SAT/SMT Summer School at MIT, Cambridge 2011

Introduction to Satisfiability Solving
with Practical Applications

I Niklas Een

The SAT problem

A literal p is a variable x or its negation ~x.
A clause Cis a disjunction of literals: x, V —x,; V x5

A CNF is a conjunction of clauses:

(X2 v =Xgg v Xg5) A (X5 v 7X0) A (X37V X1 vV X6 V Xq56)

The SAT-problem is:

Find a boolean assignment
such that each clause has a true literal

First problem shown to be NP-complete (1971)

Page 3/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

What's a clause?

A clause of size n can be viewed 20 — =0
y=0 — t=0

as n propagation rules: xe1and y=1 — t<1

aVbvVvc
X —
is equivalent to: ny o ot
XAy — t
(ma A =b) > ¢
{X’ _'t}
(ma A -c)—> b y, =t}
{=x, 7y, £}
(-b A —c)—>a
Example: Consider the constraint ‘

=t A —
t = AND(x, y) yo o

Page 4/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Example

{3,6,-7,8} {3,6,-7,8} {3,6,-7,8}

{1,4,7} {1,4,7} {1,4,7} Unit clause
{-8, 4} | {-8, 4} | {-8, 4} _(BCP)

{'1r -3, 8} ﬂ {'11 -3, 8} jl> {'1r -3, 8}/ ﬂ o
{-3, -4, -8} {-3,-4, -8} {-3,-4, -8}

{-1,-2, 3,4, -6} {-1,-2, 3,4, -6} {-1,-2, 3,4, -6}

{3,6,-7,8} Anotherunit {3, 6, -7, 8}

{1,4,7) clause {1, 4, 7}

-8, 4} more BEP) -8, 4} CONFLICT!
' :> {-1,-3, 8} :> {-1,-3, 8} (backtrack)

{-3,-4, -8} {-3, -4, -8}

{-1,-2, 3,4, -6} {-1,-2, 3,4, -6}

Page 5/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Search Components

Decision heuristic Search Tree

Propagstion ;-
State based
Bad@ﬁ%ﬁk&p @n-satisfied clause,

most common literal etc.

History based
Pick variables that lead to Y
conflicts in the past. 2
. ﬁatisfying
Propagation Assignment
Backtracking

Page 6/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Search Components

Decision heuristic _{3,6,-7-8F
Propagation th4 Z}\ Unate
Un; : -8, 4} (pure literal)
nit propagation {-1,-3,8}
UBCPY) (3,-4,-8)

Unate propagation
Probing/Dilemma
Equivalence classes

Backtracking

Page 7/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Search Components

<3 PR dpll(assign){
Decision heuristic do BOP”
. if "conflict”. return FALSE;
PFOPagatlon if "complete assign”: return TRUE;
] “pick decision variable x”,
Backtracking return dpll(assign[x=01)

: .. || dpli(assign[x=1]);
Flip last decision }

(standard recursive backtracking)

Conflict analysis:

Learn an asserting clause

[..] \

May be expressed in any /
variables, not just decisions. N Asserting clause:

™
Must have only one variable Conflict {Haaybycic}
from the last decision level.

What if b was irrelevant?

Page 8/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Search Components

<3 PR dpll(assign){
Decision heuristic do BOP”
. if "conflict”. return FALSE;
PFOPagatlon if "complete assign”: return TRUE;
] “pick decision variable x”,
Backtracking return dpll(assign[x=01)
) o || dpll(assign[x=1]);
Flip last decision }
(standard recursive backtracking)
Conflict analysis: forever{ — CDCL procedure
. “do BCP”
Learn an asserting clause if “no conflict”:
Backjumping if “complete assign”: return TRUE;

. “pick decision x=0 or x=1";
No recursion else:

Can be viewed as a resolution if “at top-level™ return FALSE;
analyze conflict

strategy, guided by conflicts. "undo assignments”

Together with variable activity, “add conflict clause”
most important innovation. ;

Page 9/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Conflict Analysis - Graph View

Conflicting clause:
{-x10587, -x10592, -x10588}

One option:

Trace back to decision variables

Would learn:
{x10646, x9444, -x10373 , -x10635 -x10637}

Other option:
Stop earlier

Asserting if only one literal left at the
highest decision level

Keep expanding nodes from that level

Page 10/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Conflict Analysis - Resolution View

Decision Implications Clause Database | reason for ¢

—a — [] / .
Ic, a, b} reason for —f

-b C)
Lo d b~ ,
~d © f {e; d; Y b, a} ——| reason for e
start with the resolve with {f, e, ~c} \ I

conflicting reason of last [...] conflicting clause

clause assigned literal

{f, 7e,~c} {=f, e, d, b} keep resolving until

only one literal of last
resolve on f decision level

{-e,d,—c,b} {e,d, ¢ b,a}

e N eolveone Resoludion:
' x, Ajres. 1—x, Bf =1A, B

Continue to resolve if {d, -c, b, a}

result is a strict subset ..

Page 11/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Variable Activity
The VSIDS activity heuristic:

Bump literals of the learned (conflict) clause
Decay by halfing activity periodically
Modified activity heuristic:

Bump variables of all clauses participating in analysis
Decay after each conflict

Effect:

Give preference to the very latest conflicts(Berkmin/VMTF)
Longer memory (15000 decays before minimal float value)

Page 12/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Execution of CDCL Solver

— Activity of decision variable
Red - Length of learned clause
— Decision depth when conflict occurred

Page 13/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Other Techniques

Two watched literals

not moved during backtrack;

migrate to silent places

improves with length of clauses

most BCP in learned clauses (often 90%), which are long
Restarts with polarity memoization

frequent restarts, except sometimes:1,1,2,1,1,2,4,1,1,2,1,1, 2, 4, 8...

not real restarts

compresses assignment stack => more focus on active variables
Conflict-clause deletion

remove clauses that don’t participate in conflict analysis

handles subsumed clauses better than original scheme (based on length)
CNF preprocessing

variable elimination

subsumption, self-subsuming resolution

Page 14/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Other Techniques (cont.)

