
SMT Theory and DPLL(T)

Albert Oliveras

(Technical University of Catalonia, Barcelona)

First International SAT/SMT Solver Summer School 2011

MIT, Boston, MA

June 12th, 2011

SMT Theory and DPLL(T) – p. 1

Overview of the talk

Motivation
SMT

Theories of Interest

History of SMT

Eager approach

Lazy approach

Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 2

Introduction

Historically, automated reasoning ≡ uniform proof-search
procedures for FO logic

Limited success: is FO logic the best compromise between
expressivity and efficiency?

Current trend [Sha02] focuses on:

addressing only (expressive enough) decidable fragments
of a certain logic

incorporating domain-specific reasoning, e.g:
arithmetic reasoning
equality
data structures (arrays, lists, stacks, ...)

SMT Theory and DPLL(T) – p. 3

Introduction (2)

Examples of this recent trend:

SAT: use propositional logic as the formalization language

+ high degree of efficiency

- expressive (all NP-complete) but involved encodings

SMT: propositional logic + domain-specific reasoning

+ improves the expressivity

- certain (but acceptable) loss of efficiency

GOAL OF THIS TALK:
introduce SMT, with its main techniques

SMT Theory and DPLL(T) – p. 4

Overview of the talk

Motivation

SMT
Theories of Interest

History of SMT

Eager approach

Lazy approach

Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 4

The SMT problem

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory

Example (Equality with Uninterpreted Functions – EUF):

g(a)=c ∧ (f (g(a)) 6= f (c) ∨ g(a)=d) ∧ c 6=d

Wide range of applications:

Predicate
abstraction [LNO06]

Model checking[AMP06]

Scheduling [BNO+08b]

Test generation[TdH08]

...

SMT Theory and DPLL(T) – p. 5

Overview of the talk

Motivation

SMT

Theories of Interest
History of SMT

Eager approach

Lazy approach

Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 5

Theories of Interest - EUF [BD94, NO80, NO07]

Equality with Uninterpreted Functions, i.e. “=” is equality

If background logic is FO with equality, EUF is empty theory

Consider formula

a∗ (f (b)+ f (c)) = d ∧ b∗ (f (a)+ f (c)) 6= d ∧ a= b

Formula is UNSAT, but no arithmetic resoning is needed

If we abstract the formula into

h(a, g(f (b), f (c))) = d ∧ h(b, g(f (a), f (c))) 6= d ∧ a= b

it is still UNSAT

EUF is used to abstract non-supported constructions, e.g:

Non-linear multiplication

ALUs in circuits

SMT Theory and DPLL(T) – p. 6

Theories of Interest - Arithmetic

Very useful for obvious reasons

Restricted fragments support more efficient methods:

Bounds: x ⊲⊳ k with ⊲⊳∈ {<,>,≤,≥,=}

Difference logic: x−y ⊲⊳ k, with ⊲⊳∈ {<,>,≤,≥,=}
[NO05, WIGG05, SM06]

UTVPI: ±x±y ⊲⊳ k, with ⊲⊳∈ {<,>,≤,≥,=} [LM05]

Linear arithmetic, e.g: 2x−3y+4z≤ 5 [DdM06]

Non-linear arithmetic, e.g: 2xy+4xz2−5y≤ 10
[BLNM+09, ZM10]

Variables are either reals or integers

SMT Theory and DPLL(T) – p. 7

Th. of Int.- Arrays [SBDL01, BNO +08a, dMB09]

Used for:

Software verification

Hardware verification (memories)

Two interpreted function symbols readand write

Theory is axiomatized by:

∀a∀i ∀v (read(write(a, i,v), i) = v)

∀a∀i ∀ j ∀v (i 6= j → read(write(a, i,v), j) = read(a, j))

Sometimes extensionality is added:

∀a∀b ((∀i(read(a, i) = read(b, i)))→ a= b

Is the following set of literals satisfiable?

write(a, i,x) 6= b read(b, i) = y read(write(b, i,x), j) = y
a= b i = j

SMT Theory and DPLL(T) – p. 8

Th. of Interest - Bit vectors [BCF+07, BB09]

Universe consists of vectors of bits

Useful both for hardware and software verification

Different type of operations:

String-like operations: concat, extract, ...

Logical operations: bit-wise not, or, and, ...

Arithmetic operations: add, substract, multiply, ...

