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Introduction
Many interesting talks about the internals of SMT solvers.
Here:

a quick overview of the MathSAT solver
focus on the use of MathSAT for formal verification
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The MathSAT project

MathSAT is an SMT solver developed in Trento since 2001
Joint project of Fondazione Bruno Kessler (FBK) and the
University of Trento
http://mathsat.fbk.eu/

Latest available version: MathSAT4
Soon to be released: MathSAT5
Current team:

Alessandro Cimatti, Alberto Griggio, Bas Schaafsma,
Roberto Sebastiani

Past contributors:
Gilles Audemard, Piergiorgio Bertoli, Marco Bozzano,
Roberto Bruttomesso, Anders Franzén, Tommi Junttila,
Veselin Kirov, Artur Kornilowicz, Jeremy Ridgeway, Peter van
Rossum, Alessandro Santuari, Stephan Schulz, Cristian
Stenico
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MathSAT: features
Supported interaction modes:

Languages: SMT-LIB 1 and SMT-LIB 2
In-memory API

Supported theories:

EUF , BV , RDL, IDL, LRA, LIA, memories (AR)
Their combination

via Delayed Theory Combination
via Ackermanization Reduction

Functionalities:

Incremental Solving
Model extraction
AllSMT
Unsatisfiable core extraction
Interpolation
Costs
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MathSAT: some highlights

The “lazy approach” to SMT [ABC+02]
SAT solver as model enumerator
tight integration between SAT solver and theory solver

Layering [BBC+05b]
cheap solvers first

Delayed Theory Combination [BCF+09]
use SAT search to deal with interface equalities
superseded by model-based combination

Unsat core extraction [CGS11]
reduction to boolean unsatisfiable core extraction
based on reuse of theory lemmas computed during search

Interpolation [CGS08, CGS09, CGS10]
avoid “proof theoretic” reasoning
based on information produced by theory solvers

Bit-vectors [BCF+07, FCN+10]
experiments with various approaches
rewriting, lazy bit-blasting, underapproximation
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MathSAT for Microcode Verification
Result of long-standing collaboration with Intel Haifa

BoWLing (2003-2006)
Wolfling GRC CADTS Verification 2009-TJ-1880

Microcode
expand complex ISA instructions to native micro-instructions
similar to low level assembly, highly optimized

Perceived as critical problem in practice
a flow for the verification of microcode
cycle-accurate equivalence checking based on path
enumerations

Bit-precise reasoning required
based on boolean SAT solving
solving VC’s requires significant portion of overall time

Experiment with word-level reasoning
use MathSAT instead of internal SAT solver
black-box replacement: no idea on high level algorithm
a sequence of verification problems
not a nice sequence of “path extension”
the correlation between subsequent problems is hidden

MathSAT now shipped with design environment for
microcode

More details in award-winning FMCAD’10 paper [FCN+10]

A. Cimatti (FBK-irst) SMT-Based Verification with MathSAT SAT/SMT School, June 2011 8 / 77



Outline

1 MathSAT

2 SMT-based Verification of Infinite State Transition Systems

3 SMT-based Verification of Software

4 SMT-based Verification of Hybrid Systems

5 SMT-based Analysis of Requirements for Hybrid Systems

6 Conclusions and future work

A. Cimatti (FBK-irst) SMT-Based Verification with MathSAT SAT/SMT School, June 2011 9 / 77



Infinite State Transition Systems

States as assignments to variables ranging over real, integers,
bit vectors, arrays, ...
Transitions as pairs of states.
Symbolic representation: use formulae to describe sets of states
and transitions

Vectors of state variables: current state X , next state X ′

Initial condition I(X )
Transition relation R(X ,X ′)
Bad states B(X )

Key difference wrt finite state model checking

X ,X ′ do not range only over boolean variables
I,R,B are SMT formulae
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From SAT-based to SMT-based
verification

Same representation, extend algoriths from SAT to SMT:

Bounded model checking
Induction
Interpolation-based verification
IC3?
Abstraction/refinement

In many cases, no longer guaranteed to converge.
Useful SMT functionalities:

Incrementality
Model extraction
Unsat core extraction
Interpolation
Quantifier elimination / AllSMT
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SMT-based bounded model checking

State variables replicated k times
X0,X1, . . . ,Xk−1,Xk

Look for bugs of increasing length
I(X0) ∧ R(X0,X1) ∧ . . . ∧ R(Xk−1,Xk ) ∧ B(Xk )

bug if satisfiable

increase k until . . .
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SMT-based k-induction
Prove absence of bugs by induction
I(X0) ∧ B(X0)
¬B(X0) ∧ R(X0,X1) ∧ B(X1)
. . .
I(X0) ∧ R(X0,X1) ∧ . . . ∧ R(Xk−1,Xk ) ∧ B(Xk )
¬B(X0) ∧ R(X0,X1) ∧ . . . ∧ ¬B(Xk−1) ∧ R(Xk−1,Xk) ∧ B(Xk )

Proved correct if unsatisfiable (and no bugs until k )

Invariant strengthening, simple path condition, . . .
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SMT-based interpolation

