SAT-based Model-Checking

Armin Biere

1%t International SAT/SMT Summer School 2011
MIT, Cambridge, USA

CPU Time (in seconds)

1200

1000

800

600

400

200

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

WK X+

4 »

GQCe

T T T T T T 4 T ™
Limmat 02 O P v

Zchaff 02 O - .V ® &

Berkmin 561 02 d O o
Forklift 03 .
Siege 03 + ™
Zchaff 04 -]
SatELite 05 . l

Minisat 2.0 06 S
Picosat 07 -
Rsat 07 >z< - -
Minisat 2.1 08 ¥]

Precosat 09 EI|:| “': %

Glucose 09 K
Clasp 09 + <
Cryptominisat 10

Lingeling 10

Xl
e + X -
Minisat 2.2 10 32{ E@ A WW > / Q&ﬁ?

3)
%% = im o f lv ‘)“.55‘\)

D

Number of problems solved

180

Model Checking mc 2/91
Turing Award 2007

e check algorithmically temporal / sequential properties
— systems are originally finite state e.g. circuits

— simple model: finite state automaton

e comparison of automata can be seen as model checking
— check that the output streams of two finite state systems “match”

— process algebra: simulation and bisimulation checking

e temporal logics as specification mechanism: LTL, CTL

— safety, liveness and more general temporal operators, fairness

Model Checking for Infinite Systems

e fixpoint algorithms with symbolic representations:
— software, cyber physical systems

— termination guaranteed if finite quotient structure exists

e key to success: abstract interpretation, e.g. predicate abstraction

e otherwise drop completeness
— simply run model checker for some time
— hope that model checking algorithm still converges
— trade completeness for scalability: bounded model checking

— actually in practice: complexity is an issue not decidability

mc' 3/91

Traffic Light Controller (TLC) mc. 4/91

Traffic Light Controller (TLC) mc 5/91

Traffic Light Controller (TLC) mc /91

Traffic Light Controller (TLC) mc 7/91

Traffic Light Controller (TLC) mc /91

Traffic Light Controller (TLC) mc 9/91

Traffic Light Controller (TLC) mc 10/91

Traffic Light Controller (TLC) mc 11/91

Traffic Light Controller (TLC) mc 12/91

Safety mc 13/91

the two traffic lights should never show a green light at the same time

State Space mc 14/91

e state space is the set of assignments to variables of the system
— state space is finite if the range of variables is finite

— this notion works for inifinite state spaces as well

e TLC example:
— single assignment o: {southnorth, eastwest} — {green,yellow,red}
— set of assignments is isomorphic to {green, yellow, red}?

— eg state space is isomorphic to the crossproduct of variable ranges

e not all states are reachable: (green, green)

Safety mc| 15/91

e safety properties specify invariants of the system

e simple generic algorithm for checking safety properties:
1. iteratively generate all reachable states
2. check for violation of invariant for newly reached states

3. terminate if all newly reached states can be found

e compare with assertions
— used in run time checking: assert in C and VHDL

— contract checking: require, ensure, etc. in Eiffel

Reachability mc| 16/91

e set of states S, initial states I, transition relation T

e bad states B reachable from 7 via T'?

e symbolic representation of T (ciruit, program, parallel product)
— avoid explicit matrix representations, because of the
— state space explosion problem, e.g. n-bit counter: |T|=0(n), |S|=0(2")

— makes reachability PSPACE complete

e on-the-fly for protocols
— restrict search to reachable states

— simulate and hash reached concrete states

Forward Fixpoint: Initial and Bad States mc| 17/91

Forward Fixpoint: Step 1 mc 18/91

Forward Fixpoint: Step 2 mc 19/91

Forwar d Fixpoint: Bad State Reached

Forward Fixpoint: Termination, No Bad State Reachable mc| 22/91

Forward Least Fixpoint Algorithm for Model Checking Safety mc 23/91

initial states 7, transition relation 7, bad states B

model-checkl: .
Sc=0; Sy =1;
while S¢ # Sy do

if BnSy + 0 then

return “found error trace to bad states’;