Assume bit-vectors have size 3. Is the formula SAT?

a[0 : 1] 6= b[0 : 1] ∧ (a|b) = c ∧ c[0] = 0 ∧ a[1]+b[1] = 0

SMT Theory and DPLL(T) – p. 9

Combina. of theories [NO79, Sho84, BBC +05]

In practice, theories are not isolated

Software verifications needs arithmetic, arrays, bitvectors, ...

Formulas of the following form usually arise:

a= b+2 ∧ A=write(B,a+1,4) ∧ (read(A,b+3) = 2 ∨ f (a−1) 6= f (b+1))

The goal is to combine decision procedures for each theory

SMT Theory and DPLL(T) – p. 10

Overview of the talk

Motivation

SMT

Theories of Interest

History of SMT
Eager approach

Lazy approach

Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 10

SMT Prehistory - Late 70’s and 80’s

Pioneers:

R. Boyer, J. Moore, G. Nelson, D. Open, R. Shostak

Influential results:

Nelson-Oppen congruence closure procedure [NO80]

Nelson-Oppen combination method [NO79]

Shostak combination method [Sho84]

Influential systems:

Nqthm prover [BM90] [Boyer, Moore]

Simplify [DNS05] [Detlefs, Nelson, Saxe]

SMT Theory and DPLL(T) – p. 11

Beginnings of SMT - Early 2000s

KEY FACT: SAT solvers improved performance

Two ways of exploiting this fact:

Eager approach: encode SMT into SAT

[Bryant, Lahiri, Pnueli, Seshia, Strichman, Velev, ...]

[PRSS99, SSB02, SLB03, BGV01, BV02]

First systems: UCLID [LS04]

Lazy approach: plug SAT solver with a decision procedure

[Armando, Barrett, Castellini, Cimatti, Dill, Giunchiglia,
deMoura, Ruess, Sebastiani, Stump,...]

[ACG00, dMR02, BDS02a, ABC+02]

First systems: TSAT [ACG00], ICS [FORS01], CVC [BDS02b],

MathSAT [ABC+02]
SMT Theory and DPLL(T) – p. 12

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach
Lazy approach

Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 12

Eager approach

Methodology: translate problem into equisatisfiable
propositional formula and use off-the-shelf SAT solver

Why “eager”?
Search uses all theory information from the beginning

Characteristics:

+ Can use best available SAT solver

- Sophisticated encodings are needed for each theory

Tools: UCLID, Beaver, Boolector, STP, SONOLAR, Spear,
SWORD

SMT Theory and DPLL(T) – p. 13

Eager approach – Example

Let us consider an EUF formula:

First step: remove function/predicate symbols.

Assume we have terms f (a), f (b) and f (c).

Ackermann reduction:

Replace them by fresh constants A, B and C
Add clauses:
a=b → A= B
a=c → A=C
b=c → B=C

Bryant reduction:

Replace f (a) by A
Replace f (b) by ite(b= a,A,B)
Replace f (c) by ite(c= a,A, ite(c= b,B,C))

Now, atoms are equalities between constants
SMT Theory and DPLL(T) – p. 14

Eager approach – Example (2)

Second step: encode formula into propositional logic

Small-domain encoding:
If there are n different constants, there is a model with
size at most n
logn bits to encode the value of each constant
a=b translated using the bits for a and b

Per-constraint encoding:
Each atom a=b is replaced by var Pa,b
Transitivity constraints are added (e.g. Pa,b∧Pb,c → Pa,c)

This is a very rough overview of an encoding from EUF to SAT.

See [PRSS99, SSB02, SLB03, BGV01, BV02] for details.

SMT Theory and DPLL(T) – p. 15

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach
Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 15

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

SMT Theory and DPLL(T) – p. 16

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

SMT Theory and DPLL(T) – p. 16

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SMT Theory and DPLL(T) – p. 16

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3,4]

SMT Theory and DPLL(T) – p. 16

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3,4]

Theory solver says T-inconsistent

SMT Theory and DPLL(T) – p. 16

Lazy approach

Methodology:

Example: consider EUF and the CNF

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

SAT solver returns model [1, 2, 4]

Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3,4]

Theory solver says T-inconsistent

SAT solver detects {1,2∨3,4, 1∨2∨4,1∨2∨3∨4}
UNSATISFIABLE

SMT Theory and DPLL(T) – p. 16

Lazy approach (2)

Why “lazy”?
Theory information used lazily when checking T-consistency
of propositional models

Characteristics:

+ Modular and flexible

- Theory information does not guide the search

Tools:
Alt-Ergo, ArgoLib, Ario, Barcelogic, CVC, DTP, ICS, MathSAT,
OpenSMT, Sateen, SVC, Simplify, tSAT, veriT, Yices, Z3, etc...

