Paper Outline

Goal

We discuss the evolution of CTI and its impact on spectral resolution for X-ray CCDs in different orbital environments. We specifically prepare models of the energy scale and resolution as a function of the background, CCD type (FI vs. BI), and application of charge injection, considering energies spanning the CCD range.

Outline

- about the instruments
 - first describe each separately (label CCDIDs)
 - then similarities/differences between ACIS/XIS that impact CTI (just the instruments and operation, no environment yet) in a table and summarize in text
 - initial pre-launch CTI, ACIS BI > XIS BI, XIS FI > ACIS FI
 - Transfer speeds, fast transfer (image-to-framestore) serial transfer not the same
 - Frame time, 3.2s vs 8s
 - Focal plane temperature, -90C vs -120C
 - 🚱 (insert additions to this list here)
- · about the orbits and backgrounds
 - steal from Bev's 2008 SPIE paper
 - steal from O'Dell, Markevitch papers on radiation environments
- about the calibration sources
 - ACIS Fe55 with Al&Ti (Fe-L), uniform illumination, getting pretty wimpy, only sampled twice per orbit
 - XIS Fe55 with no targets, no Fe-L, only in corners, getting wimpy, continuously sampled (except SAA)
 - measure Fe55 half-life extremely well
- Measuring CTI, ACIS vs XIS (methodology)
 - ACIS fit all grades, only center pixel pulseheight vs ccdy/ccdx (binning/fitting details needed)
 - XIS fit only good grades, summed pulseheight from top cal source corners
 - process ACIS the same way as XIS for comparison? only use center pixels? CTI metric to be decided
 - only use Mn K alpha
 - include checker-flag CTI measurement for XIS, SCI-off (Ozawa 2009)
- CTI evolution, plots of measured CTI vs time
 - for ACIS, apply corrections for temperature and sacrificial charge
 - not done for XIS; temperature is stable, background is integrated over 1 day = 16 orbits
 - decide on time binning ⁽¹⁾
 - not necessary to be the same for ACIS/XIS, and might be misleading given very different cal source duty cycles
- compare differences in rate of CTI increase (and shape?)
 - (no parallel vs serial)
 - FI vs BI
 - low vs high orbit
 - with and without CI (for XIS, when possible)
 - 3 (insert additions to this list here)
- · charge trailing vs time
 - trailing fraction shows how initial ACIS from low energy protons is different from ongoing, higher energy particle damage
 - metric is average lost charge of all events divided by average trailed charge of all events
- FWHM evolution, plots of measured FWHM vs time
 - · ACIS and XIS can pretty much measure this one the same way
 - (G02346, summed pulseheights, fit Gaussians, etc.)
 - discussion related to all the above stuff
 - somewhat more complicated to link to physical causes w/ charge trailing, multi-pixel events
- relate CTI and FWHM increases
 - depend on BI/FI; are ACIS/XIS different?
- · relate CTI/FWHM increase to measures of particle fluence, particle type
 - maybe beyond scope of this paper

- comparison of a celestial source
 - E0102
 - E0102

 has been observed extensively over time with ACIS and XIS
 low energy lines very different from Mn K alpha
 mostly on ACIS-S3

 Perseus, other clusters

 check ACIS time coverage, XIS and ACIS roll angles
 Fe line centroid changes with kT, location in cluster