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Model Checking mc 2/91

[ClarkeEmerson’82] [QuielleSifakis’82] Turing Award 2007

• check algorithmically temporal / sequential properties

– systems are originally finite state e.g. circuits

– simple model: finite state automaton

• comparison of automata can be seen as model checking

– check that the output streams of two finite state systems “match”

– process algebra: simulation and bisimulation checking

• temporal logics as specification mechanism: LTL, CTL PSL, SVA

– safety, liveness and more general temporal operators, fairness
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Model Checking for Infinite Systems mc 3/91

• fixpoint algorithms with symbolic representations:

– software, cyber physical systems

– termination guaranteed if finite quotient structure exists

• key to success: abstract interpretation, e.g. predicate abstraction

• otherwise drop completeness

– simply run model checker for some time

– hope that model checking algorithm still converges

– trade completeness for scalability: bounded model checking

– actually in practice: complexity is an issue not decidability
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Traffic Light Controller (TLC) mc 4/91
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Traffic Light Controller (TLC) mc 12/91
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Safety mc 13/91

the two traffic lights should never show a green light at the same time
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State Space mc 14/91

• state space is the set of assignments to variables of the system

– state space is finite if the range of variables is finite

– this notion works for inifinite state spaces as well

• TLC example:

– single assignment σ:{southnorth,eastwest}→ {green,yellow,red}

– set of assignments is isomorphic to {green,yellow,red}2

– eg state space is isomorphic to the crossproduct of variable ranges

• not all states are reachable: (green,green)
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Safety mc 15/91

• safety properties specify invariants of the system

• simple generic algorithm for checking safety properties:

1. iteratively generate all reachable states

2. check for violation of invariant for newly reached states

3. terminate if all newly reached states can be found

• compare with assertions

– used in run time checking: assert in C and VHDL

– contract checking: require, ensure, etc. in Eiffel
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Reachability mc 16/91

• set of states S, initial states I, transition relation T

• bad states B reachable from I via T?

• symbolic representation of T (ciruit, program, parallel product)

– avoid explicit matrix representations, because of the

– state space explosion problem, e.g. n-bit counter: |T |= O(n), |S|= O(2n)

– makes reachability PSPACE complete [Savitch’70]

• on-the-fly [Holzmann’81’] for protocols

– restrict search to reachable states

– simulate and hash reached concrete states
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Forward Fixpoint: Initial and Bad States mc 17/91

I B
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Forward Fixpoint: Step 1 mc 18/91

I B
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Forward Fixpoint: Step 2 mc 19/91

I B
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Forward Fixpoint: Step 3 mc 20/91

I B
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Forward Fixpoint: Bad State Reached mc 21/91

I B
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Forward Fixpoint: Termination, No Bad State Reachable mc 22/91

I B
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Forward Least Fixpoint Algorithm for Model Checking Safety mc 23/91

initial states I, transition relation T , bad states B

model-checkµ
forward (I, T, B)

SC = /0; SN = I;
while SC 6= SN do

if B∩SN 6= /0 then
return “found error trace to bad states”;

SC = SN;

SN = SC∪ Img(SC) ;
done;
return “no bad state reachable”;
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TLC in SMV mc 24/91

MODULE trafficlight (enable)

VAR

  light : { green, yellow, red };

  back : boolean;

ASSIGN

  init (light) := red;

  next (light) :=

    case

      light = red & !enable : red;

      light = red & enable : yellow;

      light = yellow & back : red;

      light = yellow & !back : green;

      TRUE : yellow;

    esac;

  next (back) :=

    case

      light = red & enable : FALSE;

      light = green : TRUE;

      TRUE : back;

    esac;

MODULE main

VAR

  southnorth : trafficlight (TRUE);

  eastwest : trafficlight (TRUE);

SPEC

  AG !(southnorth.light = green & eastwest.light = green)
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Counterexample mc 25/91

*** This is NuSMV 2.5.2 (compiled on Mon May 30 11:42:23 UTC 2011)

*** Copyright (c) 2010, Fondazione Bruno Kessler

-- specification AG !(southnorth.light = green & eastwest.light = green)  is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample 

