SAT N Al

Henry Kautz
University of Rochester

Outline

* Ancient History: Planning as Satisfiability

* The Future: Markov Logic

Part |

* Ancient History: Planning as Satisfiability

— Planning
— SAT encoding

— 3 good ideas:
 Parallel actions
* Plan graph pruning
 Transition based encoding

Planning

* Find a plan that transform an initial state to
a goal state

— What is a state?
— What is a plan?

Classic Planning

* Find a sequence of actions that transform
an initial state to a goal state

— State = complete truth assignment to a set of
time-dependent propositions (fluents)

— Action = a partial function State — State
* Fully observed, deterministic

STRIPS

« Set of possible actions specified by parameterized
operator schemas and (typed) constants

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

constants: {NY, Boston, Seattle}

* Fluents not mentioned in effect are unchanged by
action

STRIPS

* Introduced for Shakey the robot (1969)

— Generate plan
— Start executing

— Sense state after
each action, verifying ﬂ q%
it is as expected

— If not, stop and
replan

« Still a widely-used
method for robot control (vs. POMDP etc)

B
e
RO

T

STRIPS

« Complexity
— Unbounded length: PSPACE-complete
— Bounded length: NP-complete

 Algorithms
— Backward chaining on subgoals (1969)
— Search in space of partially-order plans (1987)
— Planning as satisfiability (1992, 1996)
— Graphplan (1996)
— Forward- chaining heuristic search (1999)

plan

SATPLAN

STRIPS

problem ——~

description

mapping

-

encoder

A

interpreter |<

cnf
\ formula
length
k\
Y
satisfying SAT
model engine

Clause Schemas

Vx e {A,B,C}P(x)
represents
P(A)AP(B)AP(C)

Ix € {A,B,C}P(x)
represents
P(A)v P(B)v P(C)

SAT Encoding

Time is sequential and discrete
— Represented by integers
— Actions occur instantaneously at a time point
— Each fluent is true or false at each time point

If an action occurs at time i, then its preconditions must
hold at time |

If an action occurs at time i, then its effects must hold at
time i+1

If a fluent changes its truth value from time i to time i+1,

one of the actions with the new value as an effect must
have occurred at time |

Two actions cannot occur at the same time

The initial state holds at time 0, and the goals hold at a
given final state K

SAT Encoding

 If an action occurs at time i, then its preconditions must
hold at time |

operator: Fly(p,a,b)
precondition: At(p,a), Fueled(p)

Vi& Times effect: At(p,b), ~At(p,a), ~Fueled
(P)
Vp € Planes Constant types: Times, Planes, Cities
Va € Cities
Vb € Cities

fly(p,a,b,1) D (at(p,a,1)) A fuel(p,1))

SAT Encoding

* If an action occurs at time i, then its effects must hold at

time i+1
operator: Fly(p,a,b)
Yi&E Times precondition: At(p,a), Fueled(p)
effect: At(p,b), ~At(p,a), ~Fueled
Vp € Planes (D)
VCl e Cities Constant types: Times, Planes, Cities
Vb € Cities

fly(p,a,b,i) D (at(p.b,i+1)) A -at(p,a,i+1) A ~fuel(p,i+1))

SAT Encoding

 If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must

have Occurred at t|me | operator: Fly(p,a,b)
« Change from false to true precondition: At(p,a), Fueled(p)
effect: At(p,b), ~At(p,a), ~Fueled
(p)
YiE Times Constant types: Times, Planes, Cities
Vp € Planes
Vb € Cities

(—at(p,b,1) Aat(p,b,i+1)) O
da € Cities . fly(p,a,b,1)

SAT Encoding

 If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must

have Occurred at t|me | operator: Fly(p,a,b)
« Change from true to false: precondition: At(p,a), Fueled(p)
effect: At(p,b), ~At(p,a), ~Fueled
(P)
Vi& Times Constant types: Times, Planes, Cities
Vp € Planes
Ya € Cities

(at(p,a,1) A —at(p,a,it1)) O
b € Cities . fly(p,a,b,1)

Action Mutual Exclusion

« Two actions cannot occur at the same time

operator: Fly(p,a,b)
precondition: At(p,a), Fueled(p)
Vi &€ Times effect: At(p,b), ~At(p,a), ~Fueled

Vpl, p2 € Planes ®)

Constant types: Times, Planes, Cities
Ya,b,c,d € Cities

-fly(pl,a,b,1) v ~fly(p2,c,d,1)

Result

« 1992: can find plans with 5 actions
— Typical for planners at that time...