(I, T, B)

Sc = SN;
Sy =ScU Img(SC) ;
done;
return “no bad state reachable”;

TLC in SMV

MODULE trafficlight (enable)
VAR
light : { green, yellow, red };
back : boolean;
ASSIGN
init (light)
next (light)
case
light = red & 'enable : red;
light = red & enable : yellow;
light = yellow & back : red;
light = yellow & !back : green;
TRUE : yellow;
esac;
next (back) :=

red;

case
light = red & enable : FALSE;
light = green : TRUE;
TRUE : back;
esac;
MODULE main
VAR
southnorth : trafficlight (TRUE) ;
eastwest : trafficlight (TRUE) ;
SPEC
AG ! (southnorth.light = green & eastwest.light

green)

mc 24/91

Counterexample

*** This is NuSMV 2
*** Copyright (c) 2

—— specification AG

Trace Description:

Trace Type: Counter

-> State: 1.1 <-
enablesouthnorth
enableeastwest =

southnorth.light

southnorth.back =
eastwest.light =

.5.2 (compiled on Mon May 30 11:42:23 UTC 2011)
010, Fondazione Bruno Kessler

! (southnorth.light
—-— as demonstrated by the following execution sequence

CTL Counterexample

example

= FALSE
FALSE

= red
FALSE
red

eastwest.back = FALSE

-> State: 1.2 <-
enablesouthnorth
enableeastwest =

-> State: 1.3 <-
enablesouthnorth
enableeastwest =
southnorth.light
eastwest.light =

-> State: 1.4 <-
southnorth.light
eastwest.light =

= TRUE
TRUE

= FALSE

FALSE
= yellow
yvellow

= green
green

green & eastwest.light green)

mc' 25/91

is false

SMV mc 26/91

symbolic model checker implemented by Ken McMillan at CMU (early 90’ies)

e input language: finite models + temporal specification (CTL + fairness)
— hierarchical description, similar to hardward description language (HDL)

— integer and enumeration types, arithmetic operations

e original version relies on Binary Decision Diagrams (BDDs)

e NuSMYV an up-to-date version from FBK, Trento
— also uses SAT/SMT technology

— additionally LTL

Reachable States of One Traffic Light mc| 27/91

0 0 1 1
red red red red
1
vellow yvellow
12 reachable 0 0

states out ¢ ¢
of 12 states

light

0
enable ¢ ¢
1
back ye%

Bit-Blasting mc| 28/91

e compilation of finite model into pure propositional domain

e first step is to flatten the hierarchy
— recursive instantiation of all submodules
— name and parameter substitution

— may increase program size exponentially

e second step is to encode variables with boolean variables

light light@1 1ight@0
green +» 0 0
vellow 0 |

red —> 1 0

MODULE main
VAR

enablesouthnorth boolean;
enableeastwest boolean;
southnorth.light {green, red, yellow};
southnorth.back boolean;
eastwest.light {green, red, yellow};
eastwest.back boolean;
ASSIGN
init (southnorth.light) = red;
next (southnorth.light) =
case
southnorth.light = red & !enablesouthnorth red;
southnorth.light = red & enablesouthnorth yellow;
southnorth.light = yellow & southnorth.back red;
southnorth.light = yellow & !southnorth.back green;
1 : yellow;
esac;
next (southnorth .back) =
case
southnorth.light = red & enablesouthnorth 0;
southnorth.light = green 1;
1 : southnorth.back;
esac;
init (eastwest.light) = red;
next (eastwest.light)
case
eastwest.light = red & !enableeastwest red;
eastwest.light = red & enableeastwest yellow;
eastwest .light = yellow & eastwest.back red;
eastwest.light = yellow & !eastwest.back green;
1 : yellow;
esac;
next (eastwest.back) :=
case
eastwest .light = red & enableeastwest 0;
eastwest .light = green 1;
1l : eastwest.back;
esac;
SPEC
AG ! (southnorth.light green & eastwest.light = green)

Boolean Encoding Enumeration Types

e initial state predicate I represented as boolean formula
leastwest.lightl@0 & eastwest.light@l

(equivalentto init (eastwest.light) := red)

e transition relation T represented as boolean formula

e encoding of atomic predicates p as boolean formulae
leastwest.lightl@l & 'eastwest.light@O

(equivalentto eastwest.light != green)

mc' 30/91

MODULE main

VAR
enablesouthnorth : boolean;
enableeastwest : boolean;
southnorth.light@l : boolean; --TYPE-- green red yellow
southnorth.light@0 : boolean;
southnorth.back : boolean;
eastwest.light@l : boolean; —-TYPE-- green red yellow
eastwest.light@0 : boolean;
eastwest.back : boolean;
DEFINE
.MACRO1l := southnorth.light@l | !southnorth.light@O;
.MACROO := enablesouthnorth | .MACRO1;
.MACRO2 := !southnorth.light@l | southnorth.light@O;
.MACRO3 := !southnorth.light@l & !southnorth.light@0;
.MACRO5 := eastwest.light@l | !'eastwest.light@O0;
.MACRO4 := enableeastwest | .MACRO5;
.MACRO6 := !eastwest.light@l | eastwest.light@O;
.MACRO7 := !eastwest.light@l & !eastwest.light@O;
ASSIGN
init (southnorth.light@l) := FALSE;
init (southnorth.light@0) := TRUE;
next (southnorth.light@1l) := .MACROO & .MACROZ;
next (southnorth.l1ight@0) := !.MACROO | southnorth.back &
next (southnorth.back) := (!enablesouthnorth |

(
(
(
(
(
init (eastwest.light@l := FALSE;
(
(
(
(

)

init (eastwest.light@0) := TRUE;

next (eastwest.light@l) := .MACRO4 & .MACROG;

next (eastwest.light@O0) =

next (eastwest.back) := (!enableeastwest | .MACRO5) & (eastwest.back
INVAR

(!'southnorth.light@l | !southnorth.light@0)

(leastwest .1ight@1l | !eastwest.light@O0)
SPEC

AG (! .MACRO3 | !.MACRO7)

&

! MACRO4 | eastwest .back & !.MACROG6;

! .MACRO2 ;
.MACRO1l) & (southnorth.back

.MACRO3);

.MACRO7) ;

AlG mc| 32/91

Ve

N\

I
|
outhnorth.light@ 1 I AIGER_NOT_southnorth.light@Q0 AIGER_NOT_eastwest.light@Q0

| -~

I

|

' o

7
/

R_NEXT_eastwest.bact

Bounded Model Checking bme 33/91

e uses SAT for model checking
— historically not the first symbolic model checking approach

— scales better than original BDD based techniques

e mostly incomplete in practice
— validity of a formula can often not be proven
— focus on counter example generation

— only counter example up to certain length (the bound k) are searched

Unrolling of Forward Least Fixpoint Algorithm bmc. 34/91

0: terminate? S% =150 Vso[-I(sp)]

0: bad state? BQSR, =0 HSQ[[(S()) /\B(So)]

1: terminate? SL=SY Vso,s1[(s0) AT (s0,51) — I(s1)]

1: bad state? BNSy #0 Tsg,s1[I(s9) AT (s0,51) AB(s1)]

2: terminate? SZ=5% Vso.s1,52[[(s0) AT (sg,51) AT (51,52) —
I(s2) v 3o|L(t0) AT (20, 52)]]
2: bad state? BNSY, #0 3sg,s1,50[(s0) AT (s0,51) AT (51,52) AB(s7)]

Falsification Part of Fixpoint Algorithm bme| 35/91

2: bad state? BNSy, #0 3sg,s1,52[(s0) AT (s0,51) AT (s1,52) AB(s2)]

Bounded Model Checking Safety bmc. 36/91

checking safety property Gp for a bound k as SAT problem:

So S S S1+1 Sk
O——»O0—» 0O —»0O0—»0O
B vV BV B YV B V B

k

I(s0) A T(s0,51) A=A T(sg—1,50) A\ B(si)
i=0

check occurrence of B in the first k states with B = —p

I(so) N T(so,s1) A+ A T(sg—1,8¢) N Blsg)

in incremental check only last state can be bad

Checking Simple Saftey Properties with BMC bme! 37/01

I = Xxy
T = x—=xX)y—)y)
B = xy
I(sg) A T (s0,51) A T (s1,52) A B(s2)

X0 AN (xo—=x1)o—y1) A (x1—=x2)(y1 —y2) A x2

satisfying assignment: (x0,¥0) = (0,0), (x1,y1) = (1,0), (x2,y2) =(1,1)

Liveness bmc 38/91

traffic lights showing red should eventually show green

Liveness bmc 39/91

traffic lights showing red should eventually show green

Liveness bmc 40/91

traffic lights showing red should eventually show green

Bounded Model Checking Liveness bmc. 41/91

generic counter example trace of length k for liveness Fp

think of —p = “no progress”

I(so) A T(so,s1) A+ N T(sg,S11) \/ S| = Sk1 N /\ —p(si)

for finite systems liveness can always
be reformulated as safety [BiereArthoSchuppan02]

Time Frame Expansion in HW

sequential

inputs

states

outputs

feedback
loop

combinational
logic

sequential circuit

bmc 42/91

Time Frame Expansion in HW

inputs

states
outputs

states

break sequential loop

bmc 43/91

Time Frame Expansion in HW bmc. 44/91

outputs outputs

added 1st copy

Time Frame Expansion in HW bme ' 45/91

inputs inputs inputs

outputs outputs outputs

added 2nd copy

Time Frame Expansion in HW bme . 46/91

inputs inputs

Inputs

inputs

states states states states
outputs outputs outputs outputs

states

added 3rd copy

Time Frame Expansion in HW bmc. 47/91

inputs inputs inputs inputs inputs

states states states states states
outputs outputs outputs outputs outputs

states

added 4th copy

Time Frame Expansion in HW bme' 48/91

observed signals

Bounded Model Checking Safety in HW

lprop0

lprop1

lprop?2

lprop3

lprop4

find inputs for which failed becomes true

failed

bmc 49/91

Bounded Model Checking Liveness in HW bmc 50/91

iInputs

7y
lprop0 lprop1 lprop2 lprop3

B
\ CMP
2 L

failed

find inputs for which failed becomes true

Fairness bmc| 51/91

(GFf) A (GFg)

path © = (sg,s1,s52,...) is fair iff all fairness constraints occur infinitely often on n

I(sg) A T(sg,51) N+ A T(Sg,Skr1) A \/ S; =Skl A \/f(sj) A \/g(sj)
1=0 =1 =1

generalizes to tableau constructions for LTL

Completeness in Bounded Model Checking

e find bounds on the maximal length of counter examples
— also called completeness threshold

— exact bounds are hard to find = approximations

e induction
— try to find inductive invariants (algorithmically and/or manually)

— algorithmic generalization of inductive invariants: k-induction

e use of SAT for quantifier elimination as with BDDs
— then model checking becomes fixpoint calculation

— Interpolation as approximation of quantifier elimination

e relative inductive reasoning as in IC3 by Aaron Bradley

bmc 52/91

Measuring Distances bmc. 53/91

Distance: length of shortest path between two states

O(s,t) =min{n | 3sg,...,sn|s = so,t = s, and T (s;,s;11) for 0 <i < nl}

Diameter: maximal distance between two connected states

d(T) = max{8(s,7) | T*(s,¢)}

Radius: maximal distance of a reachable state from the initial states

r(T,I) = max{8(s,t) | T*(s,t) and I(s) and &(s,t) < 8(s’,¢) for all 5" with 1(s")}

Diameter Example bmc 54/91

initial states

unreachable states

(forward) radius =2 diameter =4 backward radius = 4

Completeness Threshold for Safety bme 55/91

e number of steps needed to reach a bad state reached can be bounded by radius
— works both for forward radius and backward radius

— SO we can use the minimum of the two

e radius completeness threshold for safety properties
— safety properties: max. k for doing bounded model checking bounded

— if no counter example of this length can be found the safety property holds

How to determine the radius? bme| 56/91

reformulation:

radius max. length r of an initialized path leading to a state ¢, such there is no other path
from an initial state to r with length less than r.

Thus radius r is the minimal number which makes the following formula valid:

r

V50, Srp1[T(so) A)\ T(sisiv1)) —
i=0
n—1

In<r[3,....tal Ltg) A)\ T(tistiz1) Atn=5r11]]]
i=0

Quantified Boolean Formula (QBF)

to prove un/satisfiable of QBF is PSPACE complete

Visualization of Reformulation bmc. 57/91

initial states

\v4 50 5] cee ———= 5, Sy Syt

—/(tr= Sr+1)
= to t cee ———= £,

we allow ¢#;, | to be identical to #; in the lower path

Reoccurrence Radius/Diameter bmc| 58/91

e we can not find the real radius / diameter with SAT efficiently

e Over approximation idea:
— drop requirement that there is no shorter path
— enforce different (no reoccurring) states on single path instead

— also called simple paths

reoccurrence diameter:
length of the longest simple path
reoccurrence radius:

length of the longest initialized simple path

Encoding Reoccurrence Diameter Checking in SAT bme! 59/01

reoccurring radius is minimal » which makes the following formula valid:

i=0 0<i<j<r+1

which is valid iff the following formula is unsatisfiable:

I(so) A N\ T(si,8i11) A N siF#s

i=0 0<i<j<r+1

- 4
-~

simple path constraints

Bad Example for Reoccurrence Radius bmc| 60/91

radius 1, reoccurrence radius n

k-Induction induction §1/91

for k= 0...0 check

1. k-induction base case:

I(so) NT (sg,81) Ao . AT (Sp—1,5%) N B(sp) A /\ —B(s;) satisfiable?
0<i<k

2. k-induction induction step:

T(s0,s1) A-.. AT (sg—1,8.) A B(sp) A [\ —B(s;) unsatisfiable?
0<i<k

if base case satisfiable (= BMC), then bad state reachable
if inductive step unsatisfiable, then bad state unreachable

incomplete without simple path constraints

Incremental SAT Solving for BMC and &-Induction induction| 62/01

k=0 base case

Incremental SAT Solving for BMC and &-Induction induction 63/01

k=0 Inductive step

Incremental SAT Solving for BMC and &-Induction induction 64/91

k=1 Dbase case

Incremental SAT Solving for BMC and &-Induction induction 65/01

k=1 Inductive step

Incremental SAT Solving for BMC and &-Induction induction’ §6/91

k=2 base case

Incremental SAT Solving for BMC and &-Induction induction’ §7/91

k=2 Inductive step

Incremental SAT Solving for BMC and &-Induction induction’ 68/91

k=3 base case

Incremental SAT Solving for BMC and &-Induction induction’ §9/91

k=3 Inductive step

Incremental SAT Solving for BMC and &-Induction induction’ 70/91

k=4 base case

Incremental SAT Solving for BMC and &-Induction induction| 71/01

k=4 Inductive step

Incremental SAT Solving for BMC and &-Induction induction’ 72/91

k=5 base case

Incremental SAT Solving for BMC and &-Induction induction’ 73/91

k=5 Inductive step

Incremental SAT Solving for BMC and &-Induction induction 74/01

k=6 Dbase case

Incremental SAT Solving for BMC and &-Induction induction 75/01

k=6 Inductive step

Simple Path Constraints induction| 76/91

e bounded model checking:

I(s)) AT (s1,82) Ao . AT (Sp—1,5() A \/ B(s;) satisfiable?
0<i<k

reoccurrence diameter checking:

T(s1,52)N... AT (sp_1,8) A /\ Si £ S unsatisfiable?
1<i<j<k

k-induction base case:

I(s)) AT (s1,82) Ao . AT (S—1,5k) N B(sp) A /\ —B(s;) satisfiable?
0<i<k

e k-induction induction step:

T(s1,52) A... AT (sg—1,8k) N B(s;) A /\ —B(s;) A /\ Si 7S unsatisfiable?
0<i<k 1<i< j<k

e automatic abstraction refinement = lemmas on demand of simple path constraints

Special Cases induction| 7701

let G =-B denote the “good states”:

e (-induction base case: |I(sg) AB(sqg) satisfiable| iff initial bad state exists

e O-induction inductive step: | B(sg) unsatisfiable| iff —B propositional tautology

e 1-induction base: |I(sg) AT (sg,s1) A B(sq) satisfiable |iff bad state reachable in one step

e l-induction inductive step: | =B(sg) AT (sg,s1) A B(sq) unsatisfiable| iff G inductive

assuming 0-induction base case was unsatisfiable and thus 7 = G

where G=-B s called inductive iff 1. IEG and 2. GATECG

SAT-based Deductive Model Checking induction’ 7g/91

task is to prove that p is an invariant

e guess a formula G strongerthan p: G E=p

e show Ginductive: IEG, GATEG

e all three checks can be formulated as UNSAT checks

if one check fails refine G based on satisfying assignment

manual process and thus complete on finite state systems

there are also automatic abstraction/refinement versions of this approach

Interpolant interpolation 79/91

Definition [interpolantof A and B iff

(1) A=1 (2) V() C G=V(A)NV(B) (3) I A B unsatisfiable
Note: A A B unsatisfiable as a consequence.

Intuition: [abstraction of A over the common (global/interface) variables G of A and B
which still is inconsistent with B.

strongest interpolant 3L, [A] with Ly =V (A)\G

Let A and B formulas in CNF.
From a refutational resolution proof of A A B generate interpolant 1.

Many applications, approx. quantifier elimination, gives fast model checking algorithm.

Extracting Interpolants from Refutations interpolation 80/91
[McMillan’03, McMillan’05] + [Biere’09] (BMC chapter in Handbook)

Definition interpolating quadruple (A,B) ¢ [f] is well-formed iff

(W1) V(e) CV(A)UV(B) (W2) V(f) SGU(V(ce)NV(A)) S V(A)

Definition well-formed interpolating quadruple (A,B) ¢ [f] is valid iff

(V1) A= f (V2) BAf=c

Definitition proof rules for interpolating quadrupels

(A,B)cVI][f] (A,B)d V1|[g]

R1 ccA | € V(B) 3

(R1) (A,B) ¢ [c] (A,B)cVvd|fANg] ")

R2) feB (A,B)cVI[f] (AB)dVI|[g] EVB) (Ra)
(A,B)c|[T] (A,B)cvd|fljVell

Theorem proof rules produce well-formed and valid interpolating quadruples

Interpolation-based Model Checking interpolation g1/91

7\ 7\
ld N\ r7 N\

3

I(s_1)AT(s—1,50) A T(s0,51) AT(s1,52) AT(s2,53) A \/ ~G(s;)
i=0

interpolant P (sp) let Ri=1VP

Ri(s_1)AT(s_1,50) A T(s0,51) AT (s1,52) AT (s2,53) AV3i_og—G(s;)

interpolant | Ry (sg) < R1(s—_1) AT (s_1,50) let Ry=R|VP

Ry(s_1)AT(s_1,50) A T(s0,51) AT (s1,52) AT (52,53) AV;_o—G(s;)

Ru1(s_1)AT(s_1,50) A T(s,51) AT (s1,82) AT (s2,53) AV;_q—G(s;)

interpolant P, (sp)

until R, =R, fix-point guaranteed for k = backward radius of =G

SAT-based Model Checking without Unrolling 82/91

FO F1 F2
I G G B
[initial states
G good states (1) Q/)D/\@ FR2F 2k
B bad states S sets of rel. ind. clauses
@ L
O

new key concept in

clause ¢ relative inductive w.rt. F iff cAFAT=¢ iff c¢AFATAZ unsatisfiable

(1) s is reachable from Fy then bad is reachable transitively

(2) otherwise exists ¢ C srel. ind. w.r.t. Fy can be added to Fj

Extending Sequence of Sets of Relative Inductive Clauses 83/91

as soon the last set is good, i.e. F;, = G increase k

F

0

I G G G B

ofie

propagate all relative inductive clauses of last set to new set

if all can been propagated Fj, is an inductive invariant stronger than G

More Precisely ... 84/91

Let Fy,...,F;, be asequence of sets of clauses.

monotonic iff |F,DF.,;| for i=0...k—1

(relative) inductive iff |F,T=F | for i=0.. k-1

initialized iff |I=F

good iff |F,=G| for i=0...k—1 last set might be bad if F; A B satisfiable

F is k-adequat iff all states s satisfying F are at least k steps away from B

sequence monotonic and inductive = F,_; j-adequat

Sketch of the Algorithm 85/91

CHECK (s,i) {
while SAF,_{ATAs satisfiable {
if i=1 throw SATISFIABLE
choose cube t with t = §SAF_{ATAS
CHECK (z,i—1)

h
choose <clause ¢ C§ with c¢cAF_{ATAE unsatisfiable
F; = FjU{c} forallj=1...1i and if possible for higher ;
t
MAIN (s,i) {
Fy=1, Fi=T, k=1 do not forget to check base cases first
forever {
CHECK (B, k)
k = k+1, F, = allrel.ind. clauses of F;,_; w.r.t. F_;
if F, C F,_; throw UNSATISFIABLE
}

SAT-based Model Checking without Unrolling 86/91

e implemented in IC3 by Aaron Bradley

— as single engine model checker extremely successful in HWMCC'10

— based on rather out-dated SAT solver (ZChaff from 2004)

e independent implementations
— seem to be faster than BDDs, k-induction, interpolation
— might be much easier to lift to SMT-based model checking than interpolation

— opportunities for improvement: structural SAT/SMT solving

Hardware Model Checking Competition 2011 87/91

affiliated to FMCAD’11, Novemeber 2011, Austin

— we expect new benchmarks from industry

— and improved implementations

checking multiple properties

e checking /iveness properties

new AIGER format

http://fmv.jku.at/hwmcc1

Path based Semantics 88/91

given (symbol encoding of) an infinite path © = (s, s, -..).

siEp ift p(so)
siEXf it sy B
siEGf it Vj<ils; = f]
siEFf iff 3j<ils; = f]

How to define/encode bounded semantics for a /lasso?

where lasso is a path © = (sg,s1,-..,s5;) and s; = s; for one [

89/91

Simple and Linear Translation of full LTL for BMC

evaluate semantics on loop in two iterations

(y =1stiteration []=2nd iteration

— i <k i=k
[Pl p(si) p(si)
—pl; —p(si) —p(sk)
Xf]; fliv1 Véczo (T (sg>81) A Lf]p)
Gfl; | [inGflizr | Vieo(T(swst) A(GS),)
Ff]; SV IFSfi \/Lo (T (sg,s1) N (Ff)p)

Simple and Linear Translation for LTL cont. 90/91

e LTL semantics on single path the same as CTL semantics
— symbolically implement fixpoint calculation for (A)CTL
— fixpoint computation terminates after 2 iterations (not k)

— boolean fixpoint equations

e easy to implement and optimize, fast
— generalized to past time
— minimal counter examples for past time

— incremental (and complete)

Why Not Just Try to Satisfy Boolean Equations directly?

P

recursive expansion Fp = pVXFp %

checking Gp Iimplemented as search for withess for Fp
Kripke structure: single state with self loop in which p does not hold

incorrect translation of Fp:

model constraints assumption

~ gy N A~

I(so) AT (s0.50) A ([Fp] <> p(so)V [Fp]) A [Fp]
translation *

since it is satisfiable by setting x=1 though p(sg) =0

(x fresh boolean variable introduced for [Fp))

91/91