Trace Type: Counterexample 

-> State: 1.1 <-

  enablesouthnorth = FALSE

  enableeastwest = FALSE

  southnorth.light = red

  southnorth.back = FALSE

  eastwest.light = red

  eastwest.back = FALSE

-> State: 1.2 <-

  enablesouthnorth = TRUE

  enableeastwest = TRUE

-> State: 1.3 <-

  enablesouthnorth = FALSE

  enableeastwest = FALSE

  southnorth.light = yellow

  eastwest.light = yellow

-> State: 1.4 <-

  southnorth.light = green

  eastwest.light = green
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SMV mc 26/91

• symbolic model checker implemented by Ken McMillan at CMU (early 90’ies)

• input language: finite models + temporal specification (CTL + fairness)

– hierarchical description, similar to hardward description language (HDL)

– integer and enumeration types, arithmetic operations

• original version relies on Binary Decision Diagrams (BDDs)

• NuSMV an up-to-date version from FBK, Trento

– also uses SAT/SMT technology

– additionally LTL
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Reachable States of One Traffic Light mc 27/91
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Bit-Blasting mc
http://fmv.jku.at/smvflatten

28/91

• compilation of finite model into pure propositional domain like HW synthesis

• first step is to flatten the hierarchy

– recursive instantiation of all submodules

– name and parameter substitution

– may increase program size exponentially

• second step is to encode variables with boolean variables

light light@1 light@0

green 7→ 0 0
yellow 7→ 0 1
red 7→ 1 0

logarithmic/binary encoding
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MODULE main

VAR

  enablesouthnorth : boolean;

  enableeastwest : boolean;

  southnorth.light : {green, red, yellow};

  southnorth.back : boolean;

  eastwest.light : {green, red, yellow};

  eastwest.back : boolean;

ASSIGN

  init(southnorth.light) := red;

  next(southnorth.light) :=

    case

      southnorth.light = red & !enablesouthnorth : red;

      southnorth.light = red & enablesouthnorth : yellow;

      southnorth.light = yellow & southnorth.back : red;

      southnorth.light = yellow & !southnorth.back : green;

      1 : yellow;

    esac;

  next(southnorth.back) :=

    case

      southnorth.light = red & enablesouthnorth : 0;

      southnorth.light = green : 1;

      1 : southnorth.back;

    esac;

  init(eastwest.light) := red;

  next(eastwest.light) :=

    case

      eastwest.light = red & !enableeastwest : red;

      eastwest.light = red & enableeastwest : yellow;

      eastwest.light = yellow & eastwest.back : red;

      eastwest.light = yellow & !eastwest.back : green;

      1 : yellow;

    esac;

  next(eastwest.back) :=

    case

      eastwest.light = red & enableeastwest : 0;

      eastwest.light = green : 1;

      1 : eastwest.back;

    esac;

SPEC

  AG !(southnorth.light = green & eastwest.light = green)



Boolean Encoding Enumeration Types mc 30/91

• initial state predicate I represented as boolean formula

!eastwest.light@0 & eastwest.light@1

(equivalent to init(eastwest.light) := red)

• transition relation T represented as boolean formula

• encoding of atomic predicates p as boolean formulae

!eastwest.light@1 & !eastwest.light@0

(equivalent to eastwest.light != green)
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MODULE main

VAR

  enablesouthnorth : boolean;

  enableeastwest : boolean;

  southnorth.light@1 : boolean; --TYPE-- green red yellow

  southnorth.light@0 : boolean;

  southnorth.back : boolean;

  eastwest.light@1 : boolean; --TYPE-- green red yellow

  eastwest.light@0 : boolean;

  eastwest.back : boolean;

DEFINE

  .MACRO1 := southnorth.light@1 | !southnorth.light@0;

  .MACRO0 := enablesouthnorth | .MACRO1;

  .MACRO2 := !southnorth.light@1 | southnorth.light@0;

  .MACRO3 := !southnorth.light@1 & !southnorth.light@0;

  .MACRO5 := eastwest.light@1 | !eastwest.light@0;

  .MACRO4 := enableeastwest | .MACRO5;

  .MACRO6 := !eastwest.light@1 | eastwest.light@0;