Better CNF generation

If problem on circuit form:
Technology mapping for CNF

Fanout aware variable elimination

Certain constraints (e.g. cardinality

constraints) have known efficient
encodings.

Improvements to incremental SAT

Domain specific adjustments

Method Approx. #conflicts (Charactersitics)

BMC 100

Interpolation 1,000 (clause deletion, proof logging)

PDR 10,000 (local problems, limited proof logging)
SAT-sweeping 100,000 (local problems)

Page 15/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

SAT Research

Practical SAT is an experimental science.

Benchmark 1Cl 2C1 4Cl1
ldlx e _bp_f 8.26 438 2.25 1.2
There are three types of papers: dsceipt 2Nz 1S e a2
. 4pipe 312 17 091 049
Spipe 13.3 7.12 3.89 2.04
Th 1 . . 9vliw_bp_mec 30.64 1636 827 462
engine_4_nd 385 203 1.13 068
e Conc u510n ls Wrong. engine_5_nd_casel 4561 24.84 1394 7.62
hanoi5 0.15 0.08 0.04 0.02

The conclusion is correct,
but not for the stated reasons.

The conclusion is correct, the stated reasons are valid, but
the experimental data does not support it.

It is hard to improve the CDCL algorithm.

Page 16/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Slither Link

Rules

1. Each number must be surrounded by that
many edges.

>. All edges must form a single closed loop.

Page 18/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Slither Link

Rules
1. Each number must be surrounded by that
many edges.

>. All edges must form a single closed loop.

Constraints

A. Rule 1is easily expressed:

- Lete,, e,, e, e, be the edges around a
number k.

- Encode in CNF: card(e,, e, e,, e,) = k

B. An approximation of rule 2 can be enforced
locally:

- Every crossing should have either zero
or two edges.

- Encode as: card(e,, e., e5, e,) = 0 or 2

- ey
€4 3 € 2
83 . .
3 2 3
e.2 0 3
P .
e, 3

Example. k =1:
1€, €5, €3, €4,
{_'917 _'62}a {_'817 _'83}9 {_'ela _'84},
{_'827 _'63}, {_'827 _'84},{_'63, _'64}

Local loop constraint.

{e,, e, _'33}7 {e,, e, _‘94}7
{_'61; €3, _'64}, {_'eza €3, _'84}5
{61; €,, €4, _'34}a {61, €y, 7€g, 64}a
ey, me., €3, 64}’ {—e,, ey, €, 64}

Page 19/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Slither Link (cont.)

Lets run it...
...close, but no cigar. 2| 3 2 2
2|3 3
But with a CEGAR!
0
Refine by prohibiting 3 3 3 2
these particular cycles. 1 3
3 3 2
Repeat
Repeat 1 2
Done!

Page 20/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Slither Link (cont.)

[eenBturbantad]

Incremental solution works

well for larger s

too

1Z€eS

ing
non-

Formulate a SAT encodi

Exercise:
that will solve SI

ink

ither L

toh o — o —

tally (one SAT call only)

mcremen

F——t——t——+

+
I
1

+
1
1

+

+——+

bttt

6/12/2011

SAT/SMT Solver Summer School — MIT Cambridge, USA

Page 21/28

Other nice puzzles

Heyawake

Hanjie

Kakuro

Reflections

...try one with SAT

B s
http://games.erdener.org/laser/

Page 22/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Incremental SAT

MiniSat API

void addClause(Vec<Lit> clause)

bool solve(Vec<Lit> assumps)

bool readModel(Var x) — for SAT results
bool assumpUsed(Lit p) — for UNSAT results

The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

More clauses can be added after solve() returns, then
incrementally another SAT-solving executed.

Page 24/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Allows for...

Refinement loop
More clauses can be added with addClause()

Restricted clause deletion
Clauses can be tagged by an activation literal "a™

{=a, po, P s Pub, 174, G0, G oty Gn, - - -
Activated by passing a as part of assumps to solve()

Deleted by addClause({~a}) O1 ©r @
1 2 3

Poor-mans proof logging

If we have several sets of clauses A, A,,...
with different activation literals a,, a,,...,
assumpUsed() tells us which sets were used
for proving UNSAT

Also works for output of cones of logic in a
circuit primary inputs

AlG

Page 25/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Bit-level Verification

Design is given as a

netlist of: | -
Primary — Property
AND gates Inputs | Output
Pls —
Flops 1 Combinational |
_ —H Logic —
Wires can be comp- Flip- -
. Flops LI
lemented. A special :
output is marked as the 1 -

property.

Page 26/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Bounded Model Checking

Unroll the design for 1, 2, 3, etc. time-frames.

Check if the property can fail in the last frame.

Primary Inputs

BNV VAV

Initial \ N h h _
State — o 3 =
N N
Bad Bad Bad Bad Bad
for k in 1..00: Questions
Pbad = CNF(logic cone of Bad) * Why grow trace "forward”?
if (solve({prada})) * Increase by more than one frame
return CounterExample at a time?
addClause({—ppaa}) * How about SAT preprocessing?

* Better just skip incremental SAT?

Page 27/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

Conclusions

- SAT-solvers are implication engines.

- Clauses are the "assembly language” of propositional
reasoning.

- Two important techniques of CDCL solvers are:
Conflict analysis

Variable activity

- Most applications use incremental SAT and encode an

abstraction of the real problem.

Page 28/28 SAT/SMT Solver Summer School — MIT Cambridge, USA 6/12/2011

