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Introduction

Historically, automated reasoning ≡ uniform proof-search
procedures for FO logic

Limited success: is FO logic the best compromise between
expressivity and efficiency?

Current trend [Sha02] focuses on:

addressing only (expressive enough) decidable fragments
of a certain logic

incorporating domain-specific reasoning, e.g:
arithmetic reasoning
equality
data structures (arrays, lists, stacks, ...)
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Introduction (2)

Examples of this recent trend:

SAT: use propositional logic as the formalization language

+ high degree of efficiency

- expressive (all NP-complete) but involved encodings

SMT: propositional logic + domain-specific reasoning

+ improves the expressivity

- certain (but acceptable) loss of efficiency

GOAL OF THIS TALK:
introduce SMT, with its main techniques
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The SMT problem

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory

Example ( Equality with Uninterpreted Functions – EUF ):

g(a)=c ∧ ( f (g(a)) 6= f (c) ∨ g(a)=d ) ∧ c 6=d

Wide range of applications:

Predicate
abstraction [LNO06]

Model checking[AMP06]

Scheduling [BNO+08b]

Test generation[TdH08]

...
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Theories of Interest - EUF [BD94, NO80, NO07]

Equality with Uninterpreted Functions, i.e. “=” is equality

If background logic is FO with equality, EUF is empty theory

Consider formula

a∗ ( f (b)+ f (c)) = d ∧ b∗ ( f (a)+ f (c)) 6= d ∧ a= b

Formula is UNSAT, but no arithmetic resoning is needed

If we abstract the formula into

h(a, g( f (b), f (c)) ) = d ∧ h(b, g( f (a), f (c)) ) 6= d ∧ a= b

it is still UNSAT

EUF is used to abstract non-supported constructions, e.g:

Non-linear multiplication

ALUs in circuits
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Theories of Interest - Arithmetic

Very useful for obvious reasons

Restricted fragments support more efficient methods:

Bounds: x ⊲⊳ k with ⊲⊳∈ {<,>,≤,≥,=}

Difference logic: x−y ⊲⊳ k, with ⊲⊳∈ {<,>,≤,≥,=}
[NO05, WIGG05, SM06]

UTVPI: ±x±y ⊲⊳ k, with ⊲⊳∈ {<,>,≤,≥,=} [LM05]

Linear arithmetic, e.g: 2x−3y+4z≤ 5 [DdM06]

Non-linear arithmetic, e.g: 2xy+4xz2−5y≤ 10
[BLNM+09, ZM10]

Variables are either reals or integers
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Th. of Int.- Arrays [SBDL01, BNO +08a, dMB09]

Used for:

Software verification

Hardware verification (memories)

Two interpreted function symbols readand write

Theory is axiomatized by:

∀a∀i ∀v (read(write(a, i,v), i) = v)

∀a∀i ∀ j ∀v (i 6= j → read(write(a, i,v), j) = read(a, j))

Sometimes extensionality is added:

∀a∀b ( (∀i(read(a, i) = read(b, i)) )→ a= b

Is the following set of literals satisfiable?

write(a, i,x) 6= b read(b, i) = y read(write(b, i,x), j) = y
a= b i = j
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Th. of Interest - Bit vectors [BCF+07, BB09]

Universe consists of vectors of bits

Useful both for hardware and software verification

Different type of operations:

String-like operations: concat, extract, ...

Logical operations: bit-wise not, or, and, ...

Arithmetic operations: add, substract, multiply, ...

Assume bit-vectors have size 3. Is the formula SAT?

a[0 : 1] 6= b[0 : 1] ∧ (a|b) = c ∧ c[0] = 0 ∧ a[1]+b[1] = 0
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Combina. of theories [NO79, Sho84, BBC +05]

In practice, theories are not isolated

Software verifications needs arithmetic, arrays, bitvectors, ...

