Solvers for
Theories of Strings

Vijay Ganesh,Adam Kiezun

Shay Artzi, Philip Guo, Pieter Hooimeijer, Michael Ernst
MIT

Monday June 13,201 |

Friday, June 17, 2011

Problem Statement
Efficient Solver for Analysis of String Programs

Common String Operations String Programs Types of Errors
Functions Traditional Apps Memory-related Errors
String concatenation C/C++/Java Apps (Java String Library) Buffer overflow
String extraction C#/.NET Code injection
Predicates Web Apps Improper Sanitization
String comparison Sanitization code in PHP, JavaScript SQL injection
String assignment Client-side and server-side XSS scripting
Sanity checking of strings using RE | Scripting code Incomplete sanity checking

Friday, June 17, 2011

Problem Statement
Efficient Solver for Analysis of String Programs

String Program Specification

l l

(-)

String Formulas

Program Reasoning String
Tool Solver

*‘ SAT/UNSAT

Program is Correct!?
or Generate Tests

Friday, June 17, 2011

HAMPI String Solver

String
Formulas

 ——

HAMPI
String Solver

<

e X = concat(“SELECT...”,v) AND (X € SQL_grammar)
* JavaScript, PHP, ... string expressions

* NP-complete

SAT

UNSAT

Rest of the Talk

e HAMPI Logic: A Theory of Strings

* Motivating Example: HAMPI-based Vulnerability Detection App
e How HAMPI works

e Experimental Results

e Related Work

* HAMPI 2.0

Friday, June 17, 2011

Theory of Strings

The Hampi Language

PHP/JavaScript/C++...

HAMPI: Theory of Strings

Notes

Var a;
$a = ‘name’

Var a: |1..20;
a = ‘name’

Bounded String Variables
String Constants

string_expr.” is ”’

concat(string_expr,* is *);

Concat Function

substr(string_expr, 1,3)

string_expr[1:3]

Extract Function

assignments/strcmp
a = string_expr;
a /= string_expr;

equality
a = string_expr,
a /= string_expr;

Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE
string_expr in SQL
string_expr NOT in SQL

Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

Contains Predicate
(Substring Predicate)

Friday, June 17, 2011

HAMPI Solver Motivating Example

SQL Injection Vulnerabilities

Buggy Malicious SQL Query
Script

>

4 w, Unauthorized Backend
N M\ Database Results DataBase

CCCCCCCCCCCCCCCCCCCCCCCC

SELECT m FROM messages WHERE id="I" OR | = |

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Web Vulnerabilities by Class

Q1-Q2 2009

2% 3%

i

7%
/ Jl sQt injection

8% - Cross-Site Scripting C°d9 Injection
-~ il Authentication & [information Leak/Disclosure
Authorization [Cross-Site Request Forgery

[:] Buffer Errors D
Web Server
' —_— [l Path (Directory)
8% Traversal

- Web Browser

25%

17%

\ Source: IBM Internet Security Systems, 2009
I 12% Source: Fatbardh Veseli, Gjovik University College, Norway

14%

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Buggy Script

if (input in regexp(“[0-9]+"))
query :=“SELECT m FROM messages WHERE id="" + input + “’*)

* input passes validation (regular expression check)
e query is syntactically-valid SQL

* query can potentially contain an attack substring
(e.g., " OR‘I" =°I)

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Should be: A[@ Buggy Script
if (input in regexp(10-9]+”

query :=“SELECT m FROM messages WHERE id="" + input + “’*)

* input passes validation (regular expression check)
e query is syntactically-valid SQL

* query can potentially contain an attack substring
(e.g., " OR‘I" =°I)

Friday, June 17, 2011

HAMPI Solver Motivating Example

SQL Injection Vulnerabilities

if (mput in regexp(‘10-91+))

Specification

! !

4)

String Formulas

Program Reasoning Tool HAMPI

I
—‘ SATTUNGAT

Generate Tests/
Report Vulnerability

|0

Rest of the Talk

e HAMPI Logic: A Theory of Strings

e HAMPI-based Vulnerability Detection App
e How HAMPI works

e Experimental Results

e Related Work

* HAMPI 2.0

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Input String [>Var v @12

cfg Sq/Small .= "SELECT ” [a-z]+ " FROM " [a-z]+ " WHERE " Cond,

SQL

$ cfg Cond := Val"=" Val | Cond" OR " Cond,
Grammar

cfg Val:=[a-z]+ | " [a-z0-9]* ™ | [0-9]+;

SQL Query $va| g := concat("SELECT msg FROM messages WHERE topicid=", v, "");

assert v in [0-9]+; “q is a valid SQL query”’
assert g in Sg/Small,

SQLI attack

conditions assert q contains "OR ‘1'='1";=— “/q contains an attack vector”’

12

Friday, June 17, 2011

Bounding, expressiveness and efficiency

Hampi Key Conceptual Idea

Complexity of

L =L n.nL Current Solvers
Context-free Undecidable n/a
Quantified

Regular

PSPACE-complete

Boolean Logic

Friday, June 17, 2011

Bounded

NP-complete

SAT

rcenc i prace

13

Hampi Key |ldea: Bounded Logics
Testing,Vulnerability Detection,...