  .MACRO7 := !eastwest.light@1 & !eastwest.light@0;

ASSIGN

  init(southnorth.light@1) := FALSE;

  init(southnorth.light@0) := TRUE;

  next(southnorth.light@1) := .MACRO0 & .MACRO2;

  next(southnorth.light@0) := !.MACRO0 | southnorth.back & !.MACRO2;

  next(southnorth.back) := (!enablesouthnorth | .MACRO1) & (southnorth.back | .MACRO3);

  init(eastwest.light@1) := FALSE;

  init(eastwest.light@0) := TRUE;

  next(eastwest.light@1) := .MACRO4 & .MACRO6;

  next(eastwest.light@0) := !.MACRO4 | eastwest.back & !.MACRO6;

  next(eastwest.back) := (!enableeastwest | .MACRO5) & (eastwest.back | .MACRO7);

INVAR

  (!southnorth.light@1 | !southnorth.light@0) &

  (!eastwest.light@1 | !eastwest.light@0)

SPEC

  AG (!.MACRO3 | !.MACRO7)



AIG mc
http://fmv.jku.at/aiger

32/91
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Bounded Model Checking bmc 33/91

[BiereCimattiClarkeZhu-TACAS’99]

• uses SAT for model checking

– historically not the first symbolic model checking approach

– scales better than original BDD based techniques
[CouterBerthetMadre’89] [BurchClarkeMcMillanDillHwang’90] [McMillan’93]

• mostly incomplete in practice

– validity of a formula can often not be proven

– focus on counter example generation

– only counter example up to certain length (the bound k) are searched
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Unrolling of Forward Least Fixpoint Algorithm bmc 34/91

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T (s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T (s0,s1)∧B(s1)]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)→
I(s2)∨∃t0[I(t0)∧T (t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧B(s2)]
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Falsification Part of Fixpoint Algorithm bmc
[BiereCimattiClarkeZhu-TACAS’99]

35/91

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T (s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T (s0,s1)∧B(s1)]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)→
I(s2)∨∃t0[I(t0)∧T (t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧B(s2)]
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Bounded Model Checking Safety bmc
[BiereCimattiClarkeZhu-TACAS’99]

36/91

checking safety property Gp for a bound k as SAT problem:

∨ ∨ ∨ ∨

0s s1 l+1s sksl

BBBBB

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk) ∧
k∨

i=0
B(si)

check occurrence of B in the first k states with B≡ ¬p

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk) ∧ B(sk)

in incremental check only last state can be bad
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Checking Simple Saftey Properties with BMC bmc
[BiereCimattiClarkeZhu-TACAS’99]

37/91

I ≡ x̄ȳ

T ≡ (x→ x′)(y→ y′)

B ≡ xy x y

x y

x y

x y

I(s0) ∧ T (s0,s1) ∧ T (s1,s2) ∧ B(s2)

x̄0ȳ0 ∧ (x0→ x1)(y0→ y1) ∧ (x1→ x2)(y1→ y2) ∧ x2y2

satisfying assignment: (x0,y0) = (0,0), (x1,y1) = (1,0), (x2,y2) = (1,1)
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Liveness bmc 38/91

traffic lights showing red should eventually show green
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Liveness bmc 39/91

traffic lights showing red should eventually show green
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Liveness bmc 40/91

traffic lights showing red should eventually show green

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria



Bounded Model Checking Liveness bmc
[BiereCimattiClarkeZhu-TACAS’99]

41/91

generic counter example trace of length k for liveness Fp

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

think of ¬p = “no progress”

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk,sk+1) ∧
k∨

l=0
sl = sk+1 ∧

k∧
i=0
¬p(si)

for finite systems liveness can always
be reformulated as safety [BiereArthoSchuppan02]

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria



Time Frame Expansion in HW bmc 42/91

inputs
sequential
feedback
loop

states
outputs

sequential circuit

combinational
logic
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Time Frame Expansion in HW bmc 43/91

inputs

outputs
statesstates

break sequential loop
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Time Frame Expansion in HW bmc 44/91

inputs

outputs
states

inputs

outputs
statesstates

added 1st copy

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria



Time Frame Expansion in HW bmc 45/91

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 2nd copy
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Time Frame Expansion in HW bmc 46/91