Formulas of the following form usually arise:

a= b+2 ∧ A=write(B,a+1,4) ∧ (read(A,b+3) = 2 ∨ f (a−1) 6= f (b+1))

The goal is to combine decision procedures for each theory
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SMT Prehistory - Late 70’s and 80’s

Pioneers:

R. Boyer, J. Moore, G. Nelson, D. Open, R. Shostak

Influential results:

Nelson-Oppen congruence closure procedure [NO80]

Nelson-Oppen combination method [NO79]

Shostak combination method [Sho84]

Influential systems:

Nqthm prover [BM90] [Boyer, Moore]

Simplify [DNS05] [Detlefs, Nelson, Saxe]
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Beginnings of SMT - Early 2000s

KEY FACT: SAT solvers improved performance

Two ways of exploiting this fact:

Eager approach: encode SMT into SAT

[Bryant, Lahiri, Pnueli, Seshia, Strichman, Velev, ...]

[PRSS99, SSB02, SLB03, BGV01, BV02]

First systems: UCLID [LS04]

Lazy approach: plug SAT solver with a decision procedure

[Armando, Barrett, Castellini, Cimatti, Dill, Giunchiglia,
deMoura, Ruess, Sebastiani, Stump,...]

[ACG00, dMR02, BDS02a, ABC+02]

First systems: TSAT [ACG00], ICS [FORS01], CVC [BDS02b],

MathSAT [ABC+02]
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Eager approach

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver

Why “eager”?
Search uses all theory information from the beginning

Characteristics:

+ Can use best available SAT solver

- Sophisticated encodings are needed for each theory

Tools: UCLID, Beaver, Boolector, STP, SONOLAR, Spear,
SWORD
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Eager approach – Example

Let us consider an EUF formula:

First step: remove function/predicate symbols.

Assume we have terms f (a), f (b) and f (c).

Ackermann reduction:

Replace them by fresh constants A, B and C
Add clauses:
a=b → A= B
a=c → A=C
b=c → B=C

Bryant reduction:

Replace f (a) by A
Replace f (b) by ite(b= a,A,B)
Replace f (c) by ite(c= a,A, ite(c= b,B,C) )

Now, atoms are equalities between constants
SMT Theory and DPLL(T) – p. 14



Eager approach – Example (2)

Second step: encode formula into propositional logic

Small-domain encoding:
If there are n different constants, there is a model with
size at most n
logn bits to encode the value of each constant
a=b translated using the bits for a and b

Per-constraint encoding:
Each atom a=b is replaced by var Pa,b
Transitivity constraints are added (e.g. Pa,b∧Pb,c → Pa,c)

This is a very rough overview of an encoding from EUF to SAT.

See [PRSS99, SSB02, SLB03, BGV01, BV02] for details.
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Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]
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Lazy approach (2)

Why “lazy”?
Theory information used lazily when checking T-consistency
of propositional models

Characteristics:

+ Modular and flexible

- Theory information does not guide the search

Tools:
Alt-Ergo, ArgoLib, Ario, Barcelogic, CVC, DTP, ICS, MathSAT,
OpenSMT, Sateen, SVC, Simplify, tSAT, veriT, Yices, Z3, etc...
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Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models
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Given a T-inconsistent assignment M, identify a T-inconsistent
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Upon a T-inconsistency, bactrack to some point where the
assignment was still T-consistent
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Lazy approach - Important points

Important and benefitial aspects of the lazy approach:
(even with the optimizations)

Everyone does what he/she is good at:

SAT solver takes care of Boolean information

Theory solver takes care of theory information

Theory solver only receives conjunctions of literals

Modular approach:

SAT solver and T-solver communicate via a simple API

SMT for a new theory only requires new T-solver

SAT solver can be embedded in a lazy SMT system with
very few new lines of code (tens)
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Lazy approach - T-propagation

As pointed out the lazy approach has one drawback:

Theory information does not guide the search (too lazy)

How can we improve that?

T-Propagate :

M || F ⇒ M l || F if

{

M |=T l
l or ¬l occurs in F and not in M

Search guided by T-Solver by finding T-consequences,
instead of only validating it as in basic lazy approach.

Naive implementation::
Add ¬l . If T-inconsistent then infer l [ACG00]
But for efficient Theory Propagation we need:

-T-Solvers specialized and fast in it.
-fully exploited in conflict analysis

This approach has been namedDPLL(T) [NOT06]
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DPLL(T)

In a nutshell:
DPLL(T) = DPLL(X) + T-Solver

DPLL(X):

Very similar to a SAT solver, enumerates Boolean models

Not allowed: pure literal, blocked literal detection, ...

