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Core technique: symbolic reasoning

Basic idea

@ Choose some of state (e.g, program or
function input) to be symboilic:
introduce variables for their values

® Computations on symbolic state
produce formulas rather than concrete
(e.q., integer) values

@ Construct queries with these formulas,
solve to answer questions about
possible program behavior

Why symbolic reasoning?

+ Precise: formulas can capture exact
program behavior without
approximation

+ Complete solver. (i.e. decision
procedure) will always produce a
correct solution without human help

+ Flexibility. Formulas independent of
particular form of query

Why not symbolic reasoning?

- Precise, but often not complete: don't
prove that a given behavior can never
happen

- Complete solver, but solution not
guaranteed within reasonable
space/time

- Flexibility, but may be be less efficient
than more specialized approach

Possible approaches

Weakest precond./ . Trace based/
verif. cond./ Online/ concolic/
all-paths proper dynamic

symb. exec. symb. exec. symb. exec.

All paths, One path, One path,

all branches each branch one branch

« < more symbolic < M > more concrete > »




Applications

Vulnerability signatures [Oakland'06,CSF'07] Protocol replay
[CCS'06] Deviation discovery [USENIX'07] Patch-based exploit
generation [Oakland'08] Modeling content sniffing [Oakland'09]
Influence measurement [PLAS'09] Loop-extended SE
[ISSTA'09] Protocol-level exploration [RAID'09] Kernel API
exploration Decomposing crypto functions [CCS'10] Fixing
under-tainting [NDSS'11] Protocol-model assisted SE [USENIX11]
JavaScript SE [Oakland'10] Static-quided test generation
[ISSTA'Nl] Emulator verification [submitted)]
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Challenges of binary symbolic reasoning

@ Instruction set complexity
® Rewrite to simpler intermediate language
® Variable-size memory accesses

® Lazy conversion with mixed-granularity
storage

® No type distinction between integers
and pointers
® Analyze symbolic expression structure
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Binary-level bug-finding

Setting: vulnerability finding

oFind exploitable bugs in software, before the bad
quys do
o Many bugs found by independent researchers,
without benefit of source code
o Example vulnerability type: buffer overflow
eIncorrect or missing bounds check allows
malicious input to overwrite other sensitive state
eDespite extensive research, and some progress
in practice, still a major bug category in C/C+
programs

Static analysis

® Widely used at source-code level

® Can be sound (report all potential problems), at
cost of false positives (imprecision)

® Challenge 1. more difficult at binary level
® Soundness/precision tradeoff less favorable

® Challenge 2: developers have a low tolerance for
false positives
@ Won't use a tool that wastes their time




Combined static/dynamic approach

‘ Dynamic tracing }—»{ Static analysis }—»{ Symbolic execution ‘

® Before static analysis, use dynamic traces to help
where static binary analysis has trouble (eg.,
indirect control flow)

® Design and optimize static analysis for
binary-level challenges (e.g., variable identification,
overlapping memory accesses)

® After static analysis, prioritize true positives by
searching for test cases with symbolic execution
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Key challenge: guiding the search

@ Increase the chances that the paths we

explore will lead to a bug
® Path must reach the code location of the
bug
® Program state at that location must
trigger the bug
® Combination of two approaches:

1. Data-flow slice and control-flow distance
to direct paths toward a potential bug

2. Explore patterns of loop body paths to
cover cases likely to overflow
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Sub-problem: control-flow distance

® An interprocedural control-flow graph has

nodes for statements, and edges between
statements and for calls and returns

) However, we can't use a reqular graph distance
measure (Dijkstra’s algorithm), because of call
and return matching

® Exclude: £ calls g, g returns to h

®) Instead, new two-phase distance algorithm that
first computes entry-to-exit distances bottom
up, then adds unmatched returns and calls