An interpolant for an unsatisfiable formula

Φ1(X ,Y ) ∧ Φ2(Y ,Z )

is a formula Itp(Y ) such that:
Φ1(X ,Y ) → Itp(Y )
Itp(Y ) ∧ Φ2(Y ,Z ) is unsatisfiable
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SMT-based interpolation

Φ1(X0,X1)
︷ ︸︸ ︷

I(X0) ∧ R(X0,X1) ∧
︸︷︷︸

Itp(X1)

Φ2(X1,...,Xk )
︷ ︸︸ ︷

R(X1,X2) . . . ∧ R(Xk−1,Xk ) ∧ B(Xk )
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Itp(X1) = Itp(R, I(X0), k)
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Precise reachability
R0 = I
Ri = Img(R,Ri−1) ∪Ri−1

Interpolation based reachability
Itp0 = I(X1)
Itpi = Itp(R, Itpi−1, k) ∪ Itpi−1
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CEGAR loop

Abstraction

Counter-example
Analysis

Model CheckRefinement

CProg

AProg[i]MoreInfo

Unsafe SafeACex

No CCex

CCex
No ACex
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction

State vars X
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CEGAR based on Predicate Abstraction

State vars X
I(X )
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CEGAR based on Predicate Abstraction

State vars X
I(X )

R(X ,X ′)
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CEGAR based on Predicate Abstraction
ψ0(X)

State vars X
I(X )

R(X ,X ′)
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CEGAR based on Predicate Abstraction
ψ0(X)
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CEGAR based on Predicate Abstraction
P0 ψ0(X)
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CEGAR based on Predicate Abstraction
P0 ψ0(X)¬P0
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CEGAR based on Predicate Abstraction
P0 ψ0(X)¬P0

ψ1(X)
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CEGAR based on Predicate Abstraction
P0 ψ0(X)¬P0

P1

ψ1(X)
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CEGAR based on Predicate Abstraction
P0 ψ0(X)¬P0

P1

ψ1(X)

¬P1
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction
P0¬P0

P1

¬P1

Abstract State vars P
AI(P)

AR(P,P ′)

00

10 11
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CEGAR based on Predicate Abstraction
P0¬P0
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¬P1
ψ2(X)
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction
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CEGAR based on Predicate Abstraction
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CEGAR with Predicate Abstraction

Predicate
Abstraction

Counter-example
Analysis

Model CheckRefinement

Preds[0]

CProg

AProg[i]NewPreds[i+1]

Unsafe SafeACex

No CCex

CCex
No ACex
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SMT-based Predicate Abstraction
AR(P,P ′) =̇ ∃XX ′.(R(X ,X ′)∧

∧

i

(Pi ↔ ψi(X ))∧
∧

i

(P ′
i ↔ ψi(X ′)))

AllSMT - a particular form of existential quantification
Enumerate all satisfying assignments to Pi by generalizing
AllSAT to AllSMT [LNO06]
Extend BDD-based existential quantification to deal with
theory constraints [CCF+07]

Build a boolean abstraction of the formula to quantify
Interpret each boolean variable as a theory constraint
Drive SMT solver while traversing BDD (NOT a theory solver)

Structure aware existential quantification [CDJR09]
Exploit the available problem structure

At high level: structure of system being abstracted, modules
scope of variables, nature of transitions
At low level: structure of quantified formula, reduce scope of
quantification
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CEGAR without AllSMT
Abstract transition system computed with AllSMT:

Exponential in the number of predicates.
Major bottleneck of CEGAR.
Prevents the analysis of the abstract system.

Main idea [Ton09]: avoid computing the abstract state
space

how: embedding the abstraction definition into the
BMC/k-induction encodings;
abstract transitions implicitly computed by the SMT solver;
similar to lazy abstraction but completely symbolic and
without any image computation/quantifier elimination.

Applicable when the abstraction α induces an equivalence
relation EQα among the concrete states.

For predicate abstraction,
EQα(X ,X ′) =

∧

P∈P P(X ) ↔ P(X ′).
Example of application:

Concrete unrolling:
∧

0≤h≤k−1 R(Xh,Xh+1)
Abstract unrolling:

∧

0≤h≤k−1 R(Xh,X ′
h) ∧ EQα(X ′

h,Xh+1)
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Beyond NuSMV

NuSMV2

https://nusmv.fbk.eu/

since 1997 BDD-based and SAT-based reasoning

Extended NuSMV

extended types: integers, reals

actually a new system, using “base NuSMV” as a library

integrated with MathSAT

connections to other design languages AADL, Altarica,
Simulink

applied in several projects: FP VII, ESA, ERA

dedicated language for structured hybrid systems
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Programs as CFAs
Programs are represented as control-flow automata (CFAs).

A CFA for program P is a
pair (L,G)

L is a set of program
locations.
G ⊆ L × Op × L is a set
of edges.
l0 is the unique entry
location.
le is the unique (sink)
error location.
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Programs as CFAs
Programs are represented as control-flow automata (CFAs).

