
Proof Complexity &
Complexity of SAT Solvers

Sam Buss
Univ. of California, San Diego

SAT/SMT Summer Workshop
June 17, 2011

Disconnect between theory and practice

Concerning the SAT problem, and more generally proof search:

Theory: SAT is NP-complete and hence conjectured intractable.

Practice: SAT is “efficient in practice”. [Vijay Ganesh, Monday’s talk]

The resolution of these two viewpoints is that “Theory”
considers worst-case performance and instances of SAT that
arise from computationally intractable problems, whereas
“Practice” considers problems that arise in industrial
situations and are “Big and shallow”.

21st SAT/SMT Solver Summer School @ MIT

Part I: Theory (The bad news)

Let P be a (propositional) proof system. We would like to solve
the following problems:

- Provability problem: Given a formula Á, decide if it has a short
P-proof.

- Proof search: Given a formula Áthat has a short P-proof, find
a P-proof.

- Characterize the formulas that have reasonable length
(polynomial length) P-proofs.

- Compare the strength of P with other proof systems.

In many cases, the first two problems are NP-hard, and thus
conjectured to be infeasible to solve.

31st SAT/SMT Solver Summer School @ MIT

Some common proof systems

- DPLL with clause learning. (As is common for SAT solvers.)
- Resolution.
- Frege systems. (Textbook system, based on modus ponens.)
- Extended Frege systems/extended resolution. Frege plus the

ability to introduce new variables that abbreviate formulas.

Definition: The length of a proof is the number of symbols on
the proof.

Extended Frege proofs can equivalently be defined as Frege
proofs for which proof size is the number of steps in the proof.

41st SAT/SMT Solver Summer School @ MIT

Definition: [Cook-Reckhow’75] An abstract proof system is a
polynomial time function f mapping binary strings onto the
tautologies.

Any traditional proof system can be viewed as an abstract proof
systems by defining f(w) to equal the formula proved by the
proof w. In this way, one can form very strong proof systems,
even treating Peano arithmetic or ZF set theory as a
propositional proof system.

Theorem: [CR’75] There exists an (abstract) proof system in
which all tautologies have polynomial size proofs if and only if
NP=coNP.

This is “bad” news, since we conjecture NP≠coNP. Proof search
is then also infeasible since proof size is already infeasible large!
Worse, this applies (conjecturally) to any proof system.

51st SAT/SMT Solver Summer School @ MIT

“Cook’s Program” for proving NP≠coNP: Prove super-polynomial
lower bounds for stronger and stronger proof systems, until it
is established for all abstract proof systems.

So far achieved for:
- Truth tables
- Tree-like and regular resolution

- Resolution
- Bounded depth Frege systems, also with counting mod m

axioms for fixed m.
- Cutting planes (integer linear inequalities); via Craig interpolation

- Nullstellensatz systems (polynomials, over fields)
- Intuitionistic and modal logics.
- OBDD (ordered BDD) proof systems.
- Certain Lovász-Schrijver systems (quadratic polynomials)

61st SAT/SMT Solver Summer School @ MIT

“Cook’s Program” for proving NP≠coNP: Prove super-polynomial
lower bounds for stronger and stronger proof systems, until it
is established for all abstract proof systems.

So far achieved for:
- Truth tables
- Tree-like and regular resolution
- DPLL with clause learning
- Resolution
- Bounded depth Frege systems, also with counting mod m

axioms for fixed m.
- Cutting planes (integer linear inequalities); via Craig interpolation

- Nullstellensatz systems (polynomials, over fields)
- Intuitionistic and modal logics.
- OBDD (ordered BDD) proof systems.
- Certain Lovász-Schrijver systems (quadratic polynomials)

71st SAT/SMT Solver Summer School @ MIT

However, we do not have super-polynomial lower bounds on
proof lengths for the following systems.

Bounded depth Frege with parity gates; or with mod m gates for
any m>1; or with majority/threshold gates.

Frege systems
Extended Frege systems
Peano arithmetic, ZF set theory, etc.