* 1996: finds plans with 60+ actions

* What changed?
— Better SAT solvers

— Two good ideas:
 Parallel actions
* Plan graph pruning

Parallel Actions

* Allow multiple actions to occur at the same
time step if they are non-interfering:

— Neither negates a precondition or effect of the
other

« Can greatly reduce solution horizon in
many domains

Vi E Times Vi€ Times
Vpl, p2 € Planes —> Vp € Planes
Ya,b,c,d € Cities Ya,b,c,d € Cities

~fly(pl,a,b,i) v ~fly(p2.c.d,i) ~1ly(p,a,b,1) v ~1ly(p.c,d,1)

Graph Plan

» Graphplan (Blum & Furst 1996) introduced a
new planning algorithm:
— Instantiate a “plan graph” in a forward direction

* Nodes: ground facts and actions
 Links: supports and mutually-exclusive

— Each level of the graph contains all the reachable
propositions at that time point
« Set of propositions, not a set of states!

— Seach for a subset of the graph that
« Supports all the goal propositions
« Contains no mutually-exclusive propositions

Initial State

facts actions facts actions

action a: pre p; effect ~p, g

action b: pre p; effect p

action c: pre p, q; effect r

Growing Next Level

facts actions facts actions

PO A1 (2}
(P2)

action a: pre p; effect ~p, g

action b: pre p; effect p

action c: pre p, q; effect r

Propagating Mutual Exclusion

facts actions facts actions

PO

action a: pre p; effect ~p, g
action b: pre p; effect p

action c: pre p, q; effect r

Growing Next Level

facts actions facts actions

PO

action a: pre p; effect ~p, g

action b: pre p; effect p

action c: pre p, q; effect r

Plan Graph Pruning

 The SATPLAN encoding (with parallel
actions) can be directly created from the
plan graph

* Prunes many unnecessary propositions
and clauses

* “Propagated mutexes” may or may be
iIncluded in the translation
— Logically redundant
— May help or hinder particular SAT solvers

Translation to SAT

facts actions facts actions

Actions imply &

preconditions and effects

al — p0 @
al — g2
al = —q2

Facts imply (disjunction of) supporting actions
g2 —al
p2— bl

Mutual exclusions

—alv-bl

Blast From the Past

Performance

T
|

« SATPLAN and variants won optimal

deterministic STRIPS tracks of International
Planning Competition through 2006

— 10 year run — steady performance improvements
due to SAT solvers

« 2008: Change in rules: optimality defined as
function of action and resource costs, not

parallel time horizon
« Opportunity for SMT (see Hoffmann et al 2007)

Transition-Based Encodings

» Surprisingly few new ideas for encodings

* One good one: transition-based encodings
(Huang, Chan, Zhang 2010)

— Based on a double-reformulation of STRIPS:

— Represent states in terms of multi-valued
variables (SAS+)

— Encode transitions in the state variables as
the SAT propositions

" 29 / 22

SAS+ Representation

___ loc2 .
< =1y
Strips
AT pkg locl pkg:loc1->truck
pkg:truck—>loc1
AT pkg loc2 pkg:truck>loc2
pkg:loc2->truck
IN pkg truck
V(truek)
AT truck locl .E .@
AT truck loc2

Transition: Change between values in a multi-valued variable

"
Comparison of STRIPS and SAS+

30/22

STRIPS SAS+
‘-?., a set of preconditions, A set of transitions
=} a set of add effects,
§ a set of delete effects
(LOAD pkg truck loc1)
11| Pre: |(attruck loc1),
% (at pkg loc1) pkg:(loc1->truck)
-% Del: | (at pkg loc1) truck: (loc1->loc1)
Add: | (in pkg truck)

Usually there are fewer transitions than actions

Hierarchical relationships between actions and transitions

" 31/22
Overview of New Encoding

..

SAT Instance:

Actions i % % < Facts and actions

...

. SAT Instance (Part 1):
 transitions

Transitions

. SAT Instance (Part 2):
. matching actions and

. transitions (multiple

. independent ones)

Actions

" 32/22
Clauses in New Encoding, Example

Time step 1 Time step 2 Time step 3,4,5,...

truck:loc2 ;truck:lod > truck:loc2 —_|
truck:loc1 truck:loc1 > truck:loc1 \

pkg: loc1 pkg: loc1 > pkg: loc1
pkg: truck—g %pkg truck= pkg truck \
» pkg: loc2 @— pkg: loc2

pkg: loc2

___f_l_r}d__r_l_l;a_tfzh{r}_g_s_____ N Y Ej' ______

——————————————————————————

——

Progression of transitions over time steps (blue one implies green ones)
Initial state and goal (Bold ones)