* Finding satisfying assighment is key

* Short assighments are sufficient

* Hence, bounding strings is sufficient

* Furthermore, bounded logics are easier to decide

* HAMPI bounds sets defined by Context-free Grammars (CFG)
and Regular Expressions (RE)

Friday, June 17, 2011

| 4

Hampi Key |ldea: Bounded Logics
Bounding vs. Completeness

* Bounding leads to incompleteness
* Testing (Bounded MC) vs.Verification (MC)
* Bounding allows trade-off (Scalability vs. Completeness)

* Completeness (also, soundness) as resources

Friday, June 17, 2011

|5

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Input String I:>Var v o112,

cfg Sq/Small .= "SELECT " [a-z]+ " FROM " [a-z]+ " WHERE " Cond,

SQL

$ cfg Cond := Val"=" Val | Cond" OR" Cond,
Grammar

cfg Val:=[a-z]+ | """ [a-zO-9]* ™ | [0-9]+;

SQL Query $va| g := concat("SELECT msg FROM messages WHERE topicid=", v, "");

assert v in [0-9]+; “q is a valid SQL query”’
assert g in Sg/Small;

SQLI attack

conditions assert q contains "OR ‘1'=‘1":=— ‘““q contains an attack vector”

|6

Friday, June 17, 2011

How Hampi VVorks

Bird’s Eye View: Strings into Bit-vectors

varv 4 Hampi
Cfg E := “()” | E E | “(“ E “)”;
Y

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector - g
Solution

Find a 4-char string v: I
*(v)isinE l

e (v) contains ()()

String Solution

v =)0(

|7
Friday, June 17, 2011

How Hampi Works

Unroll Bounded CFGs into Regular Exp.

var v :4;
Cfg E := “()” I E E | “((‘ E “)”;
val q := concat(“(“,v,”)”);

assert q in E;
assert q contains “()()”;

Hampi

Friday, June 17, 2011

\ 4

| Normalizer |
| STP Encoder |

([00 + (O)]) +
Bound(E,6) = ()[O() * ()] *

[00 *+ (D10

Bit-vector
Constraints [N

>
STP

| STP Decoder |

'

String Solution

v =)0(

Bit-vector - J
Solution

18

var v :4;

assert q in E;
assert q contains “()()”;

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

Hampi

Cfg E := “()” | E E |“((‘ E“)”;

val q := concat(“(“, v, ”)”);

Friday, June 17, 2011

\4
| Normalizer |

STP Encoder

Bound Auto-derived
/< (OO0 + ()] +

Bound(E,6) = (O[O0 + ()] +

| STP Decoder |
v

String Solution

v =)0(

[00 + (D10
Bit-vector
Constraints)f)
STP
Bit-vector - /
Solution

|18

STP Bit-vector & Array Solver

Program
Expressions =

(x =z+2 OR
mem[i] +y <=01I)

STP Solver

<

* Bit-vector or machine a
* Arrays for memory

e C/C++/Java expressions
* NP-complete

Friday, June 17, 2011

rithmetic

SAT

UNSAT

19

Impact of STP: Notable Projects

* Enabled Concolic Testing
e |00+ reliability and security projects

Category Research Project Project Leader/Institution

ACL2 Theorem Prover + STP Eric Smith & David Dill/Stanford
Formal Methods Verification-aware Design Checker |Jacob Chang & David Dill/Stanford
Java PathFinder Model Checker Mehlitz & Pasareanu/NASA

BitBlaze & WebBlaze Dawn Song et al./Berkeley

Program Analysis BAP David Brumley/CMU

Klee, EXE Engler & Cadar/Stanford

Automatic Testing SmartFuzz Molnar & Wagner/Berkeley
Security Kudzu Saxena & Song/Berkeley
S2E & Cloud9 Bucur & Candea/EPFL

Hardware Bounded Blue-spec BMC Katelman & Dave/MIT
Model-cheking (BMC) |BMC Haimed/NVIDIA

Friday, June 17, 2011

20

1,000,000 Constraints

The History of STP

e STP

e EXE by Engler et al

* Enabled Concolic Testing

* BAP/BitBlaze by Song et|al.
* Model checking by Dill e

100,000 Constraints

Friday, June 17, 2011

* Solver-based languages (Alloy team)
* Solver-based debuggers

* Solver-based type systems

* Solver-based concurrency bugfinding

* HAMPI: String Solvers
* Ardilla by Ernst et al.
* Kudzu & Kaluza by Song et al.
* Klee by Engler et al.