A CFA for program P is a
pair (L,G)

L is a set of program
locations.
G ⊆ L × Op × L is a set
of edges.
l0 is the unique entry
location.
le is the unique (sink)
error location.

while ( 1 ) {
x = ∗ ;
i f ( x >= 0) y = x ;
else y = −x ;
asser t ( y >= 0 ) ;

}

l0

l1

l2l8

l3

l4 l5

l6

le l7

[true]![true]

x := *

![x >= 0] [x >= 0]

y := -x y := x

[y >= 0]![y >= 0]
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Lazy ART Construction
On-the-fly ART constuction with counterexample-guided abstraction
refinement (CEGAR).
1 Pick an ART node.

l0, ϕ0
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Lazy ART Construction
On-the-fly ART constuction with counterexample-guided abstraction
refinement (CEGAR).
1 Pick an ART node.
2 Compute abstract successors,

l0, ϕ0

l1, ϕ1

ϕ1 = SPπ

op(ϕ0)op
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Lazy ART Construction
On-the-fly ART constuction with counterexample-guided abstraction
refinement (CEGAR).
1 Pick an ART node.
2 Compute abstract successors,

until node gets covered.

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l4, ϕ4

l6, ϕ6

l7, ϕ7

l1, ϕ
′

1

ϕ
′

1 |= ϕ1
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Lazy ART Construction
On-the-fly ART constuction with counterexample-guided abstraction
refinement (CEGAR).
1 Pick an ART node.
2 Compute abstract successors,

until node gets covered.
3 If reach the error location:

analyze path.
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Lazy ART Construction
On-the-fly ART constuction with counterexample-guided abstraction
refinement (CEGAR).
1 Pick an ART node.
2 Compute abstract successors,

until node gets covered.
3 If reach the error location:

analyze path.
If path is feasible: program is
unsafe.
If path is spurious:

Discover predicates to
refine abstraction.
Undo part of ART.

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3
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Lazy ART Construction
On-the-fly ART constuction with counterexample-guided abstraction
refinement (CEGAR).
1 Pick an ART node.
2 Compute abstract successors,

until node gets covered.
3 If reach the error location:

analyze path.
If path is feasible: program is
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On-the-fly ART constuction with counterexample-guided abstraction
refinement (CEGAR).
1 Pick an ART node.
2 Compute abstract successors,

until node gets covered.
3 If reach the error location:

analyze path.
If path is feasible: program is
unsafe.
If path is spurious:

Discover predicates to
refine abstraction.
Undo part of ART.
Goto 1 to reconstruct
subtree.

4 ART is safe ⇒ program is safe.

l0, ϕ0

l1, ϕ1

l2, ϕ2

l3, ϕ3

l4, ϕ
′

4

l6, ϕ
′

6

l7, ϕ
′

7

l1, ϕ
′′

1

l5, ϕ
′

5

l6, ϕ
′′′

6
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Large Block Encoding (LBE)

Example program:

while ( 1 ) {
x = ∗ ;
i f ( x >= 0) y = x ;
else y = −x ;
asser t ( y >= 0 ) ;

}

l0

l1

l8

le

![true]

[true]

x := *

![x > 0]

y := -x

[x > 0]

y := x

![y >= 0]

[true]

x := *

![x > 0]

y := -x

[x > 0]

y := x

[y >= 0]
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Lazy ART Construction with LBE
1 Pick an ART node.

l0, ϕ0
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Lazy ART Construction with LBE
1 Pick an ART node.
2 Compute abstract

successors, until node gets
covered.

l0, ϕ0

l1, ϕ1

l1, ϕ
′

1

ϕ
′

1 |= ϕ1
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Lazy ART Construction with LBE
1 Pick an ART node.
2 Compute abstract

successors, until node gets
covered.

3 Error location is not
reachable by abstract
strongest post operator.

l0, ϕ0

l1, ϕ1

l1, ϕ
′

1

ϕ
′

1 |= ϕ1
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Lazy ART Construction with LBE
1 Pick an ART node.
2 Compute abstract

successors, until node gets
covered.

3 Error location is not
reachable by abstract
strongest post operator.

4 ART is safe ⇒ program is
safe.

l0, ϕ0

l1, ϕ1

l1, ϕ
′

1

ϕ
′

1 |= ϕ1
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Beyond the Sequential Case

Architecture in many application domains
one scheduler runs mutually exclusive, cooperative threads
SystemC, PLC, AADL, railways control software, . . .

Key idea: do not analyze scheduler + threads;
instead, run scheduler while analyzing threads

ESST: explicit scheduler + symbolic threads [CMNR10]
Partial order reduction within the explicit scheduler [CNR11]

ESST implemented in Kratos
http://es.fbk.eu/tools/kratos (see [CGM+11])
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Outline

1 MathSAT

2 SMT-based Verification of Infinite State Transition Systems

3 SMT-based Verification of Software

4 SMT-based Verification of Hybrid Systems

5 SMT-based Analysis of Requirements for Hybrid Systems

6 Conclusions and future work
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Complex embedded systems

Embedded software is software which is part of a larger
system whose purpose may be not computational.
Example: European Train Control System

Supervision of movement of trains
Requirements on location and speed
Protocols between on-board train systems and track-side
systems
Communication by radio (radio block centers) or on- track
physical devices (balises).

