
SAT ∩ AI

Henry Kautz
University of Rochester

Outline

•  Ancient History: Planning as Satisfiability

•  The Future: Markov Logic

Part I

•  Ancient History: Planning as Satisfiability
– Planning
– SAT encoding
– 3 good ideas:

•  Parallel actions
•  Plan graph pruning
•  Transition based encoding

Planning

•  Find a plan that transform an initial state to
a goal state
– What is a state?
– What is a plan?

Classic Planning

•  Find a sequence of actions that transform
an initial state to a goal state
– State = complete truth assignment to a set of

time-dependent propositions (fluents)
– Action = a partial function State → State

•  Fully observed, deterministic

STRIPS
•  Set of possible actions specified by parameterized

operator schemas and (typed) constants

operator: Fly(a,b)
precondition: At(a), Fueled
effect: At(b), ~At(a), ~Fueled

constants: {NY, Boston, Seattle}

•  Fluents not mentioned in effect are unchanged by
action

STRIPS

•  Introduced for Shakey the robot (1969)
– Generate plan
– Start executing
– Sense state after

each action, verifying
it is as expected

–  If not, stop and
replan

•  Still a widely-used
method for robot control (vs. POMDP etc)

STRIPS

•  Complexity
– Unbounded length: PSPACE-complete
– Bounded length: NP-complete

•  Algorithms
– Backward chaining on subgoals (1969)
– Search in space of partially-order plans (1987)
– Planning as satisfiability (1992, 1996)
– Graphplan (1996)
– Forward- chaining heuristic search (1999)

SATPLAN

cnf
formula

satisfying
model plan

mapping
length

STRIPS
problem

description

SAT
engine

encoder

interpreter

Clause Schemas

!x " {A,B,C}P(x)
represents
P(A)#P(B)#P(C)

$x " {A,B,C}P(x)
represents
P(A)%P(B)%P(C)

SAT Encoding
•  Time is sequential and discrete

–  Represented by integers
–  Actions occur instantaneously at a time point
–  Each fluent is true or false at each time point

•  If an action occurs at time i, then its preconditions must
hold at time i

•  If an action occurs at time i, then its effects must hold at
time i+1

•  If a fluent changes its truth value from time i to time i+1,
one of the actions with the new value as an effect must
have occurred at time i

•  Two actions cannot occur at the same time
•  The initial state holds at time 0, and the goals hold at a

given final state K

SAT Encoding
•  If an action occurs at time i, then its preconditions must

hold at time i

!i " Times
 !p " Planes
 !a"Cities
 !b"Cities
 fly(p,a,b,i)# (at(p,a,i))$fuel(p,i))

operator: Fly(p,a,b)
precondition: At(p,a), Fueled(p)

effect: At(p,b), ~At(p,a), ~Fueled
(p)

Constant types: Times, Planes, Cities

SAT Encoding
•  If an action occurs at time i, then its effects must hold at

time i+1

!i " Times
 !p " Planes
 !a"Cities
 !b"Cities
 fly(p,a,b,i)# (at(p,b,i+1))$¬at(p,a,i+1)$¬fuel(p,i+1))

operator: Fly(p,a,b)
precondition: At(p,a), Fueled(p)

effect: At(p,b), ~At(p,a), ~Fueled
(p)

Constant types: Times, Planes, Cities

SAT Encoding
•  If a fluent changes its truth value from time i to time i+1,

one of the actions with the new value as an effect must
have occurred at time i

•  Change from false to true

!i " Times
 !p " Planes
 !b"Cities
 (¬at(p,b,i)#at(p,b,i+1))$
 %a"Cities . fly(p,a,b,i)

operator: Fly(p,a,b)
precondition: At(p,a), Fueled(p)

effect: At(p,b), ~At(p,a), ~Fueled
(p)

Constant types: Times, Planes, Cities

SAT Encoding
•  If a fluent changes its truth value from time i to time i+1,

one of the actions with the new value as an effect must
have occurred at time i

•  Change from true to false:

!i " Times
 !p " Planes
 !a"Cities
 (at(p,a,i)#¬at(p,a,i+1))$
 %b"Cities . fly(p,a,b,i)

operator: Fly(p,a,b)
precondition: At(p,a), Fueled(p)

effect: At(p,b), ~At(p,a), ~Fueled
(p)