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 3rd copy
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Time Frame Expansion in HW bmc 47/91

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 4th copy
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Time Frame Expansion in HW bmc 48/91

inputs

observed signals
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Bounded Model Checking Safety in HW bmc 49/91

inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

find inputs for which failed becomes true
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Bounded Model Checking Liveness in HW bmc 50/91

inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

sel

CMP

find inputs for which failed becomes true
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Fairness bmc 51/91

(GF f ) ∧ (GFg)

path π = (s0,s1,s2, . . .) is fair iff all fairness constraints occur infinitely often on π

0s sls1 l+1s sk

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk,sk+1) ∧
k∨

l=0

sl = sk+1 ∧
k∨

j=l
f (s j) ∧

k∨
j=l

g(s j)



generalizes to tableau constructions for LTL
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Completeness in Bounded Model Checking bmc 52/91

• find bounds on the maximal length of counter examples [BiereCimattiClarkeZhu99]

– also called completeness threshold [KroeningStrichman03]

– exact bounds are hard to find⇒ approximations

• induction

– try to find inductive invariants (algorithmically and/or manually)

– algorithmic generalization of inductive invariants: k-induction

• use of SAT for quantifier elimination as with BDDs

– then model checking becomes fixpoint calculation

– interpolation as approximation of quantifier elimination

• relative inductive reasoning as in IC3 by Aaron Bradley
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Measuring Distances bmc 53/91

Distance: length of shortest path between two states

δ(s, t)≡min{n | ∃s0, . . . ,sn[s = s0, t = sn and T (si,si+1) for 0≤ i < n]}

Diameter: maximal distance between two connected states

d(T )≡max{δ(s, t) | T ∗(s, t)}

Radius: maximal distance of a reachable state from the initial states

r(T, I)≡max{δ(s, t) | T ∗(s, t) and I(s) and δ(s, t)≤ δ(s′, t) for all s′ with I(s′)}
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Diameter Example bmc 54/91

initial states
unreachable states

0 1

2 3

4

5 6 7 8

9

(forward) radius = 2 diameter = 4 backward radius = 4
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Completeness Threshold for Safety bmc 55/91

• number of steps needed to reach a bad state reached can be bounded by radius

– works both for forward radius and backward radius

– so we can use the minimum of the two

• radius completeness threshold for safety properties

– safety properties: max. k for doing bounded model checking bounded

– if no counter example of this length can be found the safety property holds
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How to determine the radius? bmc 56/91

reformulation:

radius max. length r of an initialized path leading to a state t, such there is no other path
from an initial state to t with length less than r.

Thus radius r is the minimal number which makes the following formula valid:

∀s0, . . . ,sr+1[ (I(s0)∧
r∧

i=0
T (si,si+1))→

∃ n≤ r [ ∃t0, . . . , tn[ I(t0)∧
n−1∧
i=0

T (ti, ti+1)∧ tn = sr+1 ] ] ]

Quantified Boolean Formula (QBF)

to prove un/satisfiable of QBF is PSPACE complete
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Visualization of Reformulation bmc 57/91

0t

s1

t1

s
r

s +1r
s −1r

t −1r

t
r

s +1r

s0

initial states

( = )

∀

∃

we allow ti+1 to be identical to ti in the lower path
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Reoccurrence Radius/Diameter bmc 58/91

• we can not find the real radius / diameter with SAT efficiently

• over approximation idea:

– drop requirement that there is no shorter path

– enforce different (no reoccurring) states on single path instead

– also called simple paths

reoccurrence diameter:

length of the longest simple path

reoccurrence radius:

length of the longest initialized simple path
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Encoding Reoccurrence Diameter Checking in SAT bmc 59/91

reoccurring radius is minimal r which makes the following formula valid:

I(s0)∧
r∧

i=0
T (si,si+1) →

∨
0≤i< j≤r+1

si = s j

which is valid iff the following formula is unsatisfiable:

I(s0)∧
r∧

i=0
T (si,si+1)∧

∧
0≤i< j≤r+1

si 6= s j

︸ ︷︷ ︸
simple path constraints
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Bad Example for Reoccurrence Radius bmc 60/91

1

0

2 n

radius 1, reoccurrence radius n
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k-Induction induction
SheeranSinghStålmarck’00

61/91

for k = 0 . . .∞ check

1. k-induction base case:

I(s0)∧T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

2. k-induction induction step:

T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) unsatisfiable?

if base case satisfiable (= BMC), then bad state reachable

if inductive step unsatisfiable, then bad state unreachable

incomplete without simple path constraints
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Incremental SAT Solving for BMC and k-Induction induction 62/91

[EénSörensson’03]

I

B

k = 0 base case
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Incremental SAT Solving for BMC and k-Induction induction 63/91

[EénSörensson’03]

B

k = 0 inductive step
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Incremental SAT Solving for BMC and k-Induction induction 64/91

[EénSörensson’03]

I

T

B

k = 1 base case
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Incremental SAT Solving for BMC and k-Induction induction 65/91

[EénSörensson’03]

T

B

k = 1 inductive step
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Incremental SAT Solving for BMC and k-Induction induction 66/91

[EénSörensson’03]

I T

T B

k = 2 base case
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Incremental SAT Solving for BMC and k-Induction induction 67/91

[EénSörensson’03]

T

T B

k = 2 inductive step
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Incremental SAT Solving for BMC and k-Induction induction 68/91

[EénSörensson’03]

I T

T T

B

k = 3 base case
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Incremental SAT Solving for BMC and k-Induction induction 69/91

[EénSörensson’03]

T

T T

B

k = 3 inductive step
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Incremental SAT Solving for BMC and k-Induction induction 70/91

[EénSörensson’03]

I TT

T T B

k = 4 base case
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Incremental SAT Solving for BMC and k-Induction induction 71/91

[EénSörensson’03]

TT

T T B

k = 4 inductive step
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Incremental SAT Solving for BMC and k-Induction induction 72/91

[EénSörensson’03]

I TT

T T T

B

k = 5 base case

SAT-based Model-Checking Armin Biere – Johannes Kepler University – Linz – Austria



Incremental SAT Solving for BMC and k-Induction induction 73/91

[EénSörensson’03]

TT

T T T

B

k = 5 inductive step
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Incremental SAT Solving for BMC and k-Induction induction 74/91

[EénSörensson’03]

I

B

TT

T T T

T

k = 6 base case
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Incremental SAT Solving for BMC and k-Induction induction 75/91

[EénSörensson’03]

B

TT

T T T

T

k = 6 inductive step
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Simple Path Constraints induction 76/91

• bounded model checking: [BiereCimattiClarkeZhu’99]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk)∧
∨

0≤i≤k
B(si) satisfiable?

• reoccurrence diameter checking: [BiereCimattiClarkeZhu’99]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧
∧

1≤i< j≤k
si 6= s j unsatisfiable?

• k-induction base case: [SheeranSinghStålmarck’00]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

• k-induction induction step: [SheeranSinghStålmarck’00]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) ∧

∧
1≤i< j≤k

si 6= s j unsatisfiable?

• automatic abstraction refinement = lemmas on demand of simple path constraints
[EénSörensson’03]
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Special Cases induction 77/91

let G = ¬B denote the “good states”:

• 0-induction base case: I(s0)∧B(s0) satisfiable iff initial bad state exists

• 0-induction inductive step: B(s0) unsatisfiable iff ¬B propositional tautology

• 1-induction base: I(s0)∧T (s0,s1)∧B(s1) satisfiable iff bad state reachable in one step

• 1-induction inductive step: ¬B(s0)∧T (s0,s1)∧B(s1) unsatisfiable iff G inductive

assuming 0-induction base case was unsatisfiable and thus I |= G

where G = ¬B is called inductive iff 1. I |= G and 2. G∧T |= G′
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SAT-based Deductive Model Checking induction 78/91

[BiereCimattiClarkeFujitaZhu’00]

task is to prove that p is an invariant Gp holds on the model

• guess a formula G stronger than p: G |= p 1st check

• show G inductive: I |= G, G∧T |= G′ 2nd, 3rd check

• all three checks can be formulated as UNSAT checks

• if one check fails refine G based on satisfying assignment

manual process and thus complete on finite state systems

there are also automatic abstraction/refinement versions of this approach
CEGAR [ClarkeGrumbergJhaLuVeith’00]
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Interpolant interpolation
[Craig’57]

79/91

Definition I interpolant of A and B iff

(1) A⇒ I (2) V (I) ⊆ G =V (A)∩V (B) (3) I∧B unsatisfiable

Note: A∧B unsatisfiable as a consequence.