The framework must be able to express
classes of entities and their relationships;
integer and real attributes of the objects;
constraints on the admitted configurations;
constraints on the admitted temporal evolutions:

instantaneous changes of the
configurations

temporal constraints on the movement
of objects.

} Hybrid
Systems
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Continuous vs. discrete changes

CONTINUOUS COMPONENT

di
sc

re
te

continuous
transition
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E
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PO
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E
N

T

tr
an

si
tio

n

TIME

SP
E

E
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L
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C
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T
IO

N

EVOLUTION

HYBRID

MA’s EOA
train’s speed

train’s location

MA’s Target Speed
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Hybrid automata

Hybrid automata are a widely accepted modeling framework
for systems with discrete and continuous variables.

Far
−50 ≤ ẋ ≤ −40

x ≥ 1000

Near
−40 ≤ ẋ ≤ −30

x ≥ 0

Past
−50 ≤ ẋ ≤ −40

x ≥ −100

x ≤ 5000

approach
x = 1000

x = 0exit
x = −100

x ′ ∈ [1900,4900]
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−40 ≤ ẋ ≤ −30

x ≥ 0

Past
−50 ≤ ẋ ≤ −40

x ≥ −100

x ≤ 5000

approach
x = 1000

x = 0exit
x = −100

x ′ ∈ [1900,4900]

A. Cimatti (FBK-irst) SMT-Based Verification with MathSAT SAT/SMT School, June 2011 32 / 77



Hybrid automata

Hybrid automata are a widely accepted modeling framework
for systems with discrete and continuous variables.

Far
−50 ≤ ẋ ≤ −40
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−40 ≤ ẋ ≤ −30

x ≥ 0

Past
−50 ≤ ẋ ≤ −40
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−50 ≤ ẋ ≤ −40

x ≥ −100

x ≤ 5000

approach
x = 1000

x = 0exit
x = −100

x ′ ∈ [1900,4900]

A. Cimatti (FBK-irst) SMT-Based Verification with MathSAT SAT/SMT School, June 2011 32 / 77



Hybrid automata

Hybrid automata are a widely accepted modeling framework
for systems with discrete and continuous variables.

Far
−50 ≤ ẋ ≤ −40

x ≥ 1000

Near
−40 ≤ ẋ ≤ −30
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Network of Hybrid automata

Networks are partially synchronous composition of hybrid
automata.

ϕ1 ϕ2

ϕ3

ψ0

ψ1

ψ2ψ3

ϕ1 ϕ2

ϕ3

ψ0

ψ1

ψ2ψ3

ϕ1 ϕ2

ϕ3

ψ0

ψ1

ψ2ψ3
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Symbolic bounded reachability (BMC)

Look for path up to k steps.
Encode the bounded reachability problem into a formula:

the formula is satisfiable iff the target is reachable.

Encoding unrolls the transition relation k times.
k is critical for performance:

number of possible paths is exponential in k !

Necessary k depends on the semantics of the composition
of systems.
Baseline: compilation into symbolic transition system.

TRANSITION SYSTEMS

HYBRID AUTOMATA

(with SMT constraints)
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Traditional composition

Traditional semantics of a network of systems is based on
interleaving.

Required construction of a monolithic hybrid automaton
based on the composition of the systems.

Destroyed structure of the network and results in a loss of
efficiency, especially using bounded model checking
techniques.
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Interleaving effect
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Symbolic encoding of a network

Components represented with symbolic transition systems.
Local input variable ε enumerating the events including:

Shared timed event T.
Local stutter event S.

Shared (global) input variable δ to represent the elapsed
time.
BMC encoding of the network obtained by conjoining the
BMC encodings of the components:
BMCINTN (k) :=

∧

1≤j≤n BMCHj (k) ∧ SYNCN (k)
SYNC encodes the synchronization of the local runs:

Strict synchronization:
STRICTSYNCk

N :=
∧

1≤j<h≤n
∧

0≤i<k
∧

a∈Uj∩Uh∪{T}(l
i
j = a ↔ l ih =

a)
∧

∧

a∈Uj\Uh
(l ij = a → l ih = S) ∧

∧

a∈Uh\Uj
(l ih = a → l ij = S)

Step semantics (exploiting independence of local
transitions):

STRICTSYNCk
N :=

∧

1≤j<h≤n
∧

0≤i<k
∧

a∈U ∩U ∪{T}(l
i
j = a ↔ l ih =
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Symbolic transition system (Global time)

INIT :=
∧

q∈Q

(loc = q → Iq(X ))

INVAR :=
∧

q∈Q

(loc = q → Zq(X ))

TRANS :=
∧

q∈Q

(loc = q →

(STUTTER ∨ TIMEDq ∨
∨

(q,p)∈E

UNTIMEDq,p))

STUTTER := ε = S ∧ δ = 0 ∧ loc′ = loc ∧ X ′ = X

TIMEDq := ε = T ∧ δ > 0 ∧ loc′= loc ∧ Fq(
X ′ − X

δ
)

UNTIMEDq,p := ε = Lq,p ∧ δ = 0 ∧ loc′ = p ∧ Jq,p(X ,X ′)

δ is a global shared variable
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Alternative composition

Idea:
shallow synchronization to improve reachability encoding.

