
SAT-based Model-Checking

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University

Linz, Austria

1st International SAT/SMT Summer School 2011

MIT, Cambridge, USA

Tuesday, June 14, 2011

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(i
n
 s

ec
o
n
d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10

?0I�&IVVI���A

Model Checking mc 2/91

[ClarkeEmerson’82] [QuielleSifakis’82] Turing Award 2007

• check algorithmically temporal / sequential properties

– systems are originally finite state e.g. circuits

– simple model: finite state automaton

• comparison of automata can be seen as model checking

– check that the output streams of two finite state systems “match”

– process algebra: simulation and bisimulation checking

• temporal logics as specification mechanism: LTL, CTL PSL, SVA

– safety, liveness and more general temporal operators, fairness

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Model Checking for Infinite Systems mc 3/91

• fixpoint algorithms with symbolic representations:

– software, cyber physical systems

– termination guaranteed if finite quotient structure exists

• key to success: abstract interpretation, e.g. predicate abstraction

• otherwise drop completeness

– simply run model checker for some time

– hope that model checking algorithm still converges

– trade completeness for scalability: bounded model checking

– actually in practice: complexity is an issue not decidability

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 4/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 5/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 6/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 7/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 8/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 9/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 10/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 11/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Traffic Light Controller (TLC) mc 12/91

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Safety mc 13/91

the two traffic lights should never show a green light at the same time

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

State Space mc 14/91

• state space is the set of assignments to variables of the system

– state space is finite if the range of variables is finite

– this notion works for inifinite state spaces as well

• TLC example:

– single assignment σ:{southnorth,eastwest}→ {green,yellow,red}

– set of assignments is isomorphic to {green,yellow,red}2

– eg state space is isomorphic to the crossproduct of variable ranges

• not all states are reachable: (green,green)

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Safety mc 15/91

• safety properties specify invariants of the system

• simple generic algorithm for checking safety properties:

1. iteratively generate all reachable states

2. check for violation of invariant for newly reached states

3. terminate if all newly reached states can be found

• compare with assertions

– used in run time checking: assert in C and VHDL

– contract checking: require, ensure, etc. in Eiffel

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Reachability mc 16/91

• set of states S, initial states I, transition relation T

• bad states B reachable from I via T?

• symbolic representation of T (ciruit, program, parallel product)

– avoid explicit matrix representations, because of the

– state space explosion problem, e.g. n-bit counter: |T |= O(n), |S|= O(2n)

– makes reachability PSPACE complete [Savitch’70]

• on-the-fly [Holzmann’81’] for protocols

– restrict search to reachable states

– simulate and hash reached concrete states

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Forward Fixpoint: Initial and Bad States mc 17/91

I B

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Forward Fixpoint: Step 1 mc 18/91

I B

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Forward Fixpoint: Step 2 mc 19/91

I B

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Forward Fixpoint: Step 3 mc 20/91

I B

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Forward Fixpoint: Bad State Reached mc 21/91

I B

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Forward Fixpoint: Termination, No Bad State Reachable mc 22/91

I B

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Forward Least Fixpoint Algorithm for Model Checking Safety mc 23/91

initial states I, transition relation T , bad states B

model-checkµ
forward (I, T, B)

SC = /0; SN = I;
while SC 6= SN do

if B∩SN 6= /0 then
return “found error trace to bad states”;

SC = SN;

SN = SC∪ Img(SC) ;
done;
return “no bad state reachable”;

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

TLC in SMV mc 24/91

MODULE trafficlight (enable)

VAR

 light : { green, yellow, red };

 back : boolean;

ASSIGN

 init (light) := red;

 next (light) :=

 case

 light = red & !enable : red;

 light = red & enable : yellow;

 light = yellow & back : red;

 light = yellow & !back : green;

 TRUE : yellow;

 esac;

 next (back) :=

 case

 light = red & enable : FALSE;

 light = green : TRUE;

 TRUE : back;

 esac;

MODULE main

VAR

 southnorth : trafficlight (TRUE);

 eastwest : trafficlight (TRUE);

SPEC

 AG !(southnorth.light = green & eastwest.light = green)