1st SAT/SMT Solver Summer School @ MIT 8

Hardness of proof search

Theorem: [Alekhnovitch-Buss-Moran-Pitassi ’00] For almost all
natural proof systems (resolution, Frege, nullstellensatz, cut-
free, etc.), it is impossible to approximate shortest proof
length in polynomial to with a factor of unless
P=NP. (Where n is the length of a shortest proof.)

Definition: A proof system P is automatizable if there is a
procedure, which given a formula Á with a P-proof of length n
finds some P-proof in time polynomial in n.

Theorem [Bonet-Pitassi-Raz ’97] If Frege proofs are
automatizable, then factorization of Blum integers is in
polynomial time.

Theorem: [Alekhnovitch-Razborov ’01] If resolution is
automatizable, then the weak parameterized hierarch W[P}
collapses.

91st SAT/SMT Solver Summer School @ MIT

None of the implicands above are believed to be true.
Hence we have:

Moral (conjectural):
Even when short proofs exist, it can be infeasible to find them.

101st SAT/SMT Solver Summer School @ MIT

An independence result for NP and P/poly

Definition: The functional pigeonhole principle states
there is no 1-1, onto map from m objects to n<m objects.

The pigeonhole principles have been an important source of
examples for upper and lower bounds on proof complexity
(Resolution; Haken ’85; extended Frege systems; Cook ’75;
Frege systems; Buss ’87; and many more).

Theorem: [Razborov ‘04] requires resolution proofs of
size exponential in n1/3.

111st SAT/SMT Solver Summer School @ MIT

Corollary: [Razborov]. Resolution is unable to give polynomial
size proofs of tautologies expressing the principle that NP is
not in P/poly (i.e., that NP does not have polynomial size
circuits).

Proof idea: (Think of setting up a program correctness result as
an instance of SAT.) Let t>n3. Express the principle that SAT
has a circuits of size t as a set of clauses of size poly(t,2n).
Consider a resolution refutation of these clauses.

But, SAT has obvious circuits of size 2n : Resolution can not
disprove the exist of a bijection from 2n to t. Such a bijection
can convert the 2n -size circuit into a circuit of size t.

This (along with analogous, uniform results for fragments of
bounded arithmetic) is currently the best unconditional
formal non-provability result for P≠NP. (!)

121st SAT/SMT Solver Summer School @ MIT

“SAT is efficient in practice”, to the extent it holds, is true largely
to the success of DPLL with Clause Learning [GRASP,Chaff,…]
on industrial problems and combinatorial problems.

DPLL with Clause Learning depends on:
• Depth first search of solution space
• Efficient backtracking
• Literal selection heuristics
• Clause learning strategies
• Clause forgetting strategies (garbage collection)
• Restart strategies
• Execution optimizations

Part II: Practice (The good news?)

131st SAT/SMT Solver Summer School @ MIT

Good (?) news: For fixed k>0, our best time bounds for solving
satisfiability are based essentially on: DPLL without Clause
Learning, with random literal selection and restarts.

Theorem: [Hertli ‘ta; see also HMS ‘11, PPSZ ’05, …] There is
randomized algorithm for 3-SAT with expected runtime < 2εn,
where ε = 0.39 and n is the number of variables.

The proof is based on selecting decision literals at random, using
small derivations to check whether the literal value is forced
(in effect, using unit propagation to decide if consistent to set
a literal to a particular value). No backtracking, no clause
learning is used.

Challenge problem: Show that clause learning, etc., can yield a
better value for ε.

1st SAT/SMT Solver Summer School @ MIT 14

Clause Learning – very important for DPLL

Decision literal p ContradictionFirst UIP

Blue for top level Yellow for lower level literal

b

a

w
v

u

t

s

r

p

q

z

y

~x

x

Clauses: {~y,~z, x}, {~p,~a,r}, etc. (One per unit propagation.)
First UIP Learned Clause: {~a,~u,~s,~w,~v}.
Whole top level learned clause: {~p,~a,~u,~b,~w,~v}.
With First-UIP: Both p and s can be set false when backtracking.
New level of ~s is set to max. level of u,v,w.