Shallow synchronized runs:
set of local traces compatible wrt synchronization and time.

Exploiting local clocks:
Independent evolution of time.
Time is synchronized only on shared events.
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Local time effect
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Local time effect
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Local time effect
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Local time effect
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Symbolic transition system (Local time)

INIT :=
∧

q∈Q

(loc = q → Iq(X ))∧t = 0

INVAR :=
∧

q∈Q

(loc = q → Zq(X ))

TRANS :=
∧

q∈Q

(loc = q →

(STUTTER ∨ TIMEDq ∨
∨

(q,p)∈E

UNTIMEDq,p))

STUTTER := ε = S ∧ δ = 0 ∧ loc′ = loc ∧ X ′ = X∧t ′= t

TIMEDq := ε = T ∧ δ > 0 ∧ loc′= loc ∧ Fq(
X ′ − X

δ
)∧t ′= t +δ

UNTIMEDq,p := ε = Lq,p ∧ δ = 0 ∧ loc′ = p ∧ Jq,p(X ,X ′)∧t ′= t

δ and T are local
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Shallow synchronization

Shallow synchronization:
for all systems Sj and Sh, the sequence of shared events
performed by Sj and Sh is the same;
for all systems Sj and Sh, for all events a shared by Sj and
Sh, Sj performs the i-th occurrence of a at the same time Sh

performs the i-th occurrence of a;
for all systems Sj and Sh, the time in the last step of Sj is the
same to the time in the last step of Sh.

Different variants of the encoding:
Enumerating all possible combinations of occurrences.
Exploiting uninterpreted functions.

Different interaction with the solver:
Adding sync while unrolling vs after unrolling.
Depth-first search vs. breadth-first search.
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Ring

Path length
Inter Step Shallow
5n 6 6
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Multi-Frequency
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Nuclear reactor
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Scenario feasibility

Scenarios are fundamental for early validation.
Message Sequence Charts (MSCs) are at the core of many
scenario languages (hierarchical MSC, LSCs, UML, ...).
An MSC fixes a (partial-order) sequence of events that
should be feasible in the network.
Bottlenecks:

BMC dies in searching the right positioning of the MSC
events in the k steps.
Interleaving and global time break the locality of the paths
between two synchronizing events.

Main idea of [CMT11]:
Exploit local-time encoding.
Improve incrementality by fixing the sequence of events and
varying only the local path encoding.
Learn invariants on the local path based on the structure of
the scenario.

Dramatic improvement wrt. automata-based encoding.
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Proving scenario unfeasibility

Partitioned k-induction:

we fix the length of the local paths applying k-induction;
details:

base case: encoding of the local path;
step case (localized simple path): every local path cannot
reach new states.

k-induction for hybrid automata:

we alternate discrete and timed transitions;

in the case of loops (not so frequent on local paths) we
apply abstraction techniques.
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Scenario-based vs. automata-based
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Explaining the unfeasibility

Kinds of explanations for the unfeasibility of the MSC m with
additional constraints ϕ:

1 which parts of m and ϕ cannot be executed by the network?
2 why the network is inconsitent with ϕ?
3 why the i-th component is consistent with its instance but

not with the rest of the scenario?
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Explaining the unfeasibility

Kinds of explanations for the unfeasibility of the MSC m with
additional constraints ϕ:

1 which parts of m and ϕ cannot be executed by the network?
Extraction using unsat cores .

2 why the network is inconsitent with ϕ?
3 why the i-th component is consistent with its instance but

not with the rest of the scenario?

A. Cimatti (FBK-irst) SMT-Based Verification with MathSAT SAT/SMT School, June 2011 55 / 77



Explaining the unfeasibility

Kinds of explanations for the unfeasibility of the MSC m with
additional constraints ϕ:

1 which parts of m and ϕ cannot be executed by the network?
2 why the network is inconsitent with ϕ?

Extraction via interpolation :
A = encoding of the network along m;
B = ϕ;

3 why the i-th component is consistent with its instance but
not with the rest of the scenario?
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Explaining the unfeasibility

Kinds of explanations for the unfeasibility of the MSC m with
additional constraints ϕ:

1 which parts of m and ϕ cannot be executed by the network?
2 why the network is inconsitent with ϕ?
3 why the i-th component is consistent with its instance but

not with the rest of the scenario?
Extraction via interpolation :

A = encoding of the i-th component along its instance;
B = the remaining encoding;

A. Cimatti (FBK-irst) SMT-Based Verification with MathSAT SAT/SMT School, June 2011 55 / 77
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5 SMT-based Analysis of Requirements for Hybrid Systems

6 Conclusions and future work
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Requirements are flawed

The bugs are not in the system, but in the requirements!
The systems often implement correctly wrong/incomplete
requirements.
Software system errors caused by requirements errors

Not just a slogan, but a real user need.
Considered as major problem of software development
process by most European companies (EPRITI survey).
Confirmed by NASA studies on Voyager and the Galileo
software errors

Primary cause (62% on Voyager, 79% on Galileo):
mis-understanding the requirements.

Confirmed by the ESA and ERA recent calls on
requirements.
Widely acknowledged from industry across domains (IAI,
RCF, Intecs, ...).

A. Cimatti (FBK-irst) SMT-Based Verification with MathSAT SAT/SMT School, June 2011 57 / 77



Requirements validation

Requirements: descriptions of the functions provided by the
system and its operational constraints.

Requirements validation: checking if the requirements are
correct, complete, consistent, and compliant with what the
stakeholders have in mind.
Target requirements errors:

Incomplete (e.g., incomplete description of a function),
Missing (e.g., missing assumption on lower levels),
Incorrect (e.g., wrong value in condition used to trigger some
event),
Inconsistent (i.e., pair-wise incompatible),
Over-specified (e.g., more restrictive than necessary).

Cover 89% of faults examined in NASA projects.
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Formal checks and feedback
Property-based approach:

One requirement, one formula.
Easy traceability.
Validation based on series of satisfiability problems:

consistent, i.e. if they do not contain some contradiction
(sat of

∧

1≤i≤n ϕ
req
i )

not too strict, i.e. if they do allow some desired behavior
(sat of

∧

1≤i≤n ϕ
req
i ∧ ϕdes)

not too weak, i.e. if they rule out some undesired behavior
(sat of

∧

1≤i≤n ϕ
req
i ∧ ϕund )

Formal feedback:
Traces: witnesses of consistency, compatibility, property
violation
Cores: subset of inconsistent, incompatible, property-
entailing formulas
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HRELTL: hybrid RELTL

For hardware specification, standardized languages based
on temporal logic + regular expressions (RELTL)
For embedded systems, necessary to predicate over:

integer and real variables,
continuous quantities,
instantaneous changes,
continuous evolutions (constraints over derivatives).

Our solution is HRELTL:
RELTL with the addition of:

continuous variables
arithmetic predicates with next and derivatives

Interpreted over hybrid traces.
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Reduction to discrete semantics

RELTL

HRELTL

(with SMT constraints)

The translation τ of a generic HRELTL formula is defined
as:

τ(ϕ) := ψι ∧ ψDER ∧ ψPREDϕ
∧ ψVD

∧ τ ′(ϕ).

Theorem
ϕ and τ(ϕ) are equi-satisfiable.
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Predicates over continuous evolution
Example: a continuous oscillating signal.
-- v is a continuous variable
VAR v: continuous;
-- v does not jump
-- during discrete changes
CONSTRAINT
G ( STEP -> next(v)=v)
-- oscillating behavior
CONSTRAINT
G F ( v>0 ) & G F (v<0)
-- inconsistent scenario
CONSTRAINT
G (v!=0) 0 1 2 3 4

time

�1.0

�0.5

0.0

0.5

1.0

vo
lta

ge
 v

Predicates may observe the value of continuous variable
during continuous evolution.

Discretization not as easy as in the automata case (where
we have only invariants or urgent conditions).
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Additional variables and formulas
New variables:

δt tracks the elapsing of time;
ι tracks if the sampled interval is open or closed;
ζ is a parameter used to avoid the Zeno paradox;
v̇l and v̇r track the left and right derivative of v .

ψι models the represented sequence of intervals to be
compliant with assumptions;

E.g., two consecutive singular intervals if and only if δt = 0.

ψDER encodes the relation among continuous variables and
their derivatives in open intervals;
ψPREDϕ

constrain the set of predicates occurring in ϕ to
model the continuity of represented functions;

if p= holds in an open interval, then p= holds in adjacent
points;
we cannot move from p< to p> without passing through a
state where p= holds.

ψVD encodes that discrete variables do not change value
during a continuous evolution.
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Satisfiability procedure
1 convert hybrid formula into discrete ϕ
2 build a fair transition system Sϕ

3 check whether the language accepted by Sϕ is not empty.

Example:
VAR v: continuous;
CONSTRAINT
G ( STEP -> next(v)=v)
CONSTRAINT
G F ( v>0 ) & G F (v<0)
-- consistent scenario
CONSTRAINT
! G (v!=0)

⇒

11 boolean variables
2 real variables
4 fairness conditions
−− Flattened FSM model generated from stdin
−− Dumped layers are: model ___HE_RELTL_LAYER_PROBLEM__ 

MODULE main
−− Input variables from layer ’model’
−− Input variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
IVAR
delta_time : real;

−− State variables from layer ’model’
−− State variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
VAR
"next(v) = v" : boolean;
time_point : boolean;
v : real;
LTL_INPUT_0 : boolean;
LTL_INPUT_1 : boolean;
LTL_0_SPECF_12 : boolean;
LTL_0_SPECF_11 : boolean;
LTL_0_SPECF_9 : boolean;
LTL_0_SPECF_7 : boolean;
LTL_0_SPECF_5 : boolean;
LTL_0_SPECF_3 : boolean;
LTL_0_SPECF_1 : boolean;

−− Frozen variables from layer ’model’
−− Frozen variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
−− Defines from layer ’model’
−− Defines from layer ’___HE_RELTL_LAYER_PROBLEM__’
DEFINE
"delta_time>0" := delta_time > 0;
"delta_time=0" := delta_time = 0;
"v > 0" := !"v <= 0";
"v <= 0" := ("v < 0" | "v = 0");
"v >= 0" := !"v < 0";
"v != 0" := !"v = 0";
"v < 0" := v < 0;
"v = 0" := v = 0;
LTL_0_SPECF_10 := (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPE
CF_11);
LTL_0_SPECF_6 := (!LTL_0_SPECF_8 | LTL_0_SPECF_7);
LTL_0_SPECF_8 := (v < 0 | LTL_0_SPECF_9);
LTL_0_SPECF_2 := (!LTL_0_SPECF_4 | LTL_0_SPECF_3);
LTL_0_SPECF_4 := (!(v < 0 | v = 0) | LTL_0_SPECF_5);
LTL_0_SPECF_0 := (v = 0 | LTL_0_SPECF_1);

−− Assignments from layer ’model’

−− Assignments from layer ’___HE_RELTL_LAYER_PROBLEM__’

INIT
 time_point

INIT
 !(!(v = 0 | LTL_0_SPECF_1) | (((!LTL_0_SPECF_4 | LTL_0_SPECF_3) | (!LTL_0_SPECF
_8 | LTL_0_SPECF_7)) | (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_
0_SPECF_11)))

TRANS
 ((time_point & (delta_time = 0 & next(time_point))) | ((time_point & (delta_tim
e > 0 & next(!time_point))) | (!time_point & (delta_time > 0 & next(time_point))
)))

TRANS
 (delta_time > 0 −> ((v < 0 −> next(("v < 0" | "v = 0"))) & (!"v <= 0" −> next(!
"v < 0"))))

TRANS
 ((time_point & delta_time > 0) −> (next(v = 0) −> v = 0))

TRANS
 ((!time_point & delta_time > 0) −> (v = 0 −> next(v = 0)))

TRANS
 ("next(v) = v" <−> next(v) = v)

TRANS
 (LTL_INPUT_1 <−> (delta_time = 0 & "next(v) = v"))

TRANS
 next((!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPECF_11)) = LT
L_0_SPECF_11

TRANS
 (LTL_INPUT_0 <−> delta_time = 0)

TRANS
 TRUE = LTL_0_SPECF_12

TRANS
 next((v < 0 | LTL_0_SPECF_9)) = LTL_0_SPECF_9

TRANS
 next((!LTL_0_SPECF_8 | LTL_0_SPECF_7)) = LTL_0_SPECF_7

TRANS
 next((!(v < 0 | v = 0) | LTL_0_SPECF_5)) = LTL_0_SPECF_5

TRANS
 next((!LTL_0_SPECF_4 | LTL_0_SPECF_3)) = LTL_0_SPECF_3

TRANS
 next((v = 0 | LTL_0_SPECF_1)) = LTL_0_SPECF_1

FAIRNESS
 delta_time > 0

FAIRNESS
 (!(v = 0 | LTL_0_SPECF_1) | v = 0)

FAIRNESS
 (!(!(v < 0 | v = 0) | LTL_0_SPECF_5) | !(v < 0 | v = 0))

FAIRNESS
 (!(v < 0 | LTL_0_SPECF_9) | v < 0)

BMC (with fairness)
k = 4
< 1 second

⇒ SAT
0 1 2 3 4

time

�1.0

�0.5

0.0

0.5

1.0

vo
lta

ge
 v

VAR v: continuous;
CONSTRAINT
G ( STEP -> next(v)=v)
CONSTRAINT
G F ( v>0 ) & G F (v<0)
-- inconsistent scenario
CONSTRAINT
G (v!=0)

⇒

11 boolean variables
2 real variables
3 fairness conditions
−− Flattened FSM model generated from stdin
−− Dumped layers are: model ___HE_RELTL_LAYER_PROBLEM__ 

MODULE main
−− Input variables from layer ’model’
−− Input variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
IVAR
delta_time : real;

−− State variables from layer ’model’
−− State variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
VAR
"next(v) = v" : boolean;
time_point : boolean;
v : real;
LTL_INPUT_0 : boolean;
LTL_INPUT_1 : boolean;
LTL_0_SPECF_12 : boolean;
LTL_0_SPECF_11 : boolean;
LTL_0_SPECF_9 : boolean;
LTL_0_SPECF_7 : boolean;
LTL_0_SPECF_5 : boolean;
LTL_0_SPECF_3 : boolean;
LTL_0_SPECF_1 : boolean;

−− Frozen variables from layer ’model’
−− Frozen variables from layer ’___HE_RELTL_LAYER_PROBLEM__’
−− Defines from layer ’model’
−− Defines from layer ’___HE_RELTL_LAYER_PROBLEM__’
DEFINE
"delta_time>0" := delta_time > 0;
"delta_time=0" := delta_time = 0;
"v > 0" := !"v <= 0";
"v <= 0" := ("v < 0" | "v = 0");
"v >= 0" := !"v < 0";
"v != 0" := !"v = 0";
"v < 0" := v < 0;
"v = 0" := v = 0;
LTL_0_SPECF_10 := (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPE
CF_11);
LTL_0_SPECF_6 := (!LTL_0_SPECF_8 | LTL_0_SPECF_7);
LTL_0_SPECF_8 := (v < 0 | LTL_0_SPECF_9);
LTL_0_SPECF_2 := (!LTL_0_SPECF_4 | LTL_0_SPECF_3);
LTL_0_SPECF_4 := (!(v < 0 | v = 0) | LTL_0_SPECF_5);
LTL_0_SPECF_0 := (v = 0 | LTL_0_SPECF_1);

−− Assignments from layer ’model’

−− Assignments from layer ’___HE_RELTL_LAYER_PROBLEM__’

INIT
 time_point

INIT
 !((v = 0 | LTL_0_SPECF_1) | (((!LTL_0_SPECF_4 | LTL_0_SPECF_3) | (!LTL_0_SPECF_
8 | LTL_0_SPECF_7)) | (!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0
_SPECF_11)))

TRANS
 ((time_point & (delta_time = 0 & next(time_point))) | ((time_point & (delta_tim
e > 0 & next(!time_point))) | (!time_point & (delta_time > 0 & next(time_point))
)))

TRANS
 (delta_time > 0 −> ((v < 0 −> next(("v < 0" | "v = 0"))) & (!"v <= 0" −> next(!
"v < 0"))))

TRANS
 ((time_point & delta_time > 0) −> (next(v = 0) −> v = 0))

TRANS
 ((!time_point & delta_time > 0) −> (v = 0 −> next(v = 0)))

TRANS
 ("next(v) = v" <−> next(v) = v)

TRANS
 (LTL_INPUT_1 <−> (delta_time = 0 & "next(v) = v"))

TRANS
 next((!((!LTL_INPUT_0 | !LTL_0_SPECF_12) | LTL_INPUT_1) | LTL_0_SPECF_11)) = LT
L_0_SPECF_11

TRANS
 (LTL_INPUT_0 <−> delta_time = 0)

TRANS
 TRUE = LTL_0_SPECF_12

TRANS
 next((v < 0 | LTL_0_SPECF_9)) = LTL_0_SPECF_9

TRANS
 next((!LTL_0_SPECF_8 | LTL_0_SPECF_7)) = LTL_0_SPECF_7

TRANS
 next((!(v < 0 | v = 0) | LTL_0_SPECF_5)) = LTL_0_SPECF_5

TRANS
 next((!LTL_0_SPECF_4 | LTL_0_SPECF_3)) = LTL_0_SPECF_3

TRANS
 next((v = 0 | LTL_0_SPECF_1)) = LTL_0_SPECF_1

FAIRNESS
 delta_time > 0

FAIRNESS
 (!(!(v < 0 | v = 0) | LTL_0_SPECF_5) | !(v < 0 | v = 0))

FAIRNESS
 (!(v < 0 | LTL_0_SPECF_9) | v < 0)

INVARSPEC
FALSE

PRED
v<0
PRED
v>0
PRED
v=0
PRED
LTL_0_SPECF_1
PRED
LTL_0_SPECF_3
PRED
LTL_0_SPECF_5
PRED
LTL_0_SPECF_7
PRED
LTL_0_SPECF_9
PRED
LTL_0_SPECF_11
PRED
LTL_0_SPECF_12
PRED
"next(v) = v"
PRED
time_point
PRED
LTL_INPUT_0

PRED
LTL_INPUT_1

K-induction + predicate abs.
k = 6, 14 predicates
< 1 second

⇒ UNSAT
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OTHELLO specification language

OTHELLO = Object Temporal Hybrid expressions
Linear-time temporal Logic

Example:
The train trip shall issue an emergency brake

command, which shall not be revoked until the
train has reached standstill and the driver has
acknowledged the trip (ETCS SRS Sec. 3.13.8.2)

for all t of type Train (t .trip implies
(t .emergency brake until ( t .speed = 0 and t .driver .ack ) ) )
Result of industrial project EuRailCheck.

Base of MSR award winner project OthelloPlay.
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Outline

1 MathSAT

2 SMT-based Verification of Infinite State Transition Systems

3 SMT-based Verification of Software

4 SMT-based Verification of Hybrid Systems

5 SMT-based Analysis of Requirements for Hybrid Systems

6 Conclusions and future work
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Conclusions
Strong potential for SMT-based verification

Different problems at different levels of abstraction

Lifting SAT-based verification to SMT-based verification

Many opportunities for different perspective (e.g. implicit
abstraction, local time semantics) leveraging SMT-based
verification
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Future directions
MathSAT: interpolation for BV, arrays, non-linear arithmetic

Tighten integration with NuSMV core engines

Shallow synchronization for non-linear hybrid automata

Verification of embedded software and hybrid systems

Formal requirements engineering: how to automate the
formalization?
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Next June, SAT’12 in Trento
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Thanks for your attention
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