Intuition: I abstraction of A over the common (global/interface) variables G of A and B
which still is inconsistent with B.

strongest interpolant ∃LA[A] with LA =V (A)\G

Let A and B formulas in CNF.
From a refutational resolution proof of A∧B generate interpolant I. next slide

Many applications, approx. quantifier elimination, gives fast model checking algorithm.
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Extracting Interpolants from Refutations interpolation 80/91

[McMillan’03, McMillan’05] + [Biere’09] (BMC chapter in Handbook)

Definition interpolating quadruple (A,B) c [ f ] is well-formed iff

(W1) V (c)⊆V (A)∪V (B) (W2) V ( f )⊆ G∪ (V (c)∩V (A))⊆V (A)

Definition well-formed interpolating quadruple (A,B) c [ f ] is valid iff

(V1) A⇒ f (V2) B∧ f ⇒ c

Definitition proof rules for interpolating quadrupels

(R1) c ∈ A
(A,B) c [c ]

(A,B) c
.
∨ l [ f ] (A,B) d

.
∨ l [g ] |l| ∈V (B)

(A,B) c∨d [ f ∧g ]
(R3)

(R2) c ∈ B
(A,B) c [> ]

(A,B) c
.
∨ l [ f ] (A,B) d

.
∨ l [g ] |l| 6∈V (B)

(A,B) c∨d [ f | l∨g| l ]
(R4)

Theorem proof rules produce well-formed and valid interpolating quadruples
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Interpolation-based Model Checking interpolation 81/91

A︷ ︸︸ ︷
I(s−1)∧T (s−1,s0) ∧

B︷ ︸︸ ︷
T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧

3∨
i=0
¬G(si)

interpolant P1(s0) let R1 ≡ I∨P1

R1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant R2(s0)⇐ R1(s−1)∧T (s−1,s0) let R2 ≡ R1∨P2

R2(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

...

Rn−1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant Pn(s0)

until Rn ≡ Rn−1 fix-point guaranteed for k = backward radius of ¬G
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SAT-based Model Checking without Unrolling 82/91

[Bradley’11] + [EénMishchenkoBrayton’11]

I initial states

G good states

B bad states

F
0

F
1

F
2

GI  G B

s

(1)

(2)

F0 ⊇ F1 ⊇ F2

sets of rel. ind. clauses

new key concept in [Bradley’11]:

clause c relative inductive w.r.t. F iff c∧F ∧T ⇒ c′ iff c∧F ∧T ∧ c̄′ unsatisfiable

(1) s is reachable from F0 then bad is reachable transitively

(2) otherwise exists c⊆ s̄ rel. ind. w.r.t. F0 can be added to F1 and maybe to F2
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Extending Sequence of Sets of Relative Inductive Clauses 83/91

as soon the last set is good, i.e. Fk⇒ G increase k

s

GI  G BG

F
3

F
1

F
2

F
0

propagate all relative inductive clauses of last set to new set

if all can been propagated Fk is an inductive invariant stronger than G
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More Precisely . . . 84/91

Let F0, . . . ,Fk be a sequence of sets of clauses.

monotonic iff Fi ⊇ Fi+1 for i = 0 . . .k−1

(relative) inductive iff Fi T ⇒ F ′i+1 for i = 0 . . .k−1

initialized iff I ≡ F0

good iff Fi⇒ G for i = 0 . . .k−1 last set might be bad if Fk∧B satisfiable

F is k-adequat iff all states s satisfying F are at least k steps away from B
[McMillan’03]

sequence monotonic and inductive ⇒ Fk− j j-adequat
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Sketch of the Algorithm 85/91

CHECK (s, i) {
while s̄∧Fi−1∧T ∧ s′ satisfiable {

if i = 1 throw SATISFIABLE
choose cube t with t |= s̄∧Fi−1∧T ∧ s′

CHECK (t, i−1)

}
choose clause c ⊆ s̄ with c∧Fi−1∧T ∧ c̄′ unsatisfiable
Fj := Fj ∪ {c} for all j = 1 . . . i and if possible for higher j

}

MAIN (s, i) {
F0 = I, F1 =>, k = 1 do not forget to check base cases first
forever {

CHECK (B,k)

k := k+1, Fk := all rel. ind. clauses of Fk−1 w.r.t. Fk−1

if Fk ⊆ Fk−1 throw UNSATISFIABLE
}

}
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SAT-based Model Checking without Unrolling 86/91

• implemented in IC3 by Aaron Bradley

– as single engine model checker extremely successful in HWMCC’10
Hardware Model Checking Competition 2010

– based on rather out-dated SAT solver (ZChaff from 2004)

• independent implementations such as [EénMishchenkoBrayton IWLS’11]

– seem to be faster than BDDs, k-induction, interpolation

– might be much easier to lift to SMT-based model checking than interpolation

– opportunities for improvement: structural SAT/SMT solving
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Hardware Model Checking Competition 2011 87/91

• affiliated to FMCAD’11, Novemeber 2011, Austin

– we expect new benchmarks from industry

– and improved implementations

• checking multiple properties

• checking liveness properties

• new AIGER format

http://fmv.jku.at/hwmcc11
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Path based Semantics 88/91

given (symbol encoding of) an infinite path π = (s0,s1, . . .).

si |= p iff p(s0)

si |= X f iff si+1 |= f

si |= G f iff ∀ j ≤ i[s j |= f ]

si |= F f iff ∃ j ≤ i[s j |= f ]

How to define/encode bounded semantics for a lasso?

where lasso is a path π = (s0,s1, . . . ,sk) and sl = sk for one l
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Simple and Linear Translation of full LTL for BMC 89/91

[LatvalaBiereHeljankoJunttila FMCAD’04]

evaluate semantics on loop in two iterations

〈 〉= 1st iteration [ ] = 2nd iteration

:= i < k i = k

[p]i p(si) p(sk)

[¬p]i ¬p(si) ¬p(sk)

[X f ]i [ f ]i+1
∨k

l=0 (T (sk,sl)∧ [ f ]l)

[G f ]i [ f ]i∧ [G f ]i+1
∨k

l=0 (T (sk,sl)∧〈G f 〉l)

[F f ]i [ f ]i∨ [F f ]i+1
∨k

l=0 (T (sk,sl)∧〈F f 〉l)

〈G f 〉i [ f ]i∧〈G f 〉i+1 [ f ]k
〈F f 〉i [ f ]i∨〈F f 〉i+1 [ f ]k
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Simple and Linear Translation for LTL cont. 90/91

• LTL semantics on single path the same as CTL semantics

– symbolically implement fixpoint calculation for (A)CTL

– fixpoint computation terminates after 2 iterations (not k)

– boolean fixpoint equations

• easy to implement and optimize, fast

– generalized to past time [LatvalaBiereHeljankoJunttila VMCAI’05]

– minimal counter examples for past time [SchuppanBiere TACAS’05]

– incremental (and complete) [LatvalaHeljankoJunttila CAV’05]
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Why Not Just Try to Satisfy Boolean Equations directly? 91/91

recursive expansion Fp ≡ p∨XFp

p

checking Gp implemented as search for witness for Fp

Kripke structure: single state with self loop in which p does not hold

incorrect translation of Fp:

model constraints︷ ︸︸ ︷
I(s0)∧T (s0,s0) ∧ ([Fp]↔ p(s0)∨ [Fp])︸ ︷︷ ︸

translation

∧
assumption︷︸︸︷

[Fp]︸︷︷︸
x

since it is satisfiable by setting x = 1 though p(s0) = 0

(x fresh boolean variable introduced for [Fp])
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