

Who we are...

Christian Pleul, M.Sc. M.Eng. Researcher, Lecturer

TU Dortmund University
Faculty of Mechanical Eng.
Institute of Forming Technology
and Lightweight Construction

Baroper Str. 301 44227 Dortmund, Germany

Phone: +49 231 755 2669

Email: christian.pleul@udo.edu

Claudius Terkowsky, Dipl. Paed. Researcher, Lecturer

TU Dortmund University
TeachING-LearnING.EU
Center for Research on Higher
Education and Faculty Development

Vogelpothsweg 78 44227 Dortmund, Germany

Phone: +49 231 755 5542

Email: claudius.terkowsky@udo.edu

Fields of Research: Educational

- Engineering education
- Holistic engineering education
 - Interdisciplinarity, diversity, critical thinking
 - Implementation of advanced didactic aspects
- Learning with laboratories
 - Problem based and scenario based aspects
 - Research based learning → scientific research
 - Implementation of tele-operated labs ()
 - Separate, integrated
- Engineering communication

Fields of Research: Technological

- Objective-based conceptualization of labs
- Development of new tele-operated labs
- Automation of classic labs for tele-operative use
 - Engineering & design of machine parts
 - R&D and implementation of new measuring techniques
 - Integration of robotics
- Modular software development
 - Interaction with machine control, interface dev.
 - Usability of tele-operated labs
- Integration in a shared environment

Platform for e-learning and telemetric experimentation

- Funded by European Union, 2 years duration
- First approach in manufacturing technology
 - Material char. for forming (tensile/compression)
 - Joining (FSW), Cutting (machining)
- Stepwise approach in developing
 - 1. The procedure for interaction
 - 2. The realization of automation
 - 3. The socio-technical backbone
 - 4. Merging the pieces \rightarrow working environment

Technological system structure

System interaction → user interaction

- Tele-operative approach needs bidirectional communication
- Div. levels for tensile & compression test
- Complete integration in the learning environment

Automation & Measurement

Automatic placement

- 6 axes robot
- Pneumatic gripper
- Modular routines

- Automatic clamping
 - Clamping all kind of specimen
 - Exact positioning and measurement of clamping force
 - Control engineering with LabView

Learning in Socio-Technical Systems

Socio-technical systems consist of a combination of organizational, technical, educational and cultural structures and interactions.

:

- Design of technical interaction (e.g., interfaces to the actual labs), and
- Design of social interaction for online learning (e.g., communication, different social modes, contact to community)
- educational design (e.g., whole learning walkthrough with guided discovery learning, learning modules)
- **institutional implementation** and adaption (study and training regulations, learning objectives, credit points, Bologna etc.)
- an appropriate interplay of all four dimensions.

Guided and Selfdirected Learning

(Framework to enable and embed different learning walkthroughs and scenarios)

Merging the pieces

Learning modules are organized with LernBar inside of

Moodle

Tele-operated Exp.

- Configuration within or in the end of the modules
- Interaction increases complexity
- Final report

Resumé

- Further research & development in objective-based tele-operated experiments
- Target-orientated implementation of tele-operated exp. into eng. education
- Platform-orientated development
- Contribution to and learning from the co-operation with the:
 - GOLC Technical Committee
 - GOLC Education Committee