* George Candea’s Cloud 9 tester
o STP + HAMPI exceed 100+ projects

2005

2009 Today

21

Key Contributions

STP Abstraction-refinement | Concolic
Bit-vector & Array Solver!+ for Solving Testing

HAMPI App-driven Bounding for |Analysis of
String Solver! Solving Web Apps
(Un)Decidability Insights from Practical First results for
results for Strings Applications strings+length

|. 100+ research projects use STP and HAMPI
2. STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
3. ACM Best Paper Award 2009

Friday, June 17, 2011

CAV 2007
CCS 2006
TISSEC 2008

ISSTA 2009°
TOSEM 201 |
(Invited/in
submission)

In submission

22

How Hampi VVorks

Bird’s Eye View: Strings into Bit-vectors

varv 4 Hampi
Cfg E := “()” | E E | “(“ E “)”;
Y

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector - g
Solution

Find a 4-char string v: I
*(v)isinE l

e (v) contains ()()

String Solution

v =)0(

23
Friday, June 17, 2011

How Hampi VVorks

Unroll Bounded CFGs into Regular Exp.

var v : 4;

Cfg E := “()” | E E |“(“ E“)”;
Step |:

val q := concat(“(“,v,”)”);

assert q in E;
assert q contains “()()”;

(")

Auto-derive
lower/upper bounds

— > [6,6]

Step 2: |cfgE="(" | EE|“("E")’

Friday, June 17, 2011

[L.B]
on CFG
\ Y,
4 p
Look for
minimal length
string
\ J

> ()"

24

How Hampi VVorks

Unroll Bounded CFGs into Regular Exp.

Step 3:

Step 4:

Friday, June 17, 2011

Length: 6

Cfg E := ‘(()” | E E |“(“ E“)”

Min. length constant: ”()”

Length: 6

-
Recursively

expand
non-terminals:

Cfg E := “()” | E E |“((‘ E(‘)”

Min. length constant: ()"

Construct Partitions

~N

[4,2]
[2,4]

| B3t

_ Y,
r N
Recursively
expand
non-terminals:
Construct RE
_ Y,

RSOrE
tHo1
[1,4,1]

(0)0

> 0(0)
((0))

25

Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

r ™
. Recursivel
Length: 6 > Y
expan (0)0
cfgE:=()" |EE|“(“ E*)” < non-terminals: - 28;;
Construct RE
Min. length constant: ”()” >
- y,

*Dynamic programming style

* Works well in practice

26

Friday, June 17, 2011

Unroll Bounded CFGs into Regular Exp.

Managing Exponential Blow-up

ength: i Recursivel A
o] T |
cfgE:=()" |EE|“(“ E*)” < non-terminals: -
Construct RE)
Min. length constant: ”()” >
([O0 + (O] +
Bound(£6) —> ()[00) + (0)] +
[00 + ()]0

Friday, June 17, 2011

How Hampi VVorks
Converting Regular Exp. into Bit-vectors

Encode regular expressions recursively
« Alphabet{(,)}—=0, 1

e constant — bit-vector constant

* union + — disjunction V

e concatenation — conjunction A

« Kleene star * — conjunction A

« Membership, equality = equality

(v)Ye O[OO +]I +TOO + MIO + (OO + M

ﬂ ﬂ l

Formula ®; V Formula ®, V Formula @,

B[0]=0AB[11=1A {B[21=0AB[3]=1 AB[4]=0AB[5]=1 V..

Friday, June 17, 2011

28

How Hampi VVorks
Converting Regular Exp. into Bit-vectors

(v)e OLOO + M + Lo+ MIO + (OO + (OO

| | |

Formula ®; V Formula ®, V Formula &,

B[0]1=0 A B[1]=1 A {B[2]=0AB[3]=1AB[4]=0AB[5]=1 V...

e Constraint Templates

e Encode once, and reuse

e On-demand formula generation

Friday, June 17, 2011

How Hampi VVorks

Decoder converts Bit-vectors to Strings

var v : 4; H am p|
Cfg E := “()” | E E | “(“ E (‘)”;
Y

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l

Bit-vector
STP Encoder Constraints [~ N

>
STP

<
STP Decoder Bit-vector ~—
Solution

Find a 4-char string v: I
*(v)isinE l

* (v) contains ()()