SMT Theory and DPLL(T) – p. 17

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations
Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 17

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

SMT Theory and DPLL(T) – p. 18

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

SMT Theory and DPLL(T) – p. 18

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

SMT Theory and DPLL(T) – p. 18

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

SMT Theory and DPLL(T) – p. 18

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

SMT Theory and DPLL(T) – p. 18

Lazy approach - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, bactrack to some point where the
assignment was still T-consistent

SMT Theory and DPLL(T) – p. 18

Lazy approach - Important points

Important and benefitial aspects of the lazy approach:
(even with the optimizations)

Everyone does what he/she is good at:

SAT solver takes care of Boolean information

Theory solver takes care of theory information

Theory solver only receives conjunctions of literals

Modular approach:

SAT solver and T-solver communicate via a simple API

SMT for a new theory only requires new T-solver

SAT solver can be embedded in a lazy SMT system with
very few new lines of code (tens)

SMT Theory and DPLL(T) – p. 19

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations

Theory propagation and
DPLL(T)
Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 19

Lazy approach - T-propagation

As pointed out the lazy approach has one drawback:

Theory information does not guide the search (too lazy)

How can we improve that?

T-Propagate :

M || F ⇒ M l || F if

{

M |=T l
l or ¬l occurs in F and not in M

Search guided by T-Solver by finding T-consequences,
instead of only validating it as in basic lazy approach.

Naive implementation::
Add ¬l . If T-inconsistent then infer l [ACG00]
But for efficient Theory Propagation we need:

-T-Solvers specialized and fast in it.
-fully exploited in conflict analysis

This approach has been namedDPLL(T) [NOT06]

SMT Theory and DPLL(T) – p. 20

DPLL(T)

In a nutshell:
DPLL(T) = DPLL(X) + T-Solver

DPLL(X):

Very similar to a SAT solver, enumerates Boolean models

Not allowed: pure literal, blocked literal detection, ...

Desirable: partial model detection

T-Solver:
Checks consistency of conjunctions of literals

Computes theory propagations

Produces explanations of inconsistency/T-propagation

Should be incremental and backtrackable

SMT Theory and DPLL(T) – p. 21

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

SMT Theory and DPLL(T) – p. 22

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

SMT Theory and DPLL(T) – p. 22

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

SMT Theory and DPLL(T) – p. 22

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

SMT Theory and DPLL(T) – p. 22

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 23 || 1, 2∨3, 4 ⇒ (Fail)

SMT Theory and DPLL(T) – p. 22

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 23 || 1, 2∨3, 4 ⇒ (Fail)

UNSAT

SMT Theory and DPLL(T) – p. 22

DPLL(T) - Overall algorithm

High-levew view gives the same algorithm as a CDCL SAT solver:

while(true){

while (propagate_gives_conflict()){
if (decision_level==0) return UNSAT;
else analyze_conflict();

}

restart_if_applicable();
remove_lemmas_if_applicable();

if (!decide()) returns SAT; // All vars assigned
}

Differences are in:

propagate_gives_conflict

analyze_conflict

SMT Theory and DPLL(T) – p. 23

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict
Analysis in DPLL(T)
Combining Theory Solvers

SMT Theory and DPLL(T) – p. 23

DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

do {

// unit propagate
if (unit_prop_gives_conflict()) then return true

// check T-consistency of the model
if (solver.is_model_inconsistent()) then return true

// theory propagate
solver.theory_propagate()

} while (someTheoryPropagation)

return false

SMT Theory and DPLL(T) – p. 24

DPLL(T) - Propagation (2)

Three operations:

Unit propagation (SAT solver)

Consistency checks (T-solver)

Theory propagation (T-solver)

Cheap operations are computed first

If theory is expensive, calls to T-solver are sometimes skipped

For completeness, only necessary to call T-solver at the leaves
(i.e. when we have a full propositional model)

Theory propagation is not necessary for completeness

SMT Theory and DPLL(T) – p. 25

DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

C:= conflicting clause

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C = C’ v l where l is UIP
backjump(maxDL(C’))
add l to the model with reason C
learn(C)

SMT Theory and DPLL(T) – p. 26

DPLL(T) - Conflict Analysis (2)

Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause
else C:=¬(solver.explain_inconsistency())

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C = C’ v l where l is UIP
backjump(maxDL(C’))
add l to the model with reason C
learn(C)

SMT Theory and DPLL(T) – p. 27

DPLL(T) - Conflict Analysis (3)

What does explain_inconsistency return?