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Counterexample mc 25/91

*** This is NuSMV 2.5.2 (compiled on Mon May 30 11:42:23 UTC 2011)

*** Copyright (c) 2010, Fondazione Bruno Kessler

-- specification AG !(southnorth.light = green & eastwest.light = green) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 enablesouthnorth = FALSE

 enableeastwest = FALSE

 southnorth.light = red

 southnorth.back = FALSE

 eastwest.light = red

 eastwest.back = FALSE

-> State: 1.2 <-

 enablesouthnorth = TRUE

 enableeastwest = TRUE

-> State: 1.3 <-

 enablesouthnorth = FALSE

 enableeastwest = FALSE

 southnorth.light = yellow

 eastwest.light = yellow

-> State: 1.4 <-

 southnorth.light = green

 eastwest.light = green

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

SMV mc 26/91

• symbolic model checker implemented by Ken McMillan at CMU (early 90’ies)

• input language: finite models + temporal specification (CTL + fairness)

– hierarchical description, similar to hardward description language (HDL)

– integer and enumeration types, arithmetic operations

• original version relies on Binary Decision Diagrams (BDDs)

• NuSMV an up-to-date version from FBK, Trento

– also uses SAT/SMT technology

– additionally LTL

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Reachable States of One Traffic Light mc 27/91

0

1
red

1

1
red

1

0
red

1

0
yellow

0

0
red

1 0

1
yellowyellow

1

0

0
yellow

1

0

0

0
green green

states out

12 reachable

light
enable

back

of 12 states

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Bit-Blasting mc
http://fmv.jku.at/smvflatten

28/91

• compilation of finite model into pure propositional domain like HW synthesis

• first step is to flatten the hierarchy

– recursive instantiation of all submodules

– name and parameter substitution

– may increase program size exponentially

• second step is to encode variables with boolean variables

light light@1 light@0

green 7→ 0 0
yellow 7→ 0 1
red 7→ 1 0

logarithmic/binary encoding

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

MODULE main

VAR

 enablesouthnorth : boolean;

 enableeastwest : boolean;

 southnorth.light : {green, red, yellow};

 southnorth.back : boolean;

 eastwest.light : {green, red, yellow};

 eastwest.back : boolean;

ASSIGN

 init(southnorth.light) := red;

 next(southnorth.light) :=

 case

 southnorth.light = red & !enablesouthnorth : red;

 southnorth.light = red & enablesouthnorth : yellow;

 southnorth.light = yellow & southnorth.back : red;

 southnorth.light = yellow & !southnorth.back : green;

 1 : yellow;

 esac;

 next(southnorth.back) :=

 case

 southnorth.light = red & enablesouthnorth : 0;

 southnorth.light = green : 1;

 1 : southnorth.back;

 esac;

 init(eastwest.light) := red;

 next(eastwest.light) :=

 case

 eastwest.light = red & !enableeastwest : red;

 eastwest.light = red & enableeastwest : yellow;

 eastwest.light = yellow & eastwest.back : red;

 eastwest.light = yellow & !eastwest.back : green;

 1 : yellow;

 esac;

 next(eastwest.back) :=

 case

 eastwest.light = red & enableeastwest : 0;

 eastwest.light = green : 1;

 1 : eastwest.back;

 esac;

SPEC

 AG !(southnorth.light = green & eastwest.light = green)

Boolean Encoding Enumeration Types mc 30/91

• initial state predicate I represented as boolean formula

!eastwest.light@0 & eastwest.light@1

(equivalent to init(eastwest.light) := red)

• transition relation T represented as boolean formula

• encoding of atomic predicates p as boolean formulae

!eastwest.light@1 & !eastwest.light@0

(equivalent to eastwest.light != green)

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

MODULE main

VAR

 enablesouthnorth : boolean;

 enableeastwest : boolean;

 southnorth.light@1 : boolean; --TYPE-- green red yellow

 southnorth.light@0 : boolean;

 southnorth.back : boolean;

 eastwest.light@1 : boolean; --TYPE-- green red yellow

 eastwest.light@0 : boolean;

 eastwest.back : boolean;

DEFINE

 .MACRO1 := southnorth.light@1 | !southnorth.light@0;