String Solution

v =)0

30

Friday, June 17, 2011

Rest of the Talk

e HAMPI Logic: A Theory of Strings
* HAMPI-based Vulnerability Detection App

e How HAMPI works
e Experimental Results

e Related Work

e Future Work

Friday, June 17, 2011

31

HAMPI: Result |
Static SQL Injection Analysis

1000

100

o
10 éa
Q
¢ 3 1 '%
0‘ * N
"o 01'2
.0 . ()
. % |
|—

0.01

1 10 100 1000 10000 100000

Grammar Size (# of productions)

e | 367 string constraints from Wasserman & Su [PLDI'07]
 Hampi scales to large grammars

e Hampi solved 99.7% of constraints in < |sec

* All solvable constraints had short solutions

Friday, June 17, 2011

32

HAMPI: Result 2

Security Testing

 Hampi used to build Ardilla security tester [Kiezun et al., ICSE’'09]

* 60 new vulnerabilities on 5 PHP applications (300+ kLOC)

e 23 SQL injection
e 37 cross-site scripting (XSS) «

5 added to
US National Vulnerability DB

* 467 of constraints solved in < | second per constraint

e |00% of constraints solved in <|0 seconds per constraint

Friday, June 17, 2011

33

HAMPI: Result 2
Security Testing and XSS

» Attackers inject client-side script into web pages

* Somehow circumvent same-origin policy in websites

e echo “Thank you $my_poster for using the message board”;

e Unsanitized $my_poster

e Can be JavaScript

e Execution can be bad

Friday, June 17, 2011

34

HAMPI: Result 3
Comparison with Competing Tools

25

1 20

[—Y
92}

|_I
o
average time (sec.)

CFGAnalyzer

(&)

o
u®
O\
\
llll
*
lllllll
.
llll
o®

o
p®
lllllllll
lllllllllllllllllllllllllllllllllll

string size (characters)

* HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+

Friday, June 17, 2011

HAMPI: Result 3
Comparison with Competing Tools

RE intersection problems

* HAMPI 100x faster than Rex (MSR)

e HAMPI 1000x faster than DPRLE (U.Virginia)

* Pieter Hooimeijer 2010 paper titled ‘Solving String Constraints Lazily’

Friday, June 17, 2011

36

HAMPI: Result 4
Helping KLEE Pierce Parsers

HAMPI for Klee

e Klee provides API to place constraints on symbolic inputs

e Particularly useful for programs with highly-structured inputs

e Manually writing constraints is hard

e Specify grammar using HAMPI, compile to C code

e 2-5X improvement in line coverage

Friday, June 17, 2011

37

Impact of Hampi: Notable Projects

Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Ardilla for PHP (SQL injections,

. . Kiezun & Ernst/MIT
cross-site scripting)

Security Testing

Klee Engler & Cadar/Stanford

Concolic Testing SAGE Godefroid/Microsoft Research
Kudzu Saxena & Song/Berkeley
No Tamper Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley

38

Friday, June 17, 2011

Impact of Hampi: Notable Projects

Tool Name Description

JavaScript Bug Finder & Vulnerability Detector

NoTamper' Parameter Tamper Detection

Friday, June 17, 2011

Project Leader/
Institution

Saxena
Akhawe
Hanna

Mao
McCamant
Song/Berkeley

Bisht

Hinrichs/U of Chicago
Skrupsky

Bobrowicz

Vekatakrishnan/ U. of lllinois,
Chicago

39

Impact of Hampi: Notable Projects

No lamper

sca0022 www.fotosearch.com

* Client-side checks (C), no server checks

* Find solutions S),S,... to C, and solutions Ej|,E»,... to ~C by calling HAMPI
* E|,Ey,... are candidate exploits

® Submit (S1, El),... to server

* If server response same, ignore

* If server response differ, report error

Friday, June 17, 2011

40

Tool Name

Related Work

Project Leader/

Institution

Bjorner; Tillman,Veanes et al.

(Microsoft Research, Redmond)

Comparison with HAMPI

e HAMPI
+ Length+Replace(si,s2,s3)
- CFG

Mona

Karllund et al. (U. of Aarhus)

Hooimeijer (U. of Virginia)

* Translation to int. linear arith. (Z3)

e Can encode HAMPI & Rex
e User work

e Automata-based

* Non-elementary

* Regular expression constraints

Friday, June 17, 2011

4]

Topics Covered Today

e HAMPI Logic: A Theory of Strings

e HAMPI-based Testing App

e How HAMPI works

* Another HAMPI-based App: Tamper Detection

e Experimental Results

e Related Work (Kaluza, Rex,...)

Friday, June 17, 2011

42

Conclusions

e String solvers essential for many apps

* HAMPI supports
string vars, constants, concat/extract, equality, membership, contains predicate

e Demand for even richer theories
e Attribute grammars

e String theories with length

* Bounding: Powerful and versatile idea (BMC, bounded logics,...)

e Using completeness as a resource

Friday, June 17, 2011

43

HAMPI 2.0

e HAMPI logic + length function + replace function
e Small model property (under certain conditions)

e Combination with other theories such as functions

Friday, June 17, 2011

44