A (small) conjuntion of literals l1∧ . . .∧ ln such that:

They were in the model when T-inconsistency was found

It is T-inconsistent

What is now reason(l)?

If l was unit propagated, reason is the clause that propagated it

If l was T-propagated?

T-solver has to provide an explanation for l , i.e.
a (small) set of literals l1, . . . , ln such that:

They were in the model when l was T-propagated
l1∧ . . .∧ ln |=T l

Then reason(l) is ¬l1∨ . . .∨¬ln∨ l

SMT Theory and DPLL(T) – p. 28

DPLL(T) - Conflict Analysis (4)

Let M be of the form . . . ,c=b, . . . and let F contain

h(a)=h(c) ∨ p a=b ∨ ¬p ∨ a=d a 6=d ∨ a=b

Take the following sequence:

1. Decide h(a) 6=h(c)

2. UnitPropagate p (due to clause h(a)=h(c) ∨ p)

3. T-Propagate a 6=b (since h(a) 6=h(c) and c=b)

4. UnitPropagate a=d (due to clause a=b ∨ ¬p ∨ a=d)

5. Conflicting clause a 6=d ∨ a=b

Explain(a 6=b) is {h(a) 6=h(c),c=b}
?

h(a)=h(c)∨p

h(a)=h(c)∨c 6=b∨a 6=b
a=b∨¬p∨a=d a 6=d∨a=b

a=b∨¬p

h(a)=h(c)∨c 6=b∨¬p

h(a)=h(c) ∨ c 6=b

SMT Theory and DPLL(T) – p. 29

Overview of the talk

Motivation

SMT

Theories of Interest

Eager approach

Lazy approach

Optimizations

Theory propagation and DPLL(T)

Propagation and Conflict Analysis in DPLL(T)

Combining Theory Solvers

SMT Theory and DPLL(T) – p. 29

Need for combination

In software verification, formulas like the following one arise:

a=b+2∧ A=write(B,a+1,4) ∧ (read(A,b+3)=2∨ f (a−1) 6= f (b+1))

Here reasoning is needed over

The theory of linear arithmetic (TLA)

The theory of arrays (TA)

The theory of uninterpreted functions (TEUF)

Remember that T-solvers only deal with conjunctions of lits.

Given T-solvers for the three individual theories,
can we combine them to obtain one for (TLA∪TA∪TEUF)?

Under certain conditions the Nelson-Oppen combination
method gives a positive answer

SMT Theory and DPLL(T) – p. 30

Motivating example - Convex case

Consider the following set of literals:

f (f (x)− f (y)) = a
f (0) = a+2

x = y

There are two theories involved: TLA(R) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (f (x)− f (y)) = a =⇒ f (e1) = a =⇒ f (e1) = a
e1 = f (x)− f (y) e1 = e2−e3

e2 = f (x)
e3 = f (y)

SMT Theory and DPLL(T) – p. 31

Motivating example - Convex case

Consider the following set of literals:

f (f (x)− f (y)) = a
f (0) = a+2

x = y

There are two theories involved: TLA(R) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (0) = a+2 =⇒ f (e4) = a+2 =⇒ f (e4) = e5

e4 = 0 e4 = 0
e5 = a+2

SMT Theory and DPLL(T) – p. 31

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5

x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

To merge the two models into a single one, the solvers have to agree
on equalities between shared constants (interface equalities)

This can be done by exchanging entailed interface equalities

SMT Theory and DPLL(T) – p. 32

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

EUF |= e2=e3

SMT Theory and DPLL(T) – p. 33

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y
e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

Ari |= e1=e4

SMT Theory and DPLL(T) – p. 34

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y a = e5

e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says SAT

EUF |= a=e5

SMT Theory and DPLL(T) – p. 35

Motivating example - Convex case (2)

SECOND STEP: check satisfiability and exchange entailed equalities

EUF Arithmetic
f (e1) = a e2−e3 = e1

f (x) = e2 e4 = 0
f (y) = e3 e5 = a+2
f (e4) = e5 e2 = e3

x = y a = e5

e1 = e4

The two solvers only share constants: e1,e2,e3,e4,e5,a

EUF-Solver says SAT

Ari-Solver says UNSAT

Hence the original set of lits was UNSAT

SMT Theory and DPLL(T) – p. 36

Nelson-Oppen – The convex case

A theory T is stably-infinite iff every T-satisfiable
quantifier-free formula has an infinite model