Matching actions and transitions

s L nh o~

Action mutual exclusions and transition mutual exclusions

33 /22
Clauses for Action-Transition Matching

- Action implies transitions:

Actions: x, —(a. Ab AC)
X, Y, £ v, = (b, Anc, And,)
Transitions: j> z, = (a,Ac, nd,))
a b.c d - Transition implies actions:
T a, —(x, Vv z)
x: {a, b, c} b —(x v y)
y: {b’ C d} c, =>(x, vy Vvz)
Z. {a, C, d} d —(y,vz)

- Action mutual exclusions:

X, ™= 7V YV, 7 72,2, 72 X,

These clauses repeat in each time step ¢.

" JEE 34122
Strips v.s. SAS+ Based Encodings

Strips SAS+
Q<)
o | 4 Actions and Facts Actions and Transitions
>
(0]
O Logics of actions across time O Logics of transitions across time steps,
steps, subject to initial state and subject to initial state and goal (O ((2T)Y))
goal (O((2*)N)) T is much smaller than A
Q
% O Logics of finding a matching action set for
> transitions, in each time step t (K)
N small independent matching problems
Exact Cover problem!Xap72]
Worst case state space size: Worst case state space size:
O((2%)N) O((27) "NK)

N, T, A: number of time steps, transitions and actions

" 35/ 22
Number of Solvable Instances versus Time Limits

120 |4
110 ¢
100 ;
90

New Encodmg ——

SatPlanO6
SatPlanO6 I_|.

10 600 1200 1800 2400 3000 3600

Running Time (seconds)

o 200
3 190 |
>

S 180 |
2170 ¢
S 160
g 150 |
£ 140 |
S 130 |4,
5

O

£

=

Z

Better performances in 10 domains out of 11 tested (from IPC3,4,5)

" 36 / 22
Detailed Results
SatPlan06 New Encoding

Instances 2::2; #Variables | #Clauses (Sl\i/T]Z) Time #Variables | #Clauses | Size
Airport40 22394 327,515 13,206,595 807 583.3 396,212 | 3,339.914 | 208
Driverslogl7 | 2164.8 61,915 2,752,787 183 544.1 74,680 812,312 56
Freecell4 364.3 17582 6,114,100 392 158.4 26,009 371,207 25
Openstack4 212.1 3,709 66,744 5 33.6 4,889 20,022 2
Pipesworld12 | 3147.3 30,078 13,562,157 854 543.7 43,528 634,873 44
TPP30 3589.7 97,155 7,431,062 462 | 1844.8 136,106 997,177 70
Trucks7 1076.0 21,745 396,581 27 245.7 35,065 255,020 18
Zenol4 728.4 26,201 6,632,923 421 58.7 17,459 315,719 18

" 37/ 22

Conclusions
m A new transition based encoding
Recent planning formulation SAS+

m Smaller size and faster problem solving

m New encoding can be used to improve other
SAT-based planning methods

P
P
P

anning wit
anning wit
anning wit

N uncertai nty [Castellini et al. 2003]
N prefe rences [Giunchiglia et al. 2007]

N numeric [Hoffmann et al. 2007]

Temporal planning [Huang et al. 2009]

End Part |

* Ancient History: Planning as Satisfiability

— Planning
— SAT encoding

— 3 good ideas:
 Parallel actions
* Plan graph pruning
 Transition based encoding

Part Il :

e The Future: Markov Logic
e From random fields to Max-SAT
e Finite first-order theories

e 3 good ideas:
Lazy inference
Query-based instantiation
Domain pruning

Slides borrowed freely
from Pedro Domingos

Take Away Messages :

e SAT technology is useful for probabilistic
reasoning in graphical models
e MLE (most like explanation) == MAXSAT
e Marginal inference == model counting

e Markov Logic is a formalism for graphical
models that makes the connection to logic
particular clear

e Potential application for SMT

Graphical Models :

e Compact (sparse) representation of a joint
probability distribution

e Leverages conditional independencies

e Graph + associated local numeric constraints
e Bayesian Network

e Directed graph

e Conditional probabilities of variable given parents
e Markov Network

e Undirected graph
e Un-normalized probabilities (potentials) over cliques

Markov Networks

e Undirected graphical models

“Asthma Cough

e Potential functions defined over cliques

P(x) =%[[cbc(xc)

Z=Z[[<I>c<xc>

Smoking | Cancer d(S,C)
False False 4.5
False True 4.5
True False 2.7
True True 4.5