Constant types: Times, Planes, Cities

Action Mutual Exclusion
•  Two actions cannot occur at the same time

!i " Times
 !p1, p2" Planes
 !a,b,c,d "Cities
 ¬fly(p1,a,b,i)#¬fly(p2,c,d,i)

operator: Fly(p,a,b)
precondition: At(p,a), Fueled(p)

effect: At(p,b), ~At(p,a), ~Fueled
(p)

Constant types: Times, Planes, Cities

Result

•  1992: can find plans with 5 actions
– Typical for planners at that time...

•  1996: finds plans with 60+ actions
•  What changed?

– Better SAT solvers
– Two good ideas:

•  Parallel actions
•  Plan graph pruning

Parallel Actions
•  Allow multiple actions to occur at the same

time step if they are non-interfering:
– Neither negates a precondition or effect of the

other
•  Can greatly reduce solution horizon in

many domains

!i " Times
 !p1, p2" Planes
 !a,b,c,d "Cities
 ¬fly(p1,a,b,i)#¬fly(p2,c,d,i)

!i " Times
 !p " Planes
 !a,b,c,d "Cities
 ¬fly(p,a,b,i)#¬fly(p,c,d,i)

→

Graph Plan
•  Graphplan (Blum & Furst 1996) introduced a

new planning algorithm:
–  Instantiate a “plan graph” in a forward direction

•  Nodes: ground facts and actions
•  Links: supports and mutually-exclusive

– Each level of the graph contains all the reachable
propositions at that time point

•  Set of propositions, not a set of states!

– Seach for a subset of the graph that
•  Supports all the goal propositions
•  Contains no mutually-exclusive propositions

Initial State

P1

facts facts actions actions

action a: pre p; effect ~p, q

action b: pre p; effect p

action c: pre p, q; effect r

Growing Next Level

P0 A1

B1

P2

facts facts actions actions

Q2

action a: pre p; effect ~p, q

action b: pre p; effect p

action c: pre p, q; effect r

Propagating Mutual Exclusion

P0 A1

B1

P2

facts facts actions actions

Q2

action a: pre p; effect ~p, q

action b: pre p; effect p

action c: pre p, q; effect r

Growing Next Level

P0 A1

B1

P2

facts facts actions actions

Q2

A3

B1
action a: pre p; effect ~p, q

action b: pre p; effect p

action c: pre p, q; effect r

Plan Graph Pruning

•  The SATPLAN encoding (with parallel
actions) can be directly created from the
plan graph

•  Prunes many unnecessary propositions
and clauses

•  “Propagated mutexes” may or may be
included in the translation
– Logically redundant
– May help or hinder particular SAT solvers

Translation to SAT

P0 A1

B1

P2

facts facts actions actions

Q2

A3

B1

Actions imply
preconditions and effects
a1! p0
a1! q2
a1!¬q2
Facts imply (disjunction of) supporting actions
q2! a1
p2! b1
Mutual exclusions
¬a1"¬b1

Blast From the Past

Performance

•  SATPLAN and variants won optimal
deterministic STRIPS tracks of International
Planning Competition through 2006
–  10 year run – steady performance improvements

due to SAT solvers
•  2008: Change in rules: optimality defined as

function of action and resource costs, not
parallel time horizon

•  Opportunity for SMT (see Hoffmann et al 2007)

0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45

se
c.

task nr.

BFHSP
TP4
cpt

hsps_a
optiplan
satplan
semsyn

Transition-Based Encodings

•  Surprisingly few new ideas for encodings
•  One good one: transition-based encodings

(Huang, Chan, Zhang 2010)
– Based on a double-reformulation of STRIPS:
– Represent states in terms of multi-valued

variables (SAS+)
– Encode transitions in the state variables as

the SAT propositions

29 / 22

SAS+ Representation
loc1 loc2

in truck

at loc1 at loc2

V(pkg)

at loc1 at loc2

V(truck)