 .MACRO0 := enablesouthnorth | .MACRO1;

 .MACRO2 := !southnorth.light@1 | southnorth.light@0;

 .MACRO3 := !southnorth.light@1 & !southnorth.light@0;

 .MACRO5 := eastwest.light@1 | !eastwest.light@0;

 .MACRO4 := enableeastwest | .MACRO5;

 .MACRO6 := !eastwest.light@1 | eastwest.light@0;

 .MACRO7 := !eastwest.light@1 & !eastwest.light@0;

ASSIGN

 init(southnorth.light@1) := FALSE;

 init(southnorth.light@0) := TRUE;

 next(southnorth.light@1) := .MACRO0 & .MACRO2;

 next(southnorth.light@0) := !.MACRO0 | southnorth.back & !.MACRO2;

 next(southnorth.back) := (!enablesouthnorth | .MACRO1) & (southnorth.back | .MACRO3);

 init(eastwest.light@1) := FALSE;

 init(eastwest.light@0) := TRUE;

 next(eastwest.light@1) := .MACRO4 & .MACRO6;

 next(eastwest.light@0) := !.MACRO4 | eastwest.back & !.MACRO6;

 next(eastwest.back) := (!enableeastwest | .MACRO5) & (eastwest.back | .MACRO7);

INVAR

 (!southnorth.light@1 | !southnorth.light@0) &

 (!eastwest.light@1 | !eastwest.light@0)

SPEC

 AG (!.MACRO3 | !.MACRO7)

AIG mc
http://fmv.jku.at/aiger

32/91

2

AIGER_NEXT_enablesouthnorth

4

AIGER_NEXT_enableeastwest

6

AIGER_NEXT_southnorth.back

8

AIGER_NEXT_eastwest.back

30

1614

32

34

10

36

38

26

40

18

42

44

46

22 20

48

50

12

52

54

56

24

58

60

62

64

66

68

7072

74

76

78

80

82

84

86 88

90

92

94

96 98

100

102

28

104

106

108

110

enab lesou thnor th enab l eea s twes t

southnor th . l ight@1 AIGER_NOT_southnorth.light@0

southnor th .back

eas twes t . l igh t@1AIGER_NOT_eastwest.light@0

eas twes t .back AIGER_INITIALIZED

0

AIGER_VALID

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Bounded Model Checking bmc 33/91

[BiereCimattiClarkeZhu-TACAS’99]

• uses SAT for model checking

– historically not the first symbolic model checking approach

– scales better than original BDD based techniques
[CouterBerthetMadre’89] [BurchClarkeMcMillanDillHwang’90] [McMillan’93]

• mostly incomplete in practice

– validity of a formula can often not be proven

– focus on counter example generation

– only counter example up to certain length (the bound k) are searched

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Unrolling of Forward Least Fixpoint Algorithm bmc 34/91

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T (s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T (s0,s1)∧B(s1)]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)→
I(s2)∨∃t0[I(t0)∧T (t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧B(s2)]

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Falsification Part of Fixpoint Algorithm bmc
[BiereCimattiClarkeZhu-TACAS’99]

35/91

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T (s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T (s0,s1)∧B(s1)]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)→
I(s2)∨∃t0[I(t0)∧T (t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧B(s2)]

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Bounded Model Checking Safety bmc
[BiereCimattiClarkeZhu-TACAS’99]

36/91

checking safety property Gp for a bound k as SAT problem:

∨ ∨ ∨ ∨

0s s1 l+1s sksl

BBBBB

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk) ∧
k∨

i=0
B(si)

check occurrence of B in the first k states with B≡ ¬p

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk) ∧ B(sk)

in incremental check only last state can be bad

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Checking Simple Saftey Properties with BMC bmc
[BiereCimattiClarkeZhu-TACAS’99]

37/91

I ≡ x̄ȳ

T ≡ (x→ x′)(y→ y′)

B ≡ xy x y

x y

x y

x y

I(s0) ∧ T (s0,s1) ∧ T (s1,s2) ∧ B(s2)

x̄0ȳ0 ∧ (x0→ x1)(y0→ y1) ∧ (x1→ x2)(y1→ y2) ∧ x2y2

satisfying assignment: (x0,y0) = (0,0), (x1,y1) = (1,0), (x2,y2) = (1,1)