Desirable: partial model detection

T-Solver:
Checks consistency of conjunctions of literals

Computes theory propagations

Produces explanations of inconsistency/T-propagation

Should be incremental and backtrackable
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DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)
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DPLL(T) - Overall algorithm

High-levew view gives the same algorithm as a CDCL SAT solver:

while(true){

while (propagate_gives_conflict()){
if (decision_level==0) return UNSAT;
else analyze_conflict();

}

restart_if_applicable();
remove_lemmas_if_applicable();

if (!decide()) returns SAT; // All vars assigned
}

Differences are in:

propagate_gives_conflict

analyze_conflict
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DPLL(T) - Propagation

propagate_gives_conflict( ) returns Bool

do {

// unit propagate
if ( unit_prop_gives_conflict() ) then return true

// check T-consistency of the model
if ( solver.is_model_inconsistent() ) then return true

// theory propagate
solver.theory_propagate()

} while (someTheoryPropagation)

return false
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DPLL(T) - Propagation (2)

Three operations:

Unit propagation (SAT solver)

Consistency checks (T-solver)

Theory propagation (T-solver)

Cheap operations are computed first

If theory is expensive, calls to T-solver are sometimes skipped

For completeness, only necessary to call T-solver at the leaves
(i.e. when we have a full propositional model)

Theory propagation is not necessary for completeness
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DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

C:= conflicting clause

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C = C’ v l where l is UIP
backjump(maxDL(C’))
add l to the model with reason C
learn(C)
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DPLL(T) - Conflict Analysis (2)

Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause
else C:=¬( solver.explain_inconsistency() )

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C = C’ v l where l is UIP
backjump(maxDL(C’))
add l to the model with reason C
learn(C)

SMT Theory and DPLL(T) – p. 27



DPLL(T) - Conflict Analysis (3)

What does explain_inconsistency return?

A (small) conjuntion of literals l1∧ . . .∧ ln such that:

They were in the model when T-inconsistency was found

It is T-inconsistent

What is now reason(l)?

If l was unit propagated, reason is the clause that propagated it

If l was T-propagated?

T-solver has to provide an explanation for l , i.e.
a (small) set of literals l1, . . . , ln such that:

They were in the model when l was T-propagated
l1∧ . . .∧ ln |=T l

Then reason(l) is ¬l1∨ . . .∨¬ln∨ l
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DPLL(T) - Conflict Analysis (4)

Let M be of the form . . . ,c=b, . . . and let F contain

h(a)=h(c) ∨ p a=b ∨ ¬p ∨ a=d a 6=d ∨ a=b

Take the following sequence:

1. Decide h(a) 6=h(c)

2. UnitPropagate p (due to clause h(a)=h(c) ∨ p)

3. T-Propagate a 6=b (since h(a) 6=h(c) and c=b)

4. UnitPropagate a=d (due to clause a=b ∨ ¬p ∨ a=d)

5. Conflicting clause a 6=d ∨ a=b

Explain(a 6=b) is {h(a) 6=h(c),c=b}
?

h(a)=h(c)∨p

h(a)=h(c)∨c 6=b∨a 6=b
a=b∨¬p∨a=d a 6=d∨a=b

a=b∨¬p

h(a)=h(c)∨c 6=b∨¬p

h(a)=h(c) ∨ c 6=b
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Need for combination

In software verification, formulas like the following one arise:

a=b+2∧ A=write(B,a+1,4) ∧ (read(A,b+3)=2∨ f (a−1) 6= f (b+1))

Here reasoning is needed over

The theory of linear arithmetic (TLA)

The theory of arrays (TA)

The theory of uninterpreted functions (TEUF)

Remember that T-solvers only deal with conjunctions of lits.

Given T-solvers for the three individual theories,
can we combine them to obtain one for (TLA∪TA∪TEUF)?