A theory T is convex iff, given a set of lits S
S|=T a1=b1∨ . . .∨an=bn =⇒ S|=T ai =bi for some i

Deterministic Nelson-Oppen: [NO79, TH96, MZ02]

Given two signature-disjoint, stably-infinite and convex
theories T1 and T2

Given a set of literals Sover the signature of T1∪T2

The (T1∪T2)-satisfiability of Scan be checked with the
following algorithm:

SMT Theory and DPLL(T) – p. 37

Nelson-Oppen – The convex case (2)

Deterministic Nelson-Oppen

1. Purify Sand split it into S1∪S2.
Let E the set of interface equalities between S1 and S2

2. If S1 is T1-unsatisfiable then UNSAT

3. If S2 is T2-unsatisfiable then UNSAT

4. If S1 |=T1 x=y with x=y∈ E \S2 then
S2 := S2∪{x=y} and goto 3

5. If S2 |=T2 x=y with x=y∈ E \S1 then
S1 := S1∪{x=y} and goto 2

6. Report SAT

SMT Theory and DPLL(T) – p. 38

Motivating example – Non-convex case

Consider the following UNSATISFIABLE set of literals:

1≤ x ≤ 2
f (1) = a
f (x) = b

a = b+2
f (2) = f (1)+3

There are two theories involved: TLA(Z) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (1) = a =⇒ f (e1) = a
e1 = 1

SMT Theory and DPLL(T) – p. 39

Motivating example – Non-convex case

Consider the following UNSATISFIABLE set of literals:

1≤ x ≤ 2
f (1) = a
f (x) = b

a = b+2
f (2) = f (1)+3

There are two theories involved: TLA(Z) and TEUF

FIRST STEP: purify each literal so that it belongs to a single theory

f (2) = f (1)+3 =⇒ e2 = 2
f (e2) = e3

f (e1) = e4

e3 = e4+3

SMT Theory and DPLL(T) – p. 39

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

EUF |= a=e4

SMT Theory and DPLL(T) – p. 40

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

No theory entails any other interface equality, but...

SMT Theory and DPLL(T) – p. 41

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

The two solvers only share constants: x,e1,a,b,e2,e3,e4

Ari-Solver says SAT

EUF-Solver says SAT

Ari |=T x= e1∨x= e2. Let’s consider both cases.

SMT Theory and DPLL(T) – p. 42

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e1

e3 = e4+3
a = e4

x = e1

Ari-Solver says SAT

EUF-Solver says SAT

EUF |=T a=b, that when sent to Ari makes it UNSAT

SMT Theory and DPLL(T) – p. 43

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2
e3 = e4+3
a = e4

Let’s try now with x=e2

SMT Theory and DPLL(T) – p. 44

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e2

e3 = e4+3
a = e4

x = e2

Ari-Solver says SAT

EUF-Solver says SAT

EUF |=T e3=b, that when sent to Ari makes it UNSAT
(since we had e3 = e4+3= a+3= b+5)

SMT Theory and DPLL(T) – p. 45

Motivating example – Non-convex case(2)

SECOND STEP: check satisfiability and exchange entailed equalities

Arithmetic EUF
1 ≤ x f(e1) = a
x ≤ 2 f (x) = b
e1 = 1 f (e2) = e3

a = b+2 f (e1) = e4

e2 = 2 x = e2

e3 = e4+3
a = e4

x = e2

Since both x=e1 and x= e2 are UNSAT, the set of literals is UNSAT

SMT Theory and DPLL(T) – p. 46

Nelson-Oppen - The non-convex case

In the previous example Deterministic NO does not work

This was because TLA(Z) is not convex:

SLA(Z) |=TLA(Z)
x=e1∨x=e2, but

SLA(Z) 6|=TLA(Z)
x=e1 and

SLA(Z) 6|=TLA(Z)
x=e2

However, there is a version of NO for non-convex theories

Given a set constants C , an arrangement A over C is:

A set of equalities and disequalites between constants in C

For each x,y∈ C either x=y∈ A or x 6= y∈ A

SMT Theory and DPLL(T) – p. 47

Nelson-Oppen – The non-convex case (2)

Non-deterministic Nelson-Oppen: [NO79, TH96, MZ02]

Given two signature-disjoint, stably-infinite theories T1 and T2

Given a set of literals Sover the signature of T1∪T2

The (T1∪T2)-satisfiability of Scan be checked via:

1. Purify Sand split it into S1∪S2

Let C be the set of shared constants

2. For every arrangement A over C do
If (S1∪A) is T1-satisfiable and (S2∪A) is T2-satisfiable

report SAT

3. Report UNSAT

SMT Theory and DPLL(T) – p. 48

Conclusions

SMT incorporates domain-specific reasoning into SAT...