Markov Networks

e Undirected graphical models °

. —

e Log-linear model:

|
P<x>=—exp(}jw,ﬁ<x))
7 .
[\

Weight of Feature i Feature i

f,(Smoking, Cancer) =
w, = 1.5

1 1f - Smoking v Cancer
0 otherwise

Markov Logic: Intuition :

e A logical KB is a set of hard constraints
on the set of possible worlds

e Let’ s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

e Give each formula a weight
(Higher weight = Stronger constraint)

P(world) « exp [2 weights of formulasit satisfie s)

Markov Logic: Definition :

e A Markov Logic Network (MLN) is a set of
pairs (F, w) where
e [is a formula in first-order logic
e W Is a real number
e Together with a set of constants,
it defines a Markov network with

e One node for each grounding of each predicate in
the MLN

e One feature for each grounding of each formula F
iIn the MLN, with the corresponding weight w

Example: Friends & Smokers

Smoking causes cancer.

Friends have similar smoking habits.

Example: Friends & Smokers

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes (x) < Smokes(y))

Example: Friends & Smokers

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes (x) < Smokes(y))

Example: Friends & Smokers

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes (x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes (x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

Cancer(B)

Example: Friends & Smokers

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes (x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A) Smokes(B) Friends(B,B)

Friends(B,A)

Cancer(B)

Example: Friends & Smokers 33
1.5 |Vx Smokes(x) = Cancer(x)
1.1 |Vx, y Friends(x,y) = (Smokes (x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A) @ Smokes(B)

Friends(B,A)

Friends(B,B)
Cancer(B)

Example: Friends & Smokers 43

1.5 |Vx Smokes(x) = Cancer(x)
1.1 |Vx, y Friends(x,y) = (Smokes (x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

Friends(A,B)
. Smokes(B) Friends(B,B)

Cancer(B)
Friends(B,A)

Friends(A,A)

Markov Logic Networks

e MLN is template for ground Markov nets
e Probability of a world x:

P(x) = % exp (E Win, (x))

l

Weight of formula i No. of true groundings of formula i in x

e Typed variables and constants greatly reduce

size of ground Markov net
e Functions, existential quantifiers, etc.
e Infinite and continuous domains

Relation to Statistical Models |

e Special cases:

Markov networks
Markov random fields
Bayesian networks
Log-linear models
Exponential models
Max. entropy models
Gibbs distributions
Boltzmann machines
Logistic regression
Hidden Markov models
Conditional random fields

e Obtained by making all
predicates zero-arity

e Markov logic allows
objects to be
iInterdependent
(non-i.i.d.)

Relation to First-Order Logic |:

e Infinite weights => First-order logic

e Satisfiable KB, positive weights =
Satisfying assignments = Modes of distribution

e Markov logic allows contradictions between
formulas

MAP/MPE Inference

e Problem: Find most likely state of world

given evidence

argmax P(y|x)

y

/

Query

Evidence

MAP/MPE Inference

e Problem: Find most likely state of world
given evidence

1
arg max — ex w.n, (X,
gmax — p(; 1, (y))

X

MAP/MPE Inference

e Problem: Find most likely state of world
given evidence

argmax » wn(x,y)
>

MAP/MPE Inference :

e Problem: Find most likely state of world
given evidence

argmax » wn.(x,y)
2

e This is just the weighted MaxSAT problem

e Use weighted SAT solver
(e.g., MaxWalkSAT [Kautz et al., 1997])

e Potentially faster than logical inference (!)

The MaxWalkSAT Algorithm see

for i — 1 to max-tries do
solution = random truth assignment
for j — 1 to max-flips do
if > weights(sat. clauses) > threshold then
return solution
¢ «— random unsatisfied clause
with probability p
flip a random variable in ¢
else
flip variable in ¢ that maximizes
> weights(sat. clauses)
return failure, best solution found

But ... Memory Explosion :

e Problem:
If there are n constants
and the highest clause arity is c,
the ground network requires O(n) gnemory

e Solution:
Exploit sparseness; ground clauses lazily

— LazySAT algorithm [Singla & Domingos, 2006]

e |dea: only true literals and unsat clauses need to
be kept in memory

Computing Probabilities :

e P(Formula|MLN,C) =7
e MCMC: Sample worlds, check formula holds
e P(Formula1|Formula2,MLN,C) = ?

e If Formula2 = Conjunction of ground atoms

e First construct min subset of network necessary to
answer query (generalization of Knowledge-
Based Model Construction)

e Then apply MCMC (or other)