Guidance results

Unguided Guided

Benchmark | Paths Time (s) | Paths Time (s)
BIND/b4 1 1.9 1 1.8
Sendmail/s5 3 19.0 3 22.9
BIND/b1 54 2.8 20 3.6
BIND/b2 137 13.3 72 25.1
BIND/b3 9 1.6 4 2.6
Sendmail/s2 16 2.9 9 97.0
Sendmail/s7 56 6.9 1 1.9
WU-FTPD/£1 309 8.1 1 1.1
WU-FTPD/£2 | 1455 65.8 1 14

WU-FTPD/£3 143 60.0 18 11.
Sendmail/s5 T/0 > 21600.0 332 200.4
Sendmail/s6 T/0 > 21600.0 86 1.3
Sendmail/s1 T/0 > 21600.0 | 7297 74744
Sendmail/s3 T/0 > 21600.0 T/0 > 21600.0
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What do our formulas look like?

@ The key theory is fixed-size bit-vectors,
representing machine integers

® Exact treatment of overflow, signs, etc.
important for binaries

@ Could use arrays for general memory,
lookup tables, but usually don't
@ Instead, fix memory layout to be concrete
(or unconstrained symbolic)
@ Usually easy to solve, whether SAT or
UNSAT

Solver performance

For easy formulas, mundane changes matter (sample
of 84355 formulas, not a general tool comparison)

6000

5000

4000

Runtime (s)

3000
2000
1000

0

STPexternal, batch, more s

STPlibrary, batch, less si
imp.

imy

P.

Z3library, incremental
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Binary-level influence measurement

Due and undue influence

® How much influence should network
inputs have on a program?
® For instance, on an indirect jump target

® Some influence — select a legal behavior
® Too much influence — control flow
hijacking attack

High and low influence examples

void (*func_ptr) (void);
func_ptr = untrusted_input();
(*func_ptr) O ;

void (*func_ptr) (void);
switch (untrusted_input()) {

}

case CMD_OPEN: func_ptr = &open_file;
case CMD_READ: func_ptr = &read_file;
default: func_ptr = &error;

(*func_ptr) ) ;




Channel capacity as influence

@ For a given variable, how many values
can an attacker produce?

@ Influence = log, (# values)

® Special case of channel capacity from
information theory

Scalability and precision

@ Want to analyze large (e.g., commercial)
software

® Want results with no error

@ Our goal: improved trade-off points
between these ideals

Problem statement

® Given:
@ A deterministic program with designated
inputs
® An output variable
® Question: how many values of the
output are possible, given different
inputs?

Program to formula example

/* Convert low 4 bits of integer to hex */
char tohex(int i) {
int low = i & Oxf;

char v;
if (low < 10)
v =0’ + low;
else
v = ’a’ + (low - 10);
return v;

}

Dynamic: (1&15) <10\ (v=48+ (1& 15))

Program to formula example
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}

Static: ((1&15) < 10N (v=48+(1&15)) V
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Point-by-point exhaustion

®Is v = f(i) satisfiable?

® Suppose it is, by vi = f(i;)

@Is v = f(i) Av # v, satisfiable?
0.

@ We repeat up to at most 2° = 64

distinct outputs, so every bound up to
6 bits is exact

Range exclusion

@®Isv="F(i)A(a <v<Db) satisfiable?
® If not, a whole range is excluded
@ If so, can subdivide

@® We also use this with binary search to
find the minimum and maximum
outputs

Random output sampling

® Pick v, at random, and check if
v, = f(1) is satisfiable

® By default, our tool uses 20 samples,
and computes a 95% confidence
interval

Probabilistic model counting

@ Use XOR streamlining [GSS06] to
probabilistically reduce #SAT to SAT

@ Analogy: counting audience members
@® Random parity constraints over enough
bits are effectively independent

@ Perform repeated experiments with
different numbers of constraints




Probabilistic model counting

Choose # of constraints so that p(SAT) ~ 0.5

1

0.8

0.6
p(SAT)