...but SMT is much more than that

Lots of applications and a lot more to appear

See references for more depth

SMT Theory and DPLL(T) – p. 49

Bibliography - Some further reading

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solving SAT

and SAT Modulo Theories: From an abstract

Davis–Putnam–Logemann–Loveland procedure to DPLL(T).

J. ACM 53(6): 937-977 (2006)

Roberto Sebastiani. Lazy Satisfiability Modulo Theories. JSAT 3(3-4):

141-224 (2007).

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, Cesare Tinelli.

Satisfiability Modulo Theories. Handbook of Satisfiability 2009:

825-885

SMT Theory and DPLL(T) – p. 50

References
[ABC+02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A

SAT-Based Approach for Solving Formulas over Boolean and Linear

Mathematical Propositions. In A. Voronkov, editor, 18th International

Conference on Automated Deduction, CADE’02, volume 2392 of Lecture Notes in

Conference Science, pages 195–210. Springer, 2002.

[ACG00] A. Armando, C. Castellini, and E. Giunchiglia. SAT-Based Procedures for

Temporal Reasoning. In S. Biundo and M. Fox, editors, 5th European Conference

on Planning, ECP’99, volume 1809 of Lecture Notes in Computer Science, pages

97–108. Springer, 2000.

[AMP06] A. Armando, J. Mantovani, and L. Platania. Bounded Model Checking of

Software Using SMT Solvers Instead of SAT Solvers. In A. Valmari, editor, 13th

International SPIN Workshop, SPIN’06, volume 3925 of Lecture Notes in Computer

Science, pages 146–162. Springer, 2006.

[BB09] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors

and Arrays. In S. Kowalewski and A. Philippou, editors, 15th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS’05, volume 5505 of Lecture Notes in Computer Science, pages 174–177.

Springer, 2009.

SMT Theory and DPLL(T) – p. 50

References
[BBC+05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van

Rossum, and R. Sebastiani. Efficient Satisfiability Modulo Theories via

Delayed Theory Combination. In K. Etessami and S. Rajamani, editors, 17th

International Conference on Computer Aided Verification, CAV’05, volume 3576 of

Lecture Notes in Computer Science, pages 335–349. Springer, 2005.

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,

Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A Lazy

and Layered SMT(BV) Solver for Hard Industrial Verification Problems. In

W. Damm and H. Hermanns, editors, 19th International Conference on Computer

Aided Verification, CAV’07, volume 4590 of Lecture Notes in Computer Science,

pages 547–560. Springer, 2007.

[BD94] J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor

Control. In D. L. Dill, editor, 6th International Conference on Computer Aided

Verification, CAV’94, volume 818 of Lecture Notes in Computer Science, pages

68–80. Springer, 1994.

[BDS02a] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order

Formulas by Incremental Translation into SAT. In E. Brinksma and K. G.

Larsen, editors, 14th International Conference on Computer Aided Verification,

CAV’02, volume 2404 of Lecture Notes in Computer Science, pages 236–249.

Springer, 2002.

SMT Theory and DPLL(T) – p. 50

References
[BDS02b] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order

Formulas by Incremental Translation into SAT. In E. Brinksma and K. G.

Larsen, editors, 14th International Conference on Computer Aided Verification,

CAV’02, volume 2404 of Lecture Notes in Computer Science, pages 236–249.

Springer, 2002.

[BGV01] R. E. Bryant, S. M. German, and M. N. Velev. Processor Verification Using

Efficient Reductions of the Logic of Uninterpreted Functions to Propositional

Logic. ACM Transactions on Computational Logic, TOCL, 2(1):93–134, 2001.

[BLNM+09] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodríguez-Carbonell, and

A. Rubio. Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear

Arithmetic. In R. A. Schmidt, editor, 22nd International Conference on Automated

Deduction , CADE-22, volume 5663 of Lecture Notes in Computer Science, pages

294–305. Springer, 2009.

[BM90] R. S. Boyer and J. S. Moore. A Theorem Prover for a Computational Logic. In

Mark E. Stickel, editor, 10th International Conference on Automated Deduction,

CADE’90, volume 449 of Lecture Notes in Computer Science, pages 1–15.