 AT pkg loc1

 AT pkg loc2

 IN pkg truck

 AT truck loc1

 AT truck loc2

Strips SAS+

Transition: Change between values in a multi-valued variable

pkg:loc1truck

pkg:truckloc1

pkg:truckloc2

pkg:loc2truck

Comparison of STRIPS and SAS+

STRIPS SAS+

D
efinition

a set of preconditions,
a set of add effects,

a set of delete effects

A set of transitions

E
xam

ple

(LOAD pkg truck loc1)
Pre:

(at truck loc1),
(at pkg loc1)

pkg:(loc1truck)
truck: (loc1loc1) Del: (at pkg loc1)

Add: (in pkg truck)

30 / 22

Usually there are fewer transitions than actions

Hierarchical relationships between actions and transitions

Overview of New Encoding

…
…
…
…

SAT Instance (Part 1):
transitions

SAT Instance (Part 2):
matching actions and
transitions (multiple
independent ones) … … …

31 / 22

Transitions

Actions

t = 1 t =2 t =3

SAT Instance:
Facts and actions

Actions

Planning graph

… … …

t = 1 t =2 t =3, 4, … Strips Based Encoding

SAS+ Based New Encoding

Clauses in New Encoding, Example

truck:loc2

Time step 1 Time step 2

…
…
…
…
…

Time step 3,4,5,…

pkg: loc1

truck:loc1 truck:loc1

truck:loc2

truck:loc1

truck:loc2

pkg: loc1
pkg: truck
pkg: loc2

pkg: loc1
pkg: truck
pkg: loc2

Find matchings

set of actions set of actions … …

pkg: truck
pkg: loc2

1.  Progression of transitions over time steps (blue one implies green ones)

2.  Initial state and goal (Bold ones)

3.  Matching actions and transitions

4.  Action mutual exclusions and transition mutual exclusions

32 / 22

Clauses for Action-Transition Matching

Actions:
 x, y, z
Transitions:
 a, b, c, d
x: {a, b, c}
y: {b, c, d}
z: {a, c, d}

•  Action implies transitions:

)(
)(
)(

tttt

tttt

tttt

dcaz
dcby
cbax

∧∧→

∧∧→

∧∧→

)(
)(

)(
)(

ttt

tttt

ttt

ttt

zyd
zyxc

yxb
zxa

∨→

∨∨→

∨→

∨→
•  Transition implies actions:

•  Action mutual exclusions:
 tttttt xzzyyx ¬→¬→¬→ ;;

33 / 22

These clauses repeat in each time step t.

Strips v.s. SAS+ Based Encodings

Strips SAS+

Variables

  Actions and Facts

  Actions and Transitions

C
lauses

  Logics of actions across time
steps, subject to initial state and
goal (O((2A)N))

  Logics of transitions across time steps,
subject to initial state and goal (O((2T)N))
 T is much smaller than A

  Logics of finding a matching action set for
transitions, in each time step t (K)
 N small independent matching problems
 Exact Cover problem[Karp72]

Worst case state space size:
O((2A)N)

Worst case state space size:
O((2T)NNK)

34 / 22

N, T, A: number of time steps, transitions and actions

Number of Solvable Instances versus Time Limits
35 / 22

Better performances in 10 domains out of 11 tested (from IPC3,4,5)

 Detailed Results
SatPlan06 New Encoding

Instances
Time
(sec) #Variables #Clauses Size

(MB) Time #Variables #Clauses Size

Airport40 2239.4 327,515 13,206,595 807 583.3 396,212 3,339,914 208

Driverslog17 2164.8 61,915 2,752,787 183 544.1 74,680 812,312 56

Freecell4 364.3 17582 6,114,100 392 158.4 26,009 371,207 25

Openstack4 212.1 3,709 66,744 5 33.6 4,889 20,022 2

Pipesworld12 3147.3 30,078 13,562,157 854 543.7 43,528 634,873 44

TPP30 3589.7 97,155 7,431,062 462 1844.8 136,106 997,177 70

Trucks7 1076.0 21,745 396,581 27 245.7 35,065 255,020 18

Zeno14 728.4 26,201 6,632,923 421 58.7 17,459 315,719 18

36 / 22

Conclusions
 A new transition based encoding

 Recent planning formulation SAS+
 Smaller size and faster problem solving
 New encoding can be used to improve other

