototype it and user test it. As a result many of the details in our final design were not tested
and fully fleshed out in advance. The final round of testing thus highlighted mostly new usability
issues.

The way we worked on the implementation was basically by building on the user input one
module at a time and by ensuring that the new modules communicate with the previous ones
properly. If we had decided on specific data structures at the beginning of implementation, we
could have been able to work on different modules simultaneously. However, since we were
working with APIs we haven’t worked with before, it was difficult to anticipate how our data
would look.