Springer, 1990.

[BNO+08a] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.

A Write-Based Solver for SAT Modulo the Theory of Arrays. In Formal Methods

in Computer-Aided Design, FMCAD, pages 1–8, 2008.
SMT Theory and DPLL(T) – p. 50

References
[BNO+08b] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.

The barcelogic smt solver. In Computer-aided Verification (CAV), volume 5123 of

Lecture Notes in Computer Science, pages 294–298, 2008.

[BV02] R. E. Bryant and M. N. Velev. Boolean Satisfiability with Transitivity

Constraints. ACM Transactions on Computational Logic, TOCL, 3(4):604–627,

2002.

[DdM06] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In

T. Ball and R. B. Jones, editors, 18th International Conference on Computer Aided

Verification, CAV’06, volume 4144 of Lecture Notes in Computer Science, pages

81–94. Springer, 2006.

[dMB09] L. de Moura and N. Bjørner. Generalized, efficient array decision procedures.

In 9th International Conference on Formal Methods in Computer-Aided Design,

FMCAD 2009, pages 45–52. IEEE, 2009.

[dMR02] L. de Moura and H. Rueß. Lemmas on Demand for Satisfiability Solvers. In

5th International Conference on Theory and Applications of Satisfiability Testing,

SAT’02, pages 244–251, 2002.

[DNS05] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program

checking. Journal of the ACM, JACM, 52(3):365–473, 2005.

SMT Theory and DPLL(T) – p. 50

References
[FORS01] J. Filliâtre, S. Owre, H. Rueß, and Natarajan Shankar. ICS: Integrated

Canonization and Solving (Tool presentation). In G. Berry, H. Comon, and

A. Finkel, editors, 13th International Conference on Computer Aided Verification,

CAV’01, volume 2102 of Lecture Notes in Computer Science, pages 246–249.

Springer, 2001.

[LM05] S. K. Lahiri and M. Musuvathi. An Efficient Decision Procedure for UTVPI

Constraints. In B. Gramlich, editor, 5th International Workshop on Frontiers of

Combining Systems, FroCos’05, volume 3717 of Lecture Notes in Computer Science,

pages 168–183. Springer, 2005.

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast

Predicate Abstraction. In T. Ball and R. B. Jones, editors, 18th International

Conference on Computer Aided Verification, CAV’06, volume 4144 of Lecture Notes

in Computer Science, pages 413–426. Springer, 2006.

[LS04] S. K. Lahiri and S. A. Seshia. The UCLID Decision Procedure. In R. Alur and

D. Peled, editors, 16th International Conference on Computer Aided Verification,

CAV’04, volume 3114 of Lecture Notes in Computer Science, pages 475–478.

Springer, 2004.

[MZ02] Z. Manna and C. G. Zarba. Combining Decision Procedures. In B. K.

Aichernig and T. S. E. Maibaum, editors, 10th Anniversary Colloquium of

UNU/IIST, volume 2757 of Lecture Notes in Computer Science, pages 381–422.

Springer, 2002. SMT Theory and DPLL(T) – p. 50

References
[NO80] G. Nelson and D. C. Oppen. Fast Decision Procedures Based on Congruence

Closure. Journal of the ACM, JACM, 27(2):356–364, 1980.

[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory

Propagation and its Application to Difference Logic. In K. Etessami and

S. Rajamani, editors, 17th International Conference on Computer Aided

Verification, CAV’05, volume 3576 of Lecture Notes in Computer Science, pages

321–334. Springer, 2005.

[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions.

Information and Computation, IC, 2005(4):557–580, 2007.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo

Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to

DPLL(T). Journal of the ACM, 53(6):937–977, November 2006.

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding Equality

Formulas by Small Domains Instantiations. In N. Halbwachs and D. Peled,

editors, 11th International Conference on Computer Aided Verification, CAV’99,

volume 1633 of Lecture Notes in Computer Science, pages 455–469. Springer,

1999.

SMT Theory and DPLL(T) – p. 50

References
[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision Procedure for

an Extensional Theory of Arrays. In 16th Annual IEEE Symposium on Logic in

Computer Science, LICS’01, pages 29–37. IEEE Computer Society, 2001.

[Sha02] N. Shankar. Little Engines of Proof. In L. H. Eriksson and P. A. Lindsay,

editors, International Symposium of Formal Methods Europe, FME’02, volume

2391 of Lecture Notes in Computer Science, pages 1–20. Springer, 2002.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,

31(1):1–12, January 1984.