SAT-based planning methods
 Planning with uncertainty [Castellini et al. 2003]

 Planning with preferences [Giunchiglia et al. 2007]

 Planning with numeric [Hoffmann et al. 2007]

 Temporal planning [Huang et al. 2009]

37 / 22

End Part I

•  Ancient History: Planning as Satisfiability
– Planning
– SAT encoding
– 3 good ideas:

•  Parallel actions
•  Plan graph pruning
•  Transition based encoding

Part II

  The Future: Markov Logic
  From random fields to Max-SAT
  Finite first-order theories
  3 good ideas:

  Lazy inference
  Query-based instantiation
  Domain pruning

Slides borrowed freely
from Pedro Domingos

Take Away Messages

  SAT technology is useful for probabilistic
reasoning in graphical models
  MLE (most like explanation) == MAXSAT
  Marginal inference == model counting

  Markov Logic is a formalism for graphical
models that makes the connection to logic
particular clear

  Potential application for SMT

Graphical Models
  Compact (sparse) representation of a joint

probability distribution
  Leverages conditional independencies
  Graph + associated local numeric constraints

  Bayesian Network
  Directed graph
  Conditional probabilities of variable given parents

  Markov Network
  Undirected graph
  Un-normalized probabilities (potentials) over cliques

Markov Networks
  Undirected graphical models

Cancer

Cough Asthma

Smoking

  Potential functions defined over cliques
Smoking Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 2.7

True True 4.5

∏Φ=
c

cc xZ
xP)(1)(

∑∏Φ=
x c

cc xZ)(

Markov Networks
  Undirected graphical models

  Log-linear model:

Weight of Feature i Feature i

⎩
⎨
⎧ ∨¬

=
otherwise0

CancerSmokingif1
)CancerSmoking,(1f

5.11 =w

Cancer

Cough Asthma

Smoking

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

i
ii xfw

Z
xP)(exp1)(

Markov Logic: Intuition

  A logical KB is a set of hard constraints
on the set of possible worlds

  Let’s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

  Give each formula a weight
(Higher weight ⇒ Stronger constraint)

()∑∝ satisfiesit formulas of weightsexpP(world)

Markov Logic: Definition
  A Markov Logic Network (MLN) is a set of

pairs (F, w) where
  F is a formula in first-order logic
  w is a real number

  Together with a set of constants,
it defines a Markov network with
  One node for each grounding of each predicate in

the MLN
  One feature for each grounding of each formula F

in the MLN, with the corresponding weight w

Example: Friends & Smokers

habits. smoking similar have Friends
cancer. causes Smoking

Example: Friends & Smokers

())()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

Example: Friends & Smokers

())()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Example: Friends & Smokers

())()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

())()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

())()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

())()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

())()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Markov Logic Networks
  MLN is template for ground Markov nets
  Probability of a world x:

  Typed variables and constants greatly reduce

size of ground Markov net
  Functions, existential quantifiers, etc.
  Infinite and continuous domains

Weight of formula i No. of true groundings of formula i in x

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

i
ii xnw

Z
xP)(exp1)(

Relation to Statistical Models
  Special cases:

  Markov networks
  Markov random fields
  Bayesian networks
  Log-linear models
  Exponential models
  Max. entropy models
  Gibbs distributions
  Boltzmann machines
  Logistic regression
  Hidden Markov models
  Conditional random fields

  Obtained by making all
predicates zero-arity

  Markov logic allows

objects to be
interdependent
(non-i.i.d.)

Relation to First-Order Logic

  Infinite weights ⇒ First-order logic
  Satisfiable KB, positive weights ⇒

Satisfying assignments = Modes of distribution
  Markov logic allows contradictions between

formulas

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

)|(maxarg xyP
y

Query Evidence

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

⎟
⎠

⎞
⎜
⎝

⎛
∑
i

ii
xy

yxnw
Z

),(exp1maxarg

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

∑
i

ii
y

yxnw),(maxarg

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

  This is just the weighted MaxSAT problem
  Use weighted SAT solver

(e.g., MaxWalkSAT [Kautz et al., 1997])
  Potentially faster than logical inference (!)