0.4

0.2

0+

0 5 10 15 20 25 30 35

# parity constraints added

Identity function

v =1

Low | High | Sample | #SAT | Actual

604 | 320 |[318,320]| 320 | 32

‘ , Feasible Point

[ Infeasible Range
] ~100% (Probabilistic)
[F==] ~50% (Probabilistic)
[E=—] < 5% (Probabilistic)

tohex

sprintf (&v, "%x", i & O0xf)

Static:
Low | High | Sample | #SAT | Actual

400|400, N/A | N/A 4 ‘

Dynamic:
Low | High | Sample | #SAT | Actual
332|332 N/A | N/A |09, 10 ——
258 258 | N/A | N/A | log,6

Mix and duplicate

flxoy)=(x@y)o (xDy)

£ (0x00000042) = 0x00420042
£ (0x02461111) = 0x13571357
f (Oxcafebebe) = 0x74407440

Low | High | Sample | #SAT | Actual

i | Fdelll
 — — —

604 320 |[00,286]| 158 | 16

Results summary

Goal: distinguish attacks from false positives

RPC DCOM (Blaster)

ATPhttpd
SQL Server (SIammer)\ \

RPC DCOM %esp
Samba function pointer

Confirming attacks

©® Vulnerable Windows and Linux binaries

@ Real attacks all have high influence, at
least 26 bits
Program | High | Sample | #SAT | Value Set

RPC DCOM | 320 | [318, 320] | 304 | mmmimmssy
SQL Server | 309 | [267, 28.3] | 266 | HiHil
ATPhttpd 320 | [318,320] | 310 | muwmwm=




Reveal false positives

@ Examples cause taint analysis warnings

® Measured influence exactly, less than 5
bits

Directions for improving solving

@ Further targeted query strategies
® Eg, two-bit patterns [Meng & Smith,
PLAS']
@ Refined strategy for choosing number
of parity constraints
@ Interface with off-the-shelf #SAT
solvers

® Question: how to restrict counting to
output bits?

Program | Low | High | Value Set

RPC %esp 381 | 381 | ———

Samba func. ptr | 332 | 332 | ————
Outline

Strings and browser content sniffing

Web browser content sniffing

@ An HTTP response contains a content

type header
@ Eg, text/html or image/png

@ But sometimes (~1%) the content type
is missing or invalid

@ Thus browsers sometimes attempt to
sniff (quess) the type from the content
or URL

When content sniffing goes bad

@ Content type matters because it
affects privilege

@ Some types of content (HTML, Flash) can
contain code

® An unexpected upgrade can allow an
untrusted user to inject JavaScript
@ le, a kind of cross-site scripting (XSS)
® Usually a mismatch between the
browser and another filter

HotCRP attack example

B Conference site allows authors to upload
PostScript papers

®) What if the site accepts this file as PS, but the
reviewer's browser considers it HTML?

’%!PS-Adobe
hhCreator: <script>submitReview("A+");

® Your paper gets accepted :-)




Modeling content sniffing

@ To understand such attacks, we want a
formal model of the sniffer's behavior

@®Eg, M"(c) = true if the file contents c
are sniffed as HTML
® Boolean combinations correspond to
possible mismatch attacks
® M7 (c) A Mj'(c)

Model extraction

@ The content-sniffing strategies of
closed-source browsers are often un-
or under-documented

® We look at IE 7, Safari 3.1

@ Extract from the binary using white-box

exploration (symbolic execution)

@ Model is a disjunction of path
conditions from accepting paths

Abstracting string functions

® Sniffing code makes heavy use of
string routines

© Reason about their semantics, not their
implementation

+ Summarize multiple paths
+ Skip implementation details

+ Take advantage of specialized solvers
(future)

Translating string functions

1. Recognize over 100 binary-level
functions (mostly documented)

2. Canonicalize to 14 semantic classes

3. Express in terms of a core constraint
language

4. Reduce core constraints to STP bit
vectors

Exploration advantage of strings

Block coverage for Safari:

200
190
180
170
160
150
140
130
120 H &
110
100 ket
90

Number of blocks

strings —=— |
bytes —+—

0 5000 10000 15000 20000
Time(seconds)

Summary of attacks found

@ Tool finds attacks to upgrade 6 content
types each in IE and Safari to HTML.