[SLB03] S. Seshia, S. K. Lahiri, and R. E. Bryant. A Hybrid SAT-Based Decision

Procedure for Separation Logic wit h Uninterpreted Functions. In 40th Design

Automation Conference, DAC’03, pages 425–430. ACM Press, 2003.

[SM06] S.Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation

for DPLL(T). In A. Biere and C. P. Gomes, editors, 9th International Conference

on Theory and Applications of Satisfiability Testing, SAT’06, volume 4121 of

Lecture Notes in Computer Science, pages 170–183. Springer, 2006.

[SSB02] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation Formulas

with SAT. In E. Brinksma and K. G. Larsen, editors, 14th International

Conference on Computer Aided Verification, CAV’02, volume 2404 of Lecture Notes

in Computer Science, pages 209–222. Springer, 2002.

SMT Theory and DPLL(T) – p. 50

References
[TdH08] N. Tillmann and J. de Halleux. Pex-White Box Test Generation for .NET. In

B. Beckert and R. Hähnle, editors, 2nd International Conference on Tests and

Proofs, TAP’08, volume 4966 of Lecture Notes in Computer Science, pages

134–153. Springer, 2008.

[TH96] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen

combination procedure. In Procs. Frontiers of Combining Systems (FroCoS),

Applied Logic, pages 103–120. Kluwer Academic Publishers, March 1996.

[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation Logic

Formulae by SAT and Incremental Negative Cycle Elimination. In G. Sutcliffe

and A. Voronkov, editors, 12h International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of Lecture Notes in

Computer Science, pages 322–336. Springer, 2005.

[ZM10] H. Zankl and A. Middeldorp. Satisfiability of Non-linear (Ir)rational

Arithmetic. In Edmund M. Clarke and Andrei Voronkov, editors, 16th

International Conference on Logic for Programming, Artificial Intelligence and

Reasoning, LPAR’10, volume 6355 of Lecture Notes in Computer Science, pages

481–500. Springer, 2010.

SMT Theory and DPLL(T) – p. 50

	Overview of the talk
	Introduction
	Introduction (2)
	Overview of the talk
	The SMT problem
	Overview of the talk
	Theories of Interest - EUF~lila {cite {BurchDill1994CAV,NelsonOppen1980JACM,NieuwenhuisOliveras2007IC}}
	Theories of Interest - Arithmetic
	Th. of Int.- Arrays{lila {cite {Stumpetal2001LICS,Bofilletal2008FMCAD,deMouraBjorner2009FMCAD}}}
	Th. of Interest - Bit vectorslila {~cite {Bruttomessoetal2007CAV,BrummayerBiere2009TACAS}}
	Combina. of theories lila {cite {NelsonOppen1979TOPLAS,Shostak1984JACM,Bozzanoetal2005CAV}}
	Overview of the talk
	SMT Prehistory - Late 70's and 80's
	Beginnings of SMT - Early 2000s
	Overview of the talk
	Eager approach
	Eager approach -- Example
	Eager approach -- Example (2)
	Overview of the talk
	Lazy approach
	Lazy approach
	Lazy approach
	Lazy approach
	Lazy approach
	Lazy approach

	Lazy approach (2)
	Overview of the talk
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations
	Lazy approach - Optimizations

	Lazy approach - Important points
	Overview of the talk
	Lazy approach - T-propagation
	dpllt
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example
	 dpllt ; - ; Example

	DPLL(T)
- Overall algorithm
	Overview of the talk
	DPLL(T)
- Propagation
	DPLL(T)
- Propagation (2)
	DPLL(T)
- Conflict Analysis
	DPLL(T)
- Conflict Analysis (2)
	DPLL(T)
- Conflict Analysis (3)
	DPLL(T)
- Conflict Analysis (4)
	Overview of the talk
	Need for combination
	Motivating example - Convex case
	Motivating example - Convex case

	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Motivating example - Convex case (2)
	Nelson-Oppen -- The convex case
	 Nelson-Oppen -- The convex case (2)
	Motivating example -- Non-convex case
	Motivating example -- Non-convex case

	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Motivating example -- Non-convex case(2)
	Nelson-Oppen - The non-convex case
	Nelson-Oppen -- The non-convex case (2)
	Conclusions
	Bibliography - Some further reading
	References
	References
	References
	References
	References
	References
	References
	References