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Liveness bmc 38/91

traffic lights showing red should eventually show green

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Liveness bmc 39/91

traffic lights showing red should eventually show green

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Liveness bmc 40/91

traffic lights showing red should eventually show green

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Bounded Model Checking Liveness bmc
[BiereCimattiClarkeZhu-TACAS’99]

41/91

generic counter example trace of length k for liveness Fp

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

think of ¬p = “no progress”

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk,sk+1) ∧
k∨

l=0
sl = sk+1 ∧

k∧
i=0
¬p(si)

for finite systems liveness can always
be reformulated as safety [BiereArthoSchuppan02]

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Time Frame Expansion in HW bmc 42/91

inputs
sequential
feedback
loop

states
outputs

sequential circuit

combinational
logic

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Time Frame Expansion in HW bmc 43/91

inputs

outputs
statesstates

break sequential loop

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Time Frame Expansion in HW bmc 44/91

inputs

outputs
states

inputs

outputs
statesstates

added 1st copy

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Time Frame Expansion in HW bmc 45/91

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 2nd copy

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Time Frame Expansion in HW bmc 46/91

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 3rd copy

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Time Frame Expansion in HW bmc 47/91

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 4th copy

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Time Frame Expansion in HW bmc 48/91

inputs

observed signals

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Bounded Model Checking Safety in HW bmc 49/91

inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

find inputs for which failed becomes true

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Bounded Model Checking Liveness in HW bmc 50/91

inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

sel

CMP

find inputs for which failed becomes true

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Fairness bmc 51/91

(GF f) ∧ (GFg)

path π = (s0,s1,s2, . . .) is fair iff all fairness constraints occur infinitely often on π

0s sls1 l+1s sk

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk,sk+1) ∧
k∨

l=0

sl = sk+1 ∧
k∨

j=l
f (s j) ∧

k∨
j=l

g(s j)



generalizes to tableau constructions for LTL

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Completeness in Bounded Model Checking bmc 52/91

• find bounds on the maximal length of counter examples [BiereCimattiClarkeZhu99]

– also called completeness threshold [KroeningStrichman03]

– exact bounds are hard to find⇒ approximations

• induction

– try to find inductive invariants (algorithmically and/or manually)

– algorithmic generalization of inductive invariants: k-induction

• use of SAT for quantifier elimination as with BDDs

– then model checking becomes fixpoint calculation

– interpolation as approximation of quantifier elimination

• relative inductive reasoning as in IC3 by Aaron Bradley

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Measuring Distances bmc 53/91

Distance: length of shortest path between two states

δ(s, t)≡min{n | ∃s0, . . . ,sn[s = s0, t = sn and T (si,si+1) for 0≤ i < n]}

Diameter: maximal distance between two connected states

d(T)≡max{δ(s, t) | T ∗(s, t)}

Radius: maximal distance of a reachable state from the initial states

r(T, I)≡max{δ(s, t) | T ∗(s, t) and I(s) and δ(s, t)≤ δ(s′, t) for all s′ with I(s′)}

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Diameter Example bmc 54/91

initial states
unreachable states

0 1

2 3

4

5 6 7 8

9

(forward) radius = 2 diameter = 4 backward radius = 4

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Completeness Threshold for Safety bmc 55/91

• number of steps needed to reach a bad state reached can be bounded by radius

– works both for forward radius and backward radius

– so we can use the minimum of the two

• radius completeness threshold for safety properties

– safety properties: max. k for doing bounded model checking bounded

– if no counter example of this length can be found the safety property holds

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

How to determine the radius? bmc 56/91

reformulation:

radius max. length r of an initialized path leading to a state t, such there is no other path
from an initial state to t with length less than r.