® But which pass a common server-side
filter

@ Wikipedia has a more complex filter, but it
can also be bypassed

@ Automatically generated PS — HTML
example:

%!t ?HPTw\nOtKoCglD<HeadswssssRsD




Happy ending: safe sniffing

® Our models can be used to create
matching server-side filters

® We propose client-side design
principles for safe sniffing

® Avoid privilege escalation
@ Prefix-disjoint signatures

® Adopted by IE 8 (partial), Chrome, and
HTML 5
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Strings and JavaScript vulnerabilities

Example attack: gadget overwrite

Example attack: explanation

® Cross-site scripting can exist entirely in
client-side JavaScript

® Unsanitized data passed to HTML
creation (document .write) or eval

@ In the example, a malicious link injects
code into the TVGuide gadget, turning it
into a phishing vector

What's new here?

® Source/sink problem, somewhat like

SQL injection or server-side XSS, but:
® JS code takes many kinds of inputs as
unstructured strings, requiring custom

parsing
® Sanitization is not standardized, and often
application-specific

— More difficult challenges for string
reasoning

Exploration overview

Two kinds of exploration:

@ Event space: GUI actions such as
clicking check-boxes or links
@ Value space: contents of form,

message, and URL inputs
® Explore new program paths
® Check whether sanitization is sufficient
(compare to attack grammar)




Kudzu system overview

INPUT FEEDBACK SYSTEM

WEB
BROWSER

DYNAMIC PATH
SYMBOLIC [ ,ICONSTRAINT]
INT

I3
INTERPRETER|

GUI
EXPLORER|

uuuuuuuuu

VULNERABILITY
CONDITION
EXTRACTOR

Usage of string operations

Match / Test Substr /
/split Substring /
1% CharAt /
Replace / CharCodeAt

EncodeURI/ 5%
DecodeURI

8%

IndexOf /
LastIndexOf
/ Strlen
78%

Expressiveness

HAMPI CFGs
(undecidable)

® Reqgular expression
membership

@ Arbitrary concatenation
Wi ] == (word equations)

—— @ String length function

aaaaaaaaa

® Can also mix in boolean and (31-bit)
integer constraints

Nested architecture

Approach overview

® Flatten concatenations to a linear
sequence

® Abstract to length constraints

® For each length assignment:

® Expand regexps (HAMPI code)
® Combine in single bitvector query
® bitvector SAT — string SAT

® Exhausted lengths — string UNSAT

Approach details

’ L R L R
‘ oo
(1.1) 22) (3.3) (4,4)
S1=52.53 S2 = S2_COPY
S4 =S3.S52 S3 = S3_COPY
INPUT CONGAT CONSTRAINTS NEW CONSTRAINTS
DUE TO COPY CREATION

® Real JavaScript “regexes” are more
complex that textbook ones

® Regexp lengths — ultimately periodic set

® Translate replace with fixed number of
occurrences




Kaluza performance results

Overall results

@ Tested 5 AJAX applications and 13
iGoogle gadgets (all live)
@ Event and value space exploration both

contribute to coverage
® But some code and events not yet
covered

@ Found vulnerabilities in 11 apps, including
2 missed by our previous taint-directed
fuzzer

Summary, and for more info

® Symbolic execution and SMT solvers
enable a wide variety of security
applications
® Web sites have papers and TRs, plus:
@ http://bitblaze.cs.berkeley.edu/
@ BitBlaze core: Vine and TEMU (GPL/LGPL)

@ http://webblaze.cs.berkeley.edu/

® Kaluza solver binary download and online
demo