∑
i

ii
y

yxnw),(maxarg

The MaxWalkSAT Algorithm

for i ← 1 to max-tries do
 solution = random truth assignment
 for j ← 1 to max-flips do
 if ∑ weights(sat. clauses) > threshold then
 return solution
 c ← random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes
 ∑ weights(sat. clauses)
return failure, best solution found

But … Memory Explosion
  Problem:

If there are n constants
and the highest clause arity is c,
the ground network requires O(n) memory

  Solution:
Exploit sparseness; ground clauses lazily
→ LazySAT algorithm [Singla & Domingos, 2006]
  Idea: only true literals and unsat clauses need to

be kept in memory

c

Computing Probabilities

  P(Formula|MLN,C) = ?
  MCMC: Sample worlds, check formula holds
  P(Formula1|Formula2,MLN,C) = ?
  If Formula2 = Conjunction of ground atoms

  First construct min subset of network necessary to
answer query (generalization of Knowledge-
Based Model Construction)

  Then apply MCMC (or other)

Ground Network Construction

network ← Ø
queue ← query nodes
repeat
 node ← front(queue)
 remove node from queue
 add node to network
 if node not in evidence then
 add neighbors(node) to queue
until queue = Ø

Challenge: Hard Constraints

  Problem:
Deterministic dependencies break MCMC
Near-deterministic ones make it very slow

  Solutions:
  Combine MCMC and WalkSAT
→ MC-SAT algorithm [Poon & Domingos, 2006]

  Compilation to arithmetic circuits [Lowd & Domingos 2011]

  Model counting [Sang & Kautz 2005]

Challenge: Quantifier Degree
  Problem:

Size of instantiated network increases
exponentially with quantifier nesting

  Solution:
  Often, most clauses are trivially satisfiable for

most entities
  Preprocess entire theory to infer smaller domains

for quantified variables
  Approach: local consistency (constraint

propagation) [Papai, Singla, Kautz 2011]

Example

  1000 x 1000 grid = 1,000,000 cells
  Previous approach: graphical model is

quadratic in number of cells (1012 nodes)
  New approach: linear in number of cells

!!

!"#$$%&"#$$'&()#*+%&()#*+',
!!!!!!!!"#$%-()#*+%&()#*+'./
!!!!!!!!$&'#"(&)-()#*+%&"#$$%./
!!!!!!!!$&'#"(&)-()#*+'&"#$$'.")*#+-"#$$%&"#$$'.
!"#$$%&"#$$',
!!!!!!!!)*#+-"#$$%&"#$$'.""#$$%="#$$'##,-#'*)"-"#$$%&"#$$'.

Details
  Enforce generalized arc consistency using “hard”

constraints
  Efficient implementation using database Join and

Project operators
  Reduces total inference time by factor of 2 to 8 on

benchmark domains

“Constraint Propagation for Efficient
Inference in Markov Logic”, T. Papai, P.
Singla, & H. Kautz, CP 2011.

Alchemy
Open-source software including:
  Full first-order logic syntax
  Generative & discriminative weight learning
  Structure learning
  Weighted satisfiability and MCMC
  Programming language features

alchemy.cs.washington.edu

Capture	
 the	
 Flag	
 Domain	

  Rich	
 but	
 controlled	
 domain	
 of	
 interac7ve	

ac7vi7es	

o  Very	
 similar	
 to	
 strategic	
 applica7ons	

  Rules	

o  Two	
 teams,	
 each	
 has	
 a	
 territory	

o  A	
 player	
 can	
 be	
 captured	
 when	
 on	
 the	
 opponents'	

territory	

o  A	
 captured	
 player	
 cannot	
 move	
 un7l	
 freed	
 by	
 a	

teammate	

o  Game	
 ends	
 when	
 a	
 player	
 captures	
 the	
 opponents'	

flag	

Game	
 Video	

Hard	
 Rules	
 for	
 Capturing	

SoE	
 Rules	
 for	
 Capturing	

Results	
 for	
 Recognizing	
 Captures	

Sadilek & Kautz AAAI 2010

End Part II

  The Future: Markov Logic
  From random fields to Max-SAT
  Finite first-order theories
  3 good ideas:

  Lazy inference
  Query-based instantiation
  Domain pruning