Thus radius r is the minimal number which makes the following formula valid:

∀s0, . . . ,sr+1[(I(s0)∧
r∧

i=0
T (si,si+1))→

∃ n≤ r [∃t0, . . . , tn[I(t0)∧
n−1∧
i=0

T (ti, ti+1)∧ tn = sr+1]]]

Quantified Boolean Formula (QBF)

to prove un/satisfiable of QBF is PSPACE complete

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Visualization of Reformulation bmc 57/91

0t

s1

t1

s
r

s +1r
s −1r

t −1r

t
r

s +1r

s0

initial states

(=)

∀

∃

we allow ti+1 to be identical to ti in the lower path

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Reoccurrence Radius/Diameter bmc 58/91

• we can not find the real radius / diameter with SAT efficiently

• over approximation idea:

– drop requirement that there is no shorter path

– enforce different (no reoccurring) states on single path instead

– also called simple paths

reoccurrence diameter:

length of the longest simple path

reoccurrence radius:

length of the longest initialized simple path
SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Encoding Reoccurrence Diameter Checking in SAT bmc 59/91

reoccurring radius is minimal r which makes the following formula valid:

I(s0)∧
r∧

i=0
T (si,si+1) →

∨
0≤i< j≤r+1

si = s j

which is valid iff the following formula is unsatisfiable:

I(s0)∧
r∧

i=0
T (si,si+1)∧

∧
0≤i< j≤r+1

si 6= s j

︸ ︷︷ ︸
simple path constraints

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Bad Example for Reoccurrence Radius bmc 60/91

1

0

2 n

radius 1, reoccurrence radius n

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

k-Induction induction
SheeranSinghStålmarck’00

61/91

for k = 0 . . .∞ check

1. k-induction base case:

I(s0)∧T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

2. k-induction induction step:

T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) unsatisfiable?

if base case satisfiable (= BMC), then bad state reachable

if inductive step unsatisfiable, then bad state unreachable

incomplete without simple path constraints

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 62/91

[EénSörensson’03]

I

B

k = 0 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 63/91

[EénSörensson’03]

B

k = 0 inductive step

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 64/91

[EénSörensson’03]

I

T

B

k = 1 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 65/91

[EénSörensson’03]

T

B

k = 1 inductive step

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 66/91

[EénSörensson’03]

I T

T B

k = 2 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 67/91

[EénSörensson’03]

T

T B

k = 2 inductive step

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 68/91

[EénSörensson’03]

I T

T T

B

k = 3 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 69/91

[EénSörensson’03]

T

T T

B

k = 3 inductive step

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 70/91

[EénSörensson’03]

I TT

T T B

k = 4 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 71/91

[EénSörensson’03]

TT

T T B

k = 4 inductive step

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 72/91

[EénSörensson’03]

I TT

T T T

B

k = 5 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 73/91

[EénSörensson’03]

TT

T T T

B

k = 5 inductive step

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 74/91

[EénSörensson’03]

I

B

TT

T T T

T

k = 6 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Incremental SAT Solving for BMC and k-Induction induction 75/91

[EénSörensson’03]

B

TT

T T T

T

k = 6 inductive step

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Simple Path Constraints induction 76/91

• bounded model checking: [BiereCimattiClarkeZhu’99]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk)∧
∨

0≤i≤k
B(si) satisfiable?

• reoccurrence diameter checking: [BiereCimattiClarkeZhu’99]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧
∧

1≤i< j≤k
si 6= s j unsatisfiable?

• k-induction base case: [SheeranSinghStålmarck’00]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

• k-induction induction step: [SheeranSinghStålmarck’00]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) ∧

∧
1≤i< j≤k

si 6= s j unsatisfiable?

• automatic abstraction refinement = lemmas on demand of simple path constraints
[EénSörensson’03]

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Special Cases induction 77/91

let G = ¬B denote the “good states”:

• 0-induction base case: I(s0)∧B(s0) satisfiable iff initial bad state exists

• 0-induction inductive step: B(s0) unsatisfiable iff ¬B propositional tautology

• 1-induction base: I(s0)∧T (s0,s1)∧B(s1) satisfiable iff bad state reachable in one step