Under certain conditions the Nelson-Oppen combination
method gives a positive answer
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Motivating example - Convex case

Consider the following set of literals:

f ( f (x)− f (y)) = a
f (0) = a+2

x = y

There are two theories involved: TLA(R) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f ( f (x)− f (y)) = a =⇒ f (e1) = a =⇒ f (e1) = a
e1 = f (x)− f (y) e1 = e2−e3

e2 = f (x)
e3 = f (y)
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Motivating example - Convex case

Consider the following set of literals:

f ( f (x)− f (y)) = a
f (0) = a+2

x = y

There are two theories involved: TLA(R) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (0) = a+2 =⇒ f (e4) = a+2 =⇒ f (e4) = e5

e4 = 0 e4 = 0
e5 = a+2
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5

x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

EUF |= e2=e3
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y
e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

Ari |= e1=e4
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y a = e5

e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

EUF |= a=e5
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Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y a = e5

e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says UNSAT

Hence the original set of lits was UNSAT
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Nelson-Oppen – The convex case

A theory T is stably-infinite iff every T-satisfiable
quantifier-free formula has an infinite model

A theory T is convex iff, given a set of lits S
S|=T a1=b1∨ . . .∨an=bn =⇒ S|=T ai =bi for some i

Deterministic Nelson-Oppen: [NO79, TH96, MZ02]

Given two signature-disjoint, stably-infinite and convex
theories T1 and T2

Given a set of literals Sover the signature of T1∪T2

The (T1∪T2)-satisfiability of Scan be checked with the
following algorithm:
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Nelson-Oppen – The convex case (2)

Deterministic Nelson-Oppen

1. Purify Sand split it into S1∪S2.
Let E the set of interface equalities between S1 and S2

2. If S1 is T1-unsatisfiable then UNSAT

3. If S2 is T2-unsatisfiable then UNSAT

4. If S1 |=T1 x=y with x=y∈ E \S2 then
S2 := S2∪{x=y} and goto 3

5. If S2 |=T2 x=y with x=y∈ E \S1 then
S1 := S1∪{x=y} and goto 2

6. Report SAT
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Motivating example – Non-convex case

Consider the following UNSATISFIABLE set of literals:

1≤ x ≤ 2
f (1) = a
f (x) = b

a = b+2
f (2) = f (1)+3

There are two theories involved: TLA(Z) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (1) = a =⇒ f (e1) = a
e1 = 1
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Motivating example – Non-convex case

Consider the following UNSATISFIABLE set of literals:

1≤ x ≤ 2
f (1) = a
f (x) = b

a = b+2
f (2) = f (1)+3

There are two theories involved: TLA(Z) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (2) = f (1)+3 =⇒ e2 = 2
f (e2) = e3

f (e1) = e4

e3 = e4+3
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Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

EUF |= a=e4
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Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

No theory entails any other interface equality, but...
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Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

Ari |=T x= e1∨x= e2. Let’s consider both cases.
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Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e1

e3 = e4+3
a = e4

x = e1

Ari-Solver says SAT

EUF-Solver says SAT

EUF |=T a=b, that when sent to Ari makes it UNSAT
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Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

Let’s try now with x=e2
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Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e2

e3 = e4+3
a = e4

x = e2

Ari-Solver says SAT

EUF-Solver says SAT

EUF |=T e3=b, that when sent to Ari makes it UNSAT
( since we had e3 = e4+3= a+3= b+5 )
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Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e2

e3 = e4+3
a = e4

x = e2

Since both x=e1 and x= e2 are UNSAT, the set of literals is UNSAT
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Nelson-Oppen - The non-convex case

In the previous example Deterministic NO does not work

This was because TLA(Z) is not convex:

SLA(Z) |=TLA(Z)
x=e1∨x=e2, but

SLA(Z) 6|=TLA(Z)
x=e1 and

SLA(Z) 6|=TLA(Z)
x=e2

However, there is a version of NO for non-convex theories

Given a set constants C , an arrangement A over C is:

A set of equalities and disequalites between constants in C

For each x,y∈ C either x=y∈ A or x 6= y∈ A
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Nelson-Oppen – The non-convex case (2)

Non-deterministic Nelson-Oppen: [NO79, TH96, MZ02]

Given two signature-disjoint, stably-infinite theories T1 and T2

Given a set of literals Sover the signature of T1∪T2

The (T1∪T2)-satisfiability of Scan be checked via:

1. Purify Sand split it into S1∪S2

Let C be the set of shared constants

2. For every arrangement A over C do
If (S1∪A) is T1-satisfiable and (S2∪A) is T2-satisfiable

report SAT

3. Report UNSAT
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Conclusions

SMT incorporates domain-specific reasoning into SAT...

...but SMT is much more than that

Lots of applications and a lot more to appear

See references for more depth
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