First UIP Cut

15

Example: Clause Learning for Pigeonhole Tautologies
(Injective/total):

Run times in SatDiego, version 1. Variable selection is by a
“clause-greedy” method. No restarts.
Clause learning provides dramatic improvement, but is
even much better suited for industrial, less combinatorially
structured problems, where it can often handle hundreds
of thousands of variables, or more.

161st SAT/SMT Solver Summer School @ MIT

What is the Logical strength of DPLL with Clause Learning?

[B-Hoffmann-Johannsen ‘08] extending [Beame-Kautz-Sabharwal ‘04, Van Gelder ‘05]

Definition: A w-resolution inference is of the form

A regular proof is one in which no single path uses the same
resolution variable twice.

Definition: An input proof is a tree-like proof in which every
inference has at least one hypothesis which is a leaf (usually
an initial clause, but also possibly a “lemma”).

Definition: An input clause of a proof is a clause derived by an
input sub-proof.

171st SAT/SMT Solver Summer School @ MIT

Instead of dag-like proofs, consider tree-like proofs with lemmas:
Lemmas must be derived first, and then can be used freely later

as initial clauses in the proof (to the right in the proof tree).
Definition: A WRTI-proof is a tree-like w-resolution proof in

which input clauses may be used as lemmas.

Theorem: General dag resolution proofs can be polynomially
simulated by WRTI proofs.

Theorem: Regular WRTI proofs are polynomially equivalent to
non-greedy DPLL proof search with clause learning (without
restarts).

This theorem holds for all standard clause learning (1st UIP, all
UIP, rel sat, first cut, etc.). The original Marques-Silva &
Sakallah clause learning is sufficient for the converse
simulation.

181st SAT/SMT Solver Summer School @ MIT

For DPLL with Clause Learning and Restarts:

It not hard to see that DPLL with clause learning and restarts, if
allowed non-greedy search, can simulate general resolution
[BKS].

Theorem: [Pipatsrisawat-Darwiche ‘10]. DPLL with clause
learning and restarts can polynomially simulate general
resolution – for appropriately choices of decision literals and
any commonly used (greedy) learning strategy.

[Atserias-Fichte-Thurley] Similar result for width k resolution.

General idea for proof: Use clause learning to successively learn
the clauses in a resolution proof, or at least learn enough so
as to be able simulate unit propagation based on these
clauses. Difficulty was to show that this works even in the
presence of greedy clause learning.

191st SAT/SMT Solver Summer School @ MIT

The power of DPLL with clause learning and without restarts
versus the power of resolution is unknown. The only known
simulations are based on variable extensions [BKS, BHPvG,
BHJ] and are unsatisfactory.

Open question:
• Does regular WRTI simulate general resolution?
• Does pool resolution [Van Gelder] simulate general

resolution?

Both systems are known to be stronger than regular resolution.
[Van Gelder ‘05, also Bonet-Buss ‘ip]

201st SAT/SMT Solver Summer School @ MIT

A Concluding Question

Meta-Question: How relevant are theoretical analyses for
understanding the power of DPLL and other practical
algorithms for satisfiability?

For instance: Does the theorem about polynomially simulating
resolution have anything to do with the source of the power
of restarts? Or, are restarts powerful for other reasons?

Other theories: - “High variance in search difficulty”
- “Backdoor sets”
- “Clearing the search space”
- “Shake the apple tree (low-hanging fruit)”

211st SAT/SMT Solver Summer School @ MIT

Thank you!

Related survey paper: Buss, “Towards NP-P via Proof Complexity and Search”, ta.

	Proof Complexity & �Complexity of SAT Solvers
	Disconnect between theory and practice
	Part I: Theory (The bad news)
	Some common proof systems
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Hardness of proof search
	Slide Number 10
	An independence result for NP and P/poly
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Clause Learning – very important for DPLL
	Slide Number 16
	What is the Logical strength of DPLL with Clause Learning?
	Slide Number 18
	For DPLL with Clause Learning and Restarts:
	Slide Number 20
	A Concluding Question
	Slide Number 22