• 1-induction inductive step: ¬B(s0)∧T (s0,s1)∧B(s1) unsatisfiable iff G inductive

assuming 0-induction base case was unsatisfiable and thus I |= G

where G = ¬B is called inductive iff 1. I |= G and 2. G∧T |= G′

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

SAT-based Deductive Model Checking induction 78/91

[BiereCimattiClarkeFujitaZhu’00]

task is to prove that p is an invariant Gp holds on the model

• guess a formula G stronger than p: G |= p 1st check

• show G inductive: I |= G, G∧T |= G′ 2nd, 3rd check

• all three checks can be formulated as UNSAT checks

• if one check fails refine G based on satisfying assignment

manual process and thus complete on finite state systems

there are also automatic abstraction/refinement versions of this approach
CEGAR [ClarkeGrumbergJhaLuVeith’00]

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Interpolant interpolation
[Craig’57]

79/91

Definition I interpolant of A and B iff

(1) A⇒ I (2) V (I) ⊆ G =V (A)∩V (B) (3) I∧B unsatisfiable

Note: A∧B unsatisfiable as a consequence.

Intuition: I abstraction of A over the common (global/interface) variables G of A and B
which still is inconsistent with B.

strongest interpolant ∃LA[A] with LA =V (A)\G

Let A and B formulas in CNF.
From a refutational resolution proof of A∧B generate interpolant I. next slide

Many applications, approx. quantifier elimination, gives fast model checking algorithm.

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Extracting Interpolants from Refutations interpolation 80/91

[McMillan’03, McMillan’05] + [Biere’09] (BMC chapter in Handbook)

Definition interpolating quadruple (A,B) c [f] is well-formed iff

(W1) V (c)⊆V (A)∪V (B) (W2) V (f)⊆ G∪ (V (c)∩V (A))⊆V (A)

Definition well-formed interpolating quadruple (A,B) c [f] is valid iff

(V1) A⇒ f (V2) B∧ f ⇒ c

Definitition proof rules for interpolating quadrupels

(R1) c ∈ A
(A,B) c [c]

(A,B) c
.
∨ l [f] (A,B) d

.
∨ l [g] |l| ∈V (B)

(A,B) c∨d [f ∧g]
(R3)

(R2) c ∈ B
(A,B) c [>]

(A,B) c
.
∨ l [f] (A,B) d

.
∨ l [g] |l| 6∈V (B)

(A,B) c∨d [f | l∨g| l]
(R4)

Theorem proof rules produce well-formed and valid interpolating quadruples
SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Interpolation-based Model Checking interpolation 81/91

A︷ ︸︸ ︷
I(s−1)∧T (s−1,s0) ∧

B︷ ︸︸ ︷
T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧

3∨
i=0
¬G(si)

interpolant P1(s0) let R1 ≡ I∨P1

R1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant R2(s0)⇐ R1(s−1)∧T (s−1,s0) let R2 ≡ R1∨P2

R2(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

...

Rn−1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant Pn(s0)

until Rn ≡ Rn−1 fix-point guaranteed for k = backward radius of ¬G

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

SAT-based Model Checking without Unrolling 82/91

[Bradley’11] + [EénMishchenkoBrayton’11]

I initial states

G good states

B bad states

F
0

F
1

F
2

GI G B

s

(1)

(2)

F0 ⊇ F1 ⊇ F2

sets of rel. ind. clauses

new key concept in [Bradley’11]:

clause c relative inductive w.r.t. F iff c∧F ∧T ⇒ c′ iff c∧F ∧T ∧ c̄′ unsatisfiable

(1) s is reachable from F0 then bad is reachable transitively

(2) otherwise exists c⊆ s̄ rel. ind. w.r.t. F0 can be added to F1 and maybe to F2

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Extending Sequence of Sets of Relative Inductive Clauses 83/91

as soon the last set is good, i.e. Fk⇒ G increase k

s

GI G BG

F
3

F
1

F
2

F
0

propagate all relative inductive clauses of last set to new set

if all can been propagated Fk is an inductive invariant stronger than G

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

More Precisely . . . 84/91

Let F0, . . . ,Fk be a sequence of sets of clauses.

monotonic iff Fi ⊇ Fi+1 for i = 0 . . .k−1

(relative) inductive iff Fi T ⇒ F ′i+1 for i = 0 . . .k−1

initialized iff I ≡ F0

good iff Fi⇒ G for i = 0 . . .k−1 last set might be bad if Fk∧B satisfiable

F is k-adequat iff all states s satisfying F are at least k steps away from B
[McMillan’03]

sequence monotonic and inductive ⇒ Fk− j j-adequat

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Sketch of the Algorithm 85/91