Ground Network Construction |z

network — @
queue «— query nodes
repeat

node « front(queue)

remove node from queue

add node to network

if node not in evidence then

add neighbors(node) to queue

until queue = J

Challenge: Hard Constraints :

e Problem:
Deterministic dependencies break MCMC
Near-deterministic ones make it very slow

e Solutions:
e Combine MCMC and WalkSAT
— MC-SAT algorithm [Poon & Domingos, 2006]

e Compilation to arithmetic circuits [Lowd & Domingos 2011]
e Model counting [Sang & Kautz 2005]

Challenge: Quantifier Degree |:

e Problem:
Size of instantiated network increases
exponentially with quantifier nesting

e Solution:

e Often, most clauses are trivially satisfiable for
most entities

e Preprocess entire theory to infer smaller domains
for quantified variables

e Approach: local consistency (constraint
propagation) [Papai, Singla, Kautz 2011]

Example

I § j 3
VCelll,Cell2,Agentl,Agent?2. “'!-? ﬁ
talk(Agentl, Agent2) & I¢
location(Agentl,Celll) &
location(Agent2,Cell2) — near(Celll,Cell2)
VCelll,Cell2.
near(Celll,Cell2) — Celll = Cell2 v adjacent(Celll,Cell2)

e 1000 x 1000 grid = 1,000,000 cells

e Previous approach: graphical model is
quadratic in number of cells (1012 nodes)

e New approach: linear in number of cells

Detalls

benchmark domains

e Enforce generalized arc consistency using “hard
constraints

e Efficient implementation using database Join and
Project operators

e Reduces total inference time by factor of 2 to 8 on

Domain Time (in mins) Ground Tuples (in 1000’s)
Const. Propagation | Prob. Inference | Const. Propagation Prob. Inference
Stand. CPI | Stand. CPI Stand. CPI Stand. CPI
CTF 0 037 | 1536.6 | 5280 0| 5855 2107.8 | 1308.7
Cora 0 0.07 181.1 26.2 0| 1536 488 .2 814
Library 0 020 | 2864 | 230 0| 4627 366.2 459

“Constraint Propagation for Efficient

Inference in Markov Logic”, T. Papai, P.

Singla, & H. Kautz, CP 2011.

Alchemy :

Open-source software including:

e Full first-order logic syntax

e Generative & discriminative weight learning
e Structure learning

e \Weighted satisfiability and MCMC

e Programming language features

alchemy.cs.washington.edu

Capture the Flag Domain

= Rich but controlled domain of interactive
activities
o Very similar to strategic applications

" Rules
o Two teams, each has a territory

o A player can be captured when on the opponents’
territory

o A captured player cannot move until freed by a
teammate

o Game ends when a player captures the opponents’
flag

Game Video

Hard Rules for Capturing

H6. A player can only be captured by an enemy.

H7. A player can be captured only when standing on enemy
territory.

H9. A player transitions from an uncaptured state to a captured
state only via a capture event.

Vai,as,t : capturing(ay, as,t) = (enemies(ay, az)A
onEnemyTer(as,t) A —onEnemyTer(a,t)
A samePlace(a, as,t)) (H6, H7)

Va,t : (—isCaptured(a, t) A isCaptured(a,t + 1)) =
(Jay : capturing(ay, a,t)) (H9)

Soft Rules for Capturing

S4. If players a and b are enemies, a is on enemy territory, b
is not captured already, and they are snapped to the same
location, then a probably captures b.

S5. Capture events are generally rare, 1.e., there are typically
only a few captures within a game.

Vai,as,t : [(enemies(ay, az) A onEnemyTer(aq,t)A (S4)

—onEnemyTer(aq,t) A samePlace(aq, as, t)A
—isCaptured(as, t)) = capturing(aq, as,t)] - w,

Va,c,t : [capturing(a, ¢, t)] - wep (S5)

Results for Recognizing Captures

_| # GPS Readings | # Actual Captures | Baseline + States | 2-Step ML | Unified ML

Game 1 1% 412

]
Prec131on 0.006 0.065 1.000 1.000
Recall 1.000 1.000 1.000 1.000
0.012 0.122 1.000 1.000

Game 2 14,400

e
Prec1310n 0.006 0.011 1.000 1.000
Recall 0.500 0.500 0.833 1.000
0.013 0.022 0.909 1.000

(Game3 | 342} o | ! 0)

Precision 0.041 0.238 1.000 1.000
Recal] 0.833 0.833 0.833 0.833
0.079 0.317 0.909 0.909

Sadilek & Kautz AAAI 2010

End Part |l s

e The Future: Markov Logic
e From random fields to Max-SAT
e Finite first-order theories

e 3 good ideas:
Lazy inference
Query-based instantiation
Domain pruning