CHECK (s, i) {
while s̄∧Fi−1∧T ∧ s′ satisfiable {

if i = 1 throw SATISFIABLE
choose cube t with t |= s̄∧Fi−1∧T ∧ s′

CHECK (t, i−1)

}
choose clause c ⊆ s̄ with c∧Fi−1∧T ∧ c̄′ unsatisfiable
Fj := Fj ∪ {c} for all j = 1 . . . i and if possible for higher j

}

MAIN (s, i) {
F0 = I, F1 =>, k = 1 do not forget to check base cases first
forever {

CHECK (B,k)

k := k+1, Fk := all rel. ind. clauses of Fk−1 w.r.t. Fk−1

if Fk ⊆ Fk−1 throw UNSATISFIABLE
}

}

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

SAT-based Model Checking without Unrolling 86/91

• implemented in IC3 by Aaron Bradley

– as single engine model checker extremely successful in HWMCC’10
Hardware Model Checking Competition 2010

– based on rather out-dated SAT solver (ZChaff from 2004)

• independent implementations such as [EénMishchenkoBrayton IWLS’11]

– seem to be faster than BDDs, k-induction, interpolation

– might be much easier to lift to SMT-based model checking than interpolation

– opportunities for improvement: structural SAT/SMT solving

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Hardware Model Checking Competition 2011 87/91

• affiliated to FMCAD’11, Novemeber 2011, Austin

– we expect new benchmarks from industry

– and improved implementations

• checking multiple properties

• checking liveness properties

• new AIGER format

http://fmv.jku.at/hwmcc11

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Path based Semantics 88/91

given (symbol encoding of) an infinite path π = (s0,s1, . . .).

si |= p iff p(s0)

si |= X f iff si+1 |= f

si |= G f iff ∀ j ≤ i[s j |= f]

si |= F f iff ∃ j ≤ i[s j |= f]

How to define/encode bounded semantics for a lasso?

where lasso is a path π = (s0,s1, . . . ,sk) and sl = sk for one l

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Simple and Linear Translation of full LTL for BMC 89/91

[LatvalaBiereHeljankoJunttila FMCAD’04]

evaluate semantics on loop in two iterations

〈 〉= 1st iteration [] = 2nd iteration

:= i < k i = k

[p]i p(si) p(sk)

[¬p]i ¬p(si) ¬p(sk)

[X f]i [f]i+1
∨k

l=0 (T (sk,sl)∧ [f]l)

[G f]i [f]i∧ [G f]i+1
∨k

l=0 (T (sk,sl)∧〈G f 〉l)

[F f]i [f]i∨ [F f]i+1
∨k

l=0 (T (sk,sl)∧〈F f 〉l)

〈G f 〉i [f]i∧〈G f 〉i+1 [f]k
〈F f 〉i [f]i∨〈F f 〉i+1 [f]k

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Simple and Linear Translation for LTL cont. 90/91

• LTL semantics on single path the same as CTL semantics

– symbolically implement fixpoint calculation for (A)CTL

– fixpoint computation terminates after 2 iterations (not k)

– boolean fixpoint equations

• easy to implement and optimize, fast

– generalized to past time [LatvalaBiereHeljankoJunttila VMCAI’05]

– minimal counter examples for past time [SchuppanBiere TACAS’05]

– incremental (and complete) [LatvalaHeljankoJunttila CAV’05]

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

Why Not Just Try to Satisfy Boolean Equations directly? 91/91

recursive expansion Fp ≡ p∨XFp

p

checking Gp implemented as search for witness for Fp

Kripke structure: single state with self loop in which p does not hold

incorrect translation of Fp:

model constraints︷ ︸︸ ︷
I(s0)∧T (s0,s0) ∧ ([Fp]↔ p(s0)∨ [Fp])︸ ︷︷ ︸

translation

∧
assumption︷︸︸︷

[Fp]︸︷︷︸
x

since it is satisfiable by setting x = 1 though p(s0) = 0

(x fresh boolean variable introduced for [Fp])

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria

