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Estimates of pressure differences across the head of a 
swimming clupeid fish 

JAMES LIGHTHILL 
Department of Mathematics, University College London, Gower Street, London WCIE 6BT, U.K. 

SUMMARY 

This paper is concerned to estimate, for a regularly swimming clupeid fish, the effective pressure 
difference that drives those motions in the subcerebral canal which can stimulate the lateral-line 
neuromasts (see the preceding paper by Denton & Gray 1993). Hydrodynamic analysis indicates that 
pure sideslip of the head (at observed sideslip velocities) would generate a pressure difference so great 
that the neuromasts would be saturated; however, simultaneous yawing can enormously reduce the 
effective pressure difference. 

For this purpose the angle of yaw would need to be kept in phase with sideslip velocity, with a 
magnitude only a little less than the ratio of sideslip velocity to swimming speed, making the 'crossflow' 
of water across the yawed head small. These moreover are conditions which tend to avoid any serious 
distortions of the boundary layer on the fish's surface by 'crossflow', such as are known from other 
evidence to increase significantly the resistance to the fish's motion. 

It is noted that the lateral-line sensors would provide an appropriate feedback signal into a possible 
system for controlling yaw by oscillatory neck deflections so as to minimise the effective pressure 
difference and any associated crossflow effects. It is suggested that swimming clupeid fishes may use such 
an 'active' mechanism for reduction of hydrodynamic resistance. 

The same ratio (around 0.87) of yaw angle times swimming speed to sideslip velocity is estimated: (i) 
to annul the signal sensed by lateral-line neuromasts; and (ii) to remove crossflow in the boundary layer 
over the head. The succeeding paper (Rowe et al. 1993) gives evidence, both that yaw is kept in phase 
with sideslip velocity, and that the above ratio (see their figure 4) remains close to 0.87, in a swimming 
herring. 

1. INTRODUCTION 

Denton & Gray (1993) have demonstrated in the 
preceding paper the importance for a clupeid fish of 
fluid motions in the subcerebral canal. These are 
driven by the effective pressure difference 

(Ap)eff, (1) 
between the two lateral recesses, here taken as situated 
a distance 2b apart on the two sides of the fish's head. 
This effective pressure difference 

(Ap)eff = Ap + 2bpA, (2) 
is defined as the actual pressure difference Ap cor- 
rected for the inertial effect of the head's lateral 
acceleration A acting on fluid of density p. 

This paper is directed towards estimating the values 
of (Ap)eff associated with regular swimming move- 
ments of the fish. First, it considers (? 2) the effect on 
Ap of any lateral accelerations A of the head (such as 
are an inevitable consequence of the periodic side- 
forces exerted by the water on the oscillating caudal 
fin) in the case when the head is not simultaneously 
subjected to yawing movements. This analysis gives 

Ap = 2bkpA, (Ap)eff 2b(l + k)pA, (3) 
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where k is a numerical constant dependent on the 
shape of the head but estimated to take values around 
1.6 for clupeid fishes. 

Next, the estimation of Ap is carried out (? 3) for the 
case when the head undergoes at one and the same 
time a lateral acceleration A and a yawing rotation 
with angular velocity 2. The value of (AP)cff in this 
case is found to take the form 

(Ap)eff 
- 2b(1 + k)pA - 2bKpUQS (4) 

where U is the forward velocity of swimming while K 
is another numerical constant, estimated to take 
values around 3 for clupeid fishes. 

How important is the correction due to angular 
velocity? If we were to assume that the front part of 
the fish (including the head and several proximal 
vertebrae) were kept essentially rigid, responding to 
sideforces on the caudal fin like a rigid body (immersed 
in water), then the expected values of angular velocity 
2 would make only minor alterations to expression (4) 

for (Ap)ff. 
In such cases, however, Denton and Gray have 

been able to infer that the effective pressure difference 
(Ap)cff would stimulate fluid motions in the subcere- 
bral canal and thence in the lateral-line system which 
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would saturate the associated sensors (neuromasts) 
even at quite moderate swimming speeds. Yet a 
clupeid fish is swimming continually under normal 
circumstances, and it is hard to believe that it does so 
with an important sensory system like the lateral-line 
neuromasts rendered ineffective by saturation. 

In particular, the same authors in an earlier paper 
(Denton & Gray 1983) had shown how the lateral- 
line system - if unsaturated - could be effective for 
sensing movements of nearby fishes. Thus, although 
such movements may be shown (? 4) to have no effect 
on (Ap)cff itself, nevertheless they can generate pres- 
sure gradients in the forward direction, capable of 
being equally sensed by neuromasts in lateral lines on 
both sides of the head. For a clupeid fish, which 
characteristically swims in a school, this capability 
may be highly advantageous. 

All these considerations in combination have sug- 
gested that it could be valuable to ask (? 4) whether a 
swimming clupeid fish may be able to control the 
angular velocity Q of its head, by means of oscillatory 
neck deflections, in such a way that (Ap)eff is kept as 
small as possible. The lateral-line system, responding 
as we have seen to the signal (Ap)eff, is well adapted to 
offer the feedback needed for a control system of this 
kind. 

Such a control would bring hydrodynamic benefits 
of reduced resistance that are particularly advan- 
tageous for a continually swimming fish. Indeed the 
conditions under which (Ap)cff is kept as small as 
possible may be shown (? 4) to be such as will 
minimize those crossflows within the boundary layer 
over the fish's head which are capable of seriously 
distorting that boundary layer and thereby enhancing 
hydrodynamic resistance. Essentially, the fluid in the 
boundary layer responds to exactly the same signal 
(Ap)cff as does the fluid in the subcerebral canal, and 
its crossflow response becomes small in precisely that 
case of small (Ap)cff when motions in the lateral-line 
system are greatly diminished. 

These arguments lead to the tentative conclusion 
that the signal (Ap)cff could provide valuable feedback 
into a system for controlling neck deflections (the 
lateral-line system) able to achieve minimal resistance 
by keeping boundary-layer crossflows over the head as 
small as possible. When moreover such a system were 
operating effectively, lateral-line neuromasts would 
avoid saturation. In that case neuromasts on both 
sides of the head would be able to respond to those 
longitudinal and dorso-ventral pressure gradients that 
are generated (without altering (Ap)cff at all) by the 
movements of nearby fishes. For further discussion of 
these possibilities, see the preceding paper by Denton 
and Gray. 

Finally, a simplified interpretation of the paper's 
conclusions is given at the end of ? 4, where it is noted 
that the conditions for the effective pressure difference 
(4) to be minimized are close to those conditions 
under which, at each instant, the yawed head of the 
fish has at most a very small velocity component 
perpendicular to itself. These latter conditions require 
that the angle of yaw, in radians, should remain close 
to the ratio of sideslip velocity to swimming speed. 

The plausible intuition that crossflows might in 
general be minimized in these conditions is confirmed 
by the paper's detailed analysis. 

2. PRESSURE DIFFERENCE DUE TO 
LATERAL ACCELERATION 

When the fish is swimming, the distribution of pres- 
sure over its head is governed by three principles: (i) 
the flow remains irrotational (devoid of vorticity) 
outside a very thin boundary layer attached to the 
surface of its head; (ii) at each point on the surface, 
the pressure takes almost exactly the same value as it 
takes just outside the boundary layer; and (iii) the 
distribution of pressure outside the boundary layer is 
given by the Bernoulli equation for unsteady irrota- 
tional flow. 

This equation uses the velocity potential q, defined 
so that it tends to zero at large distances from the fish 
and so that its gradient gradb specifies the fluid 
velocity in magnitude and direction. Then the for- 
mula (see, for example, p. 83 of Lighthill (1986)) 

a s I 
__ 

'' -- -2 plgradq 12, 

specifies a quantity p which may be regarded as the 
pressure distribution in every dynamical context 
(more strictly, p represents the difference between the 
actual distribution of fluid pressure and a purely 
hydrostatic distribution). 

An irrotational motion of fluid is uniquely deter- 
mined at any instant (see, for example, p. 87 of 
Lighthill (1986)) by the instantaneous movement of 
the solid boundary. In this section we consider the 
case when the instantaneous movement of the fish's 
unyawed head has a forward component U in the 
direction of swimming (which we take as the x- 
direction) and a sideslip component V in a perpen- 
dicular direction (the y-direction) but is without any 
rotary component. In using equation (5) to determine 
the pressure distribution, however, we need a know- 
ledge of 0a/lt, which depends on changes from one 
instant to the next in the position and velocity of the 
body. 

The position of the fish's head may be specified (see 
figure 1) in terms of the coordinates (xo,yo) of some 
central point, such as the point midway between the 
two lateral recesses. Then the rates of change of these 
coordinates are the velocity components 

dxo/dt = U, dyo/dt = V. (6) 
The velocity potential can be written as 

- Uf(x - Xo,y - yo,z) + V?l (x - x0,y - yo,z), (7) 
in terms of two well defined functions (f- and bl each 
representing, in terms of position relative to the 
central point, the velocity potential associated with 
the head's movement at unit velocity in the x- or y- 
direction respectively (figure 1). 

When equation (7) is used to derive a0/1t, the rates 
of change (6) of xo and yo need to be taken into 
account as well as any rates of change of U and V 
themselves. The result is 
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a0 dU I aor + a4Tf\ dVV 
da dt a x ay dt 

- __ + Va?1), 

A t dt A, - UV A ++ x at dt ay ax (9) 

(8) This result may be used in (5) together with a 
corresponding result for 

which at first sight may seem quite a complicated 
expression (of six terms) for just the first part of 
equation (5) for the pressure. 

It is, however, a consequence of the lateral sym- 
metry of the fish's head that, essentially, only one of 
these six terms contributes to the pressure difference 
Ap between the two lateral recesses. If the distance 
between these is 2b, then we are concerned with the 
difference of pressure between points with y - yo equal 
to +b or -b (and x-xo==0). This quantity takes a 
simple form because of the symmetry properties 
(figure 1) of the potential functions of and ,1. 

Thus, because of represents a potential due to the 
head's movement in its plane of symmetry, (f is 
necessarily an even function ofy - yo; in other words, a 
function which is unchanged if simply the sign (but 
not the magnitude) of y-yo is altered. Its value, in 
short, is the same for y-yo equal to + b or -b. 

By contrast, (l represents a potential due to the 
head's movement at right angles to its plane of 
symmetry. Such a potential may readily be shown, by 
considering a reversal in that movement's direction, to 
be an odd function (one which changes its sign, but 
not its magnitude, when y-yo does the same). It 
follows moreover from these two properties of (f and 
(1 that d(ff/Ox and al\/ay are even functions while 
afla/y and a\l/ax are odd functions. 

Accordingly, if as in (1) we use A to signify a value 
at y-yo= +-b minus a value at y-yo= -b with 
x-xo=0 in both cases (in other words, a difference 
across the subcerebral canal), then equation (8) gives 

_ Vl 

(x V4YO) )_ > U 

++++ v 

Figure . Movement of a fish's head without rotation 
Figure 1. Movement of a fish's head without rotation 
generates fluid motions described by a combination of two 
potentials, as follows. Potential Uqf: associated with the 
forward component, at velocity U, of the head's movement 
is a symmetric potential U(f which takes negative values 
around the snout (giving rise, there, to positive pressures 
- p(dU/dt)bf when the velocity U increases). 

Potential Vol: associated with any lateral component, at 
velocity V, of the head's movement is an antisymmetric 
potential V?Pt which takes negative values on the side 
towards which the head is moving and positive values on 
the opposite side. When V is increasing these lead to an 
opposing pressure difference -- p(d V/dt)AOl across the head. 
This difference is unaffected by the presence of the sym- 
metric potential Urf. 

Igrad 12 = IUgradfr + Vgrad0112 

= U2 gradfr2 + 2UV(gradr) ? (grad4l) 
+ V2lgradq;12; (10) 

where the first and third terms on the right-hand side 
are even functions (remaining positive and of 
unchanged magnitude when the sign of y-yo is 
altered) but the middle one is an odd function. Thus 

A('Igradql'2) = 

UVA(a (a-f + a b0a b, aqsla~1 
a Ox Ox ay ay ?z z (11) 

Now equation (5) for p together with the results 
(9) and (11) gives Ap in the form 

AP = -p dt + pUVA (1 - a1 
dtAF ay ) ay 

I 5\ aof a0 a 71] 
1 

- Oax) ax a- z ;z (12 

where, however, the second term can be expected to 
be negligibly small. This is because, at each lateral 
recess, the conditions 

(13) 

are expected to be closely satisfied. Indeed, the 
definition of )\ makes it the velocity potential asso- 
ciated with the head's movement at unit velocity in 
the y-direction. Accordingly, the three components of 
the velocity gradbl of fluid motion are constrained by 
the movement of the boundary to take values very 
close to those in (13). 

Actually, equations (13) would be exact if the 
lateral recess were situated just at the stagnation point 
for steady flow in the y-direction past the stationary 
head. Inspection of diagrams in the preceding paper 
giving the position of the lateral recess indicates that 
this condition must be quite closely satisfied. 

The value of Ap is seen, then, to be well approxi- 
mated by the first term in equation (12), where the 
negative quantity Al1 has the dimensions of length 
(since 01 is a potential associated with movement at 
unit velocity). Accordingly, we write 

Al =- - 2bk, (14) 

where k is a numerical constant which we now 
proceed to estimate, and infer that 

Ap = 2bkp (dV/dt). (15) 

Here, the value of k depends on the shape of the 
fish's head. In the Appendix, details of this shape are 
indicated, and it is estimated that k lies in the interval 
between 1.45 and 1.8. 

Briefly, 1.8 is the value given by 'elongated-body 
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theory' in terms of the local cross-section of the head 
through the lateral recesses. That cross-section is 
shaped like an ellipse of axis-ratio 1.8, and this 
quantity 1.8 is itself the value of k for a long elliptic 
cylinder with such a cross-section. On the other hand, 
the part of the head anterior to the lateral recesses 
tapers towards the mouth and is closer in shaper to 
half of an ellipsoid with axes in the ratio 4.5:1.8:1. 
For the complete ellipsoid the value of k would be 
reduced to 1.45. The actual value of k is expected to 
lie between these limits because the shape anterior to 
the lateral recesses is very near that of the ellipsoid 
while the posterior shape is closer to that of the elliptic 
cylinder. For the research described in the preceding 
paper it is unnecessary to determine k more accu- 
rately, although where numerical results are given 
they are based on the value 

k 1.6. (16) 

3. PRESSURE DIFFERENCE DUE TO 
COMBINED LATERAL ACCELERATION 
AND ROTATION 

In this section the calculation of ? 2 is extended to the 
case when the plane of symmetry of the fish's head 
makes a small angle o (which is a varying function of 
time) with the direction of swimming. As before, the 
point midway between the lateral recesses is taken to 
have coordinates (xo,yo), where the x-axis is in the 
direction of swimming. However, the forward velocity 
U and the sideslip V are no longer equated to dxo/dt 
and dyo/dt as in (6); rather, they represent velocity 
components of the head in its plane of symmetry and 
at right angles (see figure 2). In the present case, 
moreover, the head is also subject to a rotation about 
this central point at an angular velocity 

be replaced by an expression involving three terms, 
where the third term represents the velocity potential 
associated with rotation of the head at an angular 
velocity Q about the central point (xo,yo). 

Studies in ? 2 showed how important for the 
determination of Ap is the lateral symmetry of the 
head. On the other hand, the fish's head exhibits this 
symmetry not with respect to the x-direction but with 
respect to a different axis (see figure 2), inclined at a 
small angle c to the x-direction; namely, an axis in the 
fish's plane of symmetry. 

It is convenient therefore to employ new coordi- 
nates X,Y with this last axis in the X-direction. We 
take the central point, midway between the lateral 
recesses, as the origin of this coordinate system so that 
the lateral recesses are defined as points with 

X= 0 and Y= + b (18) 
as well as with z=0 (the vertical z coordinate is the 
same in both systems). 

At each instant, the velocity potential 0 is uniquely 
determined as in ? 2 by the instantaneous motion of 
the head, which now involves a rotation at angular 
velocity (17) as well as translation at the longitudinal 
and lateral velocities U and V. In the (X,Y,z) 
coordinates, therefore, 

0 U4)(X,Y,z) + VqI(X,Y,z) + 02q(X,Y,z), (19) 
where the potential )r represents fluid motions gen- 
erated in a rotary movement of the head with unit 
angular velocity. Evidently, the earlier equation (7) 
represents the special case of (19) when fQ=0 and 
when the head is unyawed so that X and Y are simply 
x - x and y - yo. 

However, in the case of yaw by a small angle ox, this 
relationship between the coordinate systems is slightly 
altered (see figure 2) to become 

(17) 

given by the rate of change of the yaw angle a. 
Once again, the Bernoulli equation (5) is used to 

estimate the pressure distribution in terms of the 
velocity potential q. On the other hand, the ex- 
pression (7) for 0 as the sum of two terms, propor- 
tional to the velocity components U and V, must here 

V 

X = x - x + (y - yo)g, 

while, in addition, 

U = o + o?o, V == 4o - ot*o. (20) 

As a consequence, the expression for a0/f3t (a differen- 
tiation of expression (19) with respect to time for 

ie 2. Illtig hriz l mv s of the fish's hd as d id in to al ive s o ax: (i) th 

Figure 2. Illustrating horizontal movements of the fish's head as described in two alternative systems of axes: (i) the 
fixed axes (x,y), in which the central point has coordinates (xo,yo) and velocity components (xo,yo); and (ii) the 
moving axes (X,Y) with their origin at that central point, and with the X-axis in the head's plane of symmetry, 
inclined at a variable angle o( to the x-axis. 

Velocity components in the (X,Y) coordinate system are U=xo0+ o0o, V=yo- o0o, while the angular velocity of 
rotation of the head is Q=dcx/dt. 

Note: the swimming speed Uo= x differs very little from U; on the other hand, the sideslip velocity Vo=yo differs 
from V by the large correction Ucx. 
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constant x, y and z) comprises not just six terms as in 
(8) but a still larger number: 

d0 dU dV dQ1 
at ddt dt t + r 

- TU f+ V-+ DQ ~-r)[U- (y- yo) 

-(U -f 
+ V + 1 - )[ V (x - x)S. (21) 

Here, the time-differentiations of X and of Y (with x 
and y kept constant) are represented respectively as 
minus the two terms in square brackets. 

As in ? 2, on the other hand, the difference A of 
0)/0t between the two lateral recesses (18), where 
x=xo and y = yo b, is simplified because of the 
symmetry properties of the potential functions in (19). 
Of these, )f (resulting from symmetrical movement of 
the head) is an even function of Y, while 4ql and qr, 
(resulting from antisymmetrical movements) are odd 
functions. It follows that 

(Oa) d V 
dQt ) 

At d A, + AOr _UA V'ol + Q'or AK,1 dt ax ax 

+ 2bU? - UV (UVAf (22) 

which can be further simplified to 

(at) 
= 

dVA d+ - U Ar+) 2bU a2Af (23) 
dt dt Xr ax1 

because the boundary condition on ofS makes a?fi'OY 
practically zero at the lateral recesses, and where, in 
addition, as in ? 2, 0fl)/X may be neglected. 

The right-hand side of equation (23) includes four 
terms of which the first involves the coefficient 

A, = - 2bk, (24) 

as in ? 2. Of the three new terms, the one involving 
A4r is investigated in the Appendix where it is shown 
to be zero both on elongated-body theory and accord- 
ing to exact calculations for an ellipsoid. Accordingly, 
even though there is no necessity for AO)r to be 
precisely zero, it will be neglected in what follows. 

By contrast the quantity A(0ad)r/X) is expected to 
be yet another negative quantity with the dimensions 
of length, 

A(ar/Oax) = -2bk, (25) 
with the constant kl depending on the shape of the 
head. Its value is determined in the Appendix; (i) on 
elongated-body theory, which gives kl=k so that kl 
may be estimated as 1.8 for the head shape there 
analysed; and (ii) for an ellipsoid with axes in the ratio 
4.5:1.8:1, which gives a value k1=l.11, a value 
considerably less than the value of k= 1.45. 
It is reasonable as in ? 2 to assume that kl lies between 

these two extreme values 1.8 and 1.11; its exact value 
is by no means essential to the argument of this paper, 
although wherever numerical results are quoted k1 has 
been taken equal to 1.4. (For the fourth term in (23), 
see below.) 

The corresponding extension to equation (11), on 
the other hand, produces as in ? 2 no significant 
contribution to Ap. It takes the form 

A(?lgrad4p2) = 

A[(Ugrad4f) ? (Vgrad4, + ? grad0r)], (26) 
which, with a()f/aY neglected as above, becomes 

1J 
\V X ax + a az J 

+ UQ(ax ax + )- z) (27) 

Here the terms in a?fl/aX and 0a4)i/z are expected by 
(13) to be very small, and the term in aOfr/{z may like 
Or itself be estimated as zero on both theories given in 
the Appendix. The leading term in (27) is therefore 

a4k { 4) 
ar= f 4 

2I 
N 

Uox Uax ii 2b 

where the last factor was seen in equation (25) to be 
substantial. The immediately preceding factor )0f/aX, 
however, makes the product (28) small compared 
with the important third term in (23). This is because 
the potential (f describes fluid motions generated by 
the head when it moves forward at unit velocity along 
its plane of symmetry. For a thin streamlined head, 
the value of 0]f/aX must therefore be small compared 
with 1 at points like the lateral recesses, simply 
because the symmetrical movement of the head dis- 
turbs the fluid relatively little. 

In further justification of the neglect of (28), we note 
that in combination with the last term in (23) it makes 
an overall contribution to Ap of 2b(k1 - 1) pUQac)f/aX. 
For both model problems treated in the Appendix this 
can be neglected because (i) in elongated-body theory 
it is zero since d)f/aX=0, while (ii) for the ellipsoid 
a(ff/lX takes the small value 0.10 while also kl-1 is 
only 0.11 so that their product is only about 1 / of the 
value of kl itself. 

Finally, then, the combination of the term (26) in 
Ap and the last term in (23) can be neglected, and Ap 
is given by equations (5), (23), (24) and (25) as 

Ap = - pA(a0/at) = 2bkp(dV/dt) - 2bk1pUQ. (29) 

However, in this expression the term d V/dt must not be 
directly equated to the head's lateral acceleration A, 
because at each instant U and V are taken as the 
components of velocity along the X-axis and the Y-axis. 
Figure 2 shows, in fact, that, because the X- and Y-axes 
are rotating, 
A = dV/dt + Uf2; (30) 

indeed, in a small time interval bt, the angular 
velocity Q turns the X-axis through an angle Q2bt so 
that the velocity U in the X-direction acquires a 

Phil. Trans. R. Soc. Lond. B (1993) 

(28) 



134 J. Lighthill Pressure differences in a swimming clupeid fish 

lateral component U(Q2rt) in addition to the ch 
6V in the Y-component of velocity. 

Equations (29) and (30) taken together give as 
section's final conclusion 

Ap = 2bkpA - 2bKpUQ, 
where the constant K takes a value 

K = k + k 

which, according to the previous discussion, is ir 
general neighbourhood of 3. Equation (31) for A 
of course, the source of the equation (4) for (Z 
already quoted in ? 1. Some of the implications of 
result are studied in the next section. 

4. DO CLUPEID FISHES VARY 2 SO AS Tl 
KEEP (Ap)eff SMALL? 

Clupeid fishes are an exceptional group in that 
lateral line is confined to the head. Lateral 
neuromasts, moreover, respond sensitively to f 
induced by motions in the subcerebral canal. TI 
in turn, are forced by the effective pressure differ 
(Ap)cff across the head; which, in swimming, v 
with the head's lateral acceleration A and ang 
velocity 2 in accordance with equation (4). 

By contrast, Denton & Gray (1983) showed 
pressure fields of neighbouring fishes can be expe 
to have essentially no influence on (Ap)cff. Th 
because the density of the head is close to the de: 
of water, p, while the flexibility of the neck allow; 
head to respond to any externally induced pres 
difference Ap rather like a small volume of water, 
an acceleration 

I ap I Ap 
p a p 2b' 

ange redirected from the external irrotational motions (?? 2 
and 3) to the flow inside the thin boundary layer on 

this the fish's head. This is the layer of fluid which the 
fish's swimming motion causes to be dragged forward 
through the action of viscous stresses within the water. 
Because water has such a low viscosity /, the layer's 
thickness remains small, a typical estimate on a head 

(32) of length a being (32) 
1 the 
kp is, 

4Eualp U)112 (34) 

hp)cff which is considerably less than 1 mm for normal 
fthis swimming velocities U of around 1 m s- 

Apart from the forces dragging forward the fluid in 
this boundary layer, there are also components of 
force within the plane of a cross-section acting on that 

o fluid. These include, naturally, forces due to gradients 
of fluid pressure; but, when the fish's head (to which 
the boundary layer is attached) has lateral accelera- 

the tion A, they include also an inertial effect, equivalent 
-line to a force (-pA) per unit volume. In short, bound- 
lows ary-layer fluid is subjected to exactly the same 
hese, influences as the fluid in the subcerebral canal. 
ence We may show, furthermore, that when the effective 
aries pressure difference (Ap)cff forcing fluid in the subcere- 
gular bral canal is zero then there is also no net force 

component acting on boundary-layer fluid within the 
how plane of a cross-section. In order to demonstrate this, 
cted we use the coordinate Y (see ? 3) which varies from 
lis is Y= -b to Y= +b in the cross-section through the 
nsity lateral recesses. Then the inertial effect on all the fluid 
s the moving with the cross-section is known to be equiva- 
ssure lent to the effect of a pressure distribution pA Y, whose 
with gradient would produce the same force per unit 

volume. If therefore we can show that the actual 
distribution of pressure p over a cross-section takes the 

(33) value 

which makes (Ap)cff zero. 
No such requirement applies, on the other hand, to 

the effects of the fish's own regular swimming by 
oscillations of the caudal fin. These cause the water to 
act on the caudal fin with sideforces to which the fish's 
entire body must necessarily respond with 'recoil' 
movements including both sideslip and yawing move- 
ments. The head, in particular, is caused by sideslip to 
push against the water so that the resulting Ap, far 
from assuming the opposite sign to that of A as in (33), 
is a positive multiple of A - which makes (Ap)cff a still 
larger multiple as in (3). 

If on the other hand the fish by muscular action 
could control the value of Q by means of periodic neck 
deflections, then in principle it could cancel out this 
effect (3) of A on (Ap)cff by an equal and opposite 
contribution from 2 to expression (4). In this context 
uncertainty about the coefficients in (4) - whether on 
the part of the analyst or of the fish! - is of course quite 
irrelevant, because the lateral-line neuromasts provide 
the perfect 'closed-loop' control system, with feedback 
directly proportional to the quantity (Ap)eff which is to 
be kept small. 

The question of what advantages this might bring 
to a clupeid fish is readily answered once attention is 

(Ap) Y/2h, (35) 

then the total effective pressure distribution must take 
the value 

(Ap)Y/2b + pAY= (Ap)ff Y/2b, (36) 

which is negligibly small when and only when the 
same is true for (Ap)cff. 

The demonstration may now be concluded by 
noting that the pressure distribution over the cross- 
section is shown in the Appendix to take precisely the 
form (35) on both model problems treated there; that 
is, on elongated-body theory and also in exact calcula- 
tions for an ellipsoid. (In both cases, moreover, this 
distribution is found in relation to each of the two 
potential terms AOl and A(a6r/aX) which contribute, 
as (23) shows, to Ap.) Probably, then, this form (35) is 
close enough for the flow over the real fish's head with 
its expected characteristics intermediate between these 
two models. 

In the usual language of boundary-layer theory, the 
above analysis has indicated that crossflow in the 
boundary layer (motions in the plane of a cross- 
section) will be kept small over the head under 
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precisely the condition that (Ap)eff remains small. 
Almost certainly, this minimization of boundary-layer 
crossflow generates substantial reductions in hydrody- 
namic resistance that should be particularly advan- 
tageous to continually swimming fishes like clupeids. 

Essentially, the boundary layer without any cross- 
flow is similar to that appearing on a fish which is 
simply gliding forward. The streamlined shape of the 
fish is then being fully utilized to reduce resistance. 

Intermittent swimming, as observed in many 
groups of fishes, often exhibits an alternation of 'beat' 
and 'glide' phases. In this swimming 'gait', dissipation 
of the fish's kinetic energy by hydrodynamic resistance 
is kept to a minimum during the 'glide' phase, even 
though restoration of that kinetic energy during the 
actively swimming 'beat' phase is accompanied by a 
much enhanced - perhaps, even quadrupled (Ligh- 
thill 1975, p. 115) - rate of dissipation, associated with 
an augmentation of resistance due to boundary-layer 
crossflows. Advantages in energy expenditure to 
achieve a given average swimming speed are easily 
seen in accrue under these circumstances. 

For continually swimming fishes like the clupeids, 
however, it may be highly advantageous to win some 
of these benefits of reduced resistance even in the 
actively swimming condition. Admittedly, the sug- 
gested control system for minimizing (Ap)eff would 
only be effective for eliminating boundary-layer cross- 
flow over the head; nevertheless, this effect by itself 
may be expected to eliminate a significant part of the 
extra resistance due to swimming. Furthermore, by 
starting the boundary layer off in a crossflow-free state 
over the head, it should delay any build-up of 
substantial boundary-layer crossflows on posterior 
parts of the fish's body. 

The values of n2 which the fish would have to 
produce in order to win these benefits are indicated by 
equation (4). Essentially, ?2 needs to be in phase with 
A and almost equal to A/U in magnitude; more 
accurately, 02 should be 0.87A/U where the factor 0.87 
represents our estimate of (1 + k) /K. 

It is interesting that, according to equation (30), 
such a requirement keeps changes in V (the velocity 
component perpendicular to the yawed head of the 
fish) quite small. This moreover (see figure 1) requires 
that the yaw angle o is close to Vo/U, where Vo=yo is 
the velocity component perpendicular to the direction 
of fish swimming. (In other words, Vo is the sideslip 
velocity; and, still more accurately, o should be kept 
close to 0.87 Vo/U.) 

These conditions do not appear to demand any 
excessively large angles of neck deflection. On the 
other hand, it is important to note that both of them 
describe a condition that differs greatly from any 
likely passive response of the head to sideforces on the 
caudal fin. Such forces while producing directly an 
acceleration A are likely rather to generate a rate of 
change of angular velocity in an essentially passive 
response, in which case A and Q would be not in phase 
but in quadrature. Again, the yaw angle a in a passive 
response might take a maximum value around h/(ll) 
where h is the amplitude of the head's lateral displace- 
ment yo and I the fish's length; while the amplitude of 

yo/U for radian frequency co would be oh/U. The 
latter value would be five times greater than a in 
typical conditions of fish swimming with )ol)/U 10. 

The control process proposed, then, is essentially an 
active one, directly dependent on feedback from the 
lateral-line neuromasts. For further details of this 
proposal, see the preceding paper by Denton & Gray 
(1993). 

REFERENCES 

Denton, E.J. & Gray, J.A.B. 1983 Mechanical factors in 
the excitation of clupeid lateral lines. Proc. R. Soc. Lond. B 
218, 1-26. 

Denton, EJ. & Gray, J.A.B. 1993 Stimulation of the 
acoustic-lateralis of clupeid fish by external sources and 
their own movements. Phil. Trans. R. Soc. Lond. B341, 
113-127. (Preceding paper.) 

Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge 
University Press. 

Lighthill, J. 1975 Mathematical biofluiddynamics. Philadel- 
phia: Society for Industrial and Applied Mathematics. 

Lighthill, J. 1986 An Informal information to theoretical fluid 
mechanics. Cambridge University Press. 

Rowe, D.M., Denton, E.J. & Batty, R.S. 1993 Head 
turning in herring and some other fish. Phil. Trans. R. Soc. 
Lond. B 341, 141-148. (Following paper.) 

Received 17 September 1992; accepted 12 March 1993 

APPENDIX. ESTIMATES OF THE VALUES OF 
THE CONSTANTS k AND k1 FOR A CLUPEID 
FISH 

A.1. INTRODUCTION 

This paper's main conclusions (see equation (4), for 
example) are expressed in terms of two constants k 
and k1 together with their combined form K=k+ kl. 
The constant k is defined by equation (14) in terms of 
the velocity potential e1 of motions induced by a 
lateral movement of the fish's head at unit velocity. 
The constant k1 is similarly defined by equation (25) 
in terms of a longitudinal gradient P>r/OX of the 
velocity potential (Pr of motions generated by rotation 
of the fish's head at unit angular velocity. 

Evidently, the values of these constants depend on 
the shape of the head, which exhibits significant 
variation between different clupeid species and 
between individuals within a species. It is therefore 
fortunate that the general argument of this paper in 
no way depends on knowing k and ki precisely. On the 
other hand, it is desirable to estimate their values to a 
rough approximation. 

The most obvious classical method by which such 
an estimate might be attempted is the elongated-body 
theory (see, for example, chapters 2, 4 and 5 of 
Lighthill (1975)). On this approximate theory, the 
values of the constants would depend only on the local 
shape of the cross-section of the head through the 
lateral recesses. In ? A.2 some data on this cross- 
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1 cm ------- 

Figure 3. Plain line: cross-section through the lateral recesses 
of the head of a herring of length 10 cm. Broken line: ellipse 
of axis-ratio 1.8: 1. 

sectional shape obtained for a herring by Denton and 
Gray are shown to suggest that it does not deviate 
greatly from an ellipse with vertical and horizontal 
axes in the ratio 1.8:1. 

For this elliptical shape, elongated-body theory is 
used in ? A.2 to calculate both k and kl, and also to 
verify (see ? 4) that the associated pressure distribu- 
tions vary linearly with Y. It is shown, furthermore, 
how the basic expression (31) for the pressure differ- 
ence is fully consistent with a standard formulation of 
elongated-body theory as presented on pp. 73-76 of 
Lighthill (1975). 

On the other hand, those pages do themselves 
emphasize the only crudely approximate character of 
elongated-body theory. Indeed, this theory gives 
results which depend solely on the local cross-section 
of the fish's head, so that they neglect the variability of 
the shape of neighbouring cross-sections. It is desirable 
to obtain an estimate of to what extent this variability 
may affect k and k1. 

The biggest variations in the cross-sectional shapes 
measured on a herring by Denton and Gray are of 
course found anterior to the lateral recesses, where the 
cross-section gradually tapers to a point at the mouth. 
This suggests the value of recalculating k and k1 for a 
shape with this property that roughly approximates 
their measurements. Such a shape is the front half of 
an ellipsoid, with its axes in the ratio 4.5:1.8:1 (the 
greatest of these three axes being in the X-direction 
and the least in the Y-direction). 

Actually, for the complete ellipsoid, (1 and (r take 
forms that are classical (Lamb 1932, pp. 152-155) and 

? A.3 infers the numerical values of k and k1 in this 
case, as well as verifying once more that the pressure 
distributions corresponding to 41 and to 0,r/lX are 
linear in Y. All of these results for an ellipsoid tend in 
the limit as its greatest axis becomes infinite to results 
for a cylinder of uniform elliptic cross-section which 
coincide with those of elongated-body theory. 

The actual shape of a clupeid fish takes a form more 
like the ellipsoid anterior to, and more like the elliptic 
cylinder posterior to, the lateral recesses. This con- 
sideration suggests that, without entering into exhaus- 
tive computations, we may just use values of k and k1 
intermediate between the two cases (although slightly 
closer to the ellipsoid than in the elliptic cylinder 
because the fish's cross-section does taper - albeit far 
more gradually- towards the posterior end). 

A.2. ESTIMATES FROM ELONGATED-BODY 
THEORY 

E. J. Denton and J. A. B. Gray (unpublished results) 
took photographs of sections of the gelatine-embedded 
head of a herring, and the plain line in figure 3 
reproduces a tracing of the cross-section through the 
lateral recesses. The broken line respresents an ellipse 
with axis-ratio 1.8:1. In the context of an attempt to 
estimate k and k1 to just a rough approximation the 
agreement may perhaps be regarded as good enough. 

Elongated-body theory assumes that the local 
potential generated by the movement of any cross- 
section is simply the two-dimensional potential asso- 
ciated with that cross-section's shape. In other words, 
it is the potential associated with movement of a long 
cylinder with the same cross-section. 

It is of course straightforward to derive the two- 
dimensional potential Xl generated when an ellipse, of 
axes b and c > b in the Y- and z-directions respectively, 
moves with unit velocity in the Y-direction. Classi- 
cally, such a derivation utilises the conformal mapping 
(see, for example, p. 166 of Lighthill (1986)) of the 
exterior of the ellipse into the exterior of a circle. 

In terms of a complex variable 

Z z + iY, 

the required mapping takes a form 

z = c + (R/, 

(Al) 

(A2) 
where Ro is a constant. Then the outside of the circle 
1[1 = R1 (where R1 > Ro is another constant) is mapped 
into the outside of the above ellipse if 

c = R, + (R0IR,), b - ,- (R2/R,). (A3) 
In particular, equation (A2) maps a point on the 
circle, 

= Rlei', into a point z = c cosO, Y = b sinO, (A4) 
on the ellipse. 

Now, in the c-plane, a motion for which the 
complex potential (that is, an analytic function of C of 
which the velocity potential 0 is the real part) is 

Z'C- (RI/) (A5) 

Phil. Trans. R. Soc. Lond. B (1993) 

136 J. Lighthill 

I 
I 
I / I 
I 

I 
I 

I 



Pressure differences in a swimming clupeidfish J. Lighthill 137 

represents a two-dimensional flow around the station- 
ary circular boundary l[= R1, and is mapped into a 
similar flow around the stationary ellipse that has unit 
velocity in the negative Y-direction at large distances 
(where it makes ) -- Y). Addition of a uniform flow 
with unit velocity in the positive Y-direction, with 
complex potential 
-iZ = -i( + (R /W)), (A6) 

now gives the required potential 4) (associated with 
the ellipse's movement at unit velocity through 
stationary fluid) as the real part of the sum 

-i(R2 + )/, (A7) 
of (A5) and (A6). On the ellipse itself, the results (A3) 
and (A4) show then that 

1 = 
-(R + R2)/R1 sin = -- c sinO = - (c/b) Y. (A8) 

Equation (A8) demonstrates that proportionality of 
l1 to Y which was remarked upon in ? 4, and also 

gives 
A1 = - 2bk with k = c/b. (A9) 
In short, the constant k as defined by equation (14) is 
simply equal to the axis-ratio of the ellipse, and 
assumes the value 1.8 for the shape illustrated in 
figure 3. 

The other constant kl depends on the potential O)r 
associated with a different instantaneous movement of 
the fish's head. This is a rotation about the central 
point X= Y=0 with unit angular velocity ?Q= 1 (see 
figure 1), so that for each X the local cross-section 
moves in the Y-direction with velocity equal to X. 
Now, on elongated-body theory, the local potential is 
simply the two-dimensional potential associated with 
the shape and movement of the local cross-section; 
and, in the neighbourhood of X= 0, it follows that 

&r = X&I (Y,z) (A 0) 
where the ()l given above, as the real part of (A7), is 
simply the potential generated by the cross-section's 
movement at unit velocity. 

In particular, the values of both (r itself and 0)rl/dz 
at the cross-section X=0 are zero as stated in ? 3. By 
contrast, the X-gradient O()r/aX which dominates an 
important term in the pressure is actually equal to )1; 
and, like it, is proportional to Y as assumed in ? 4. 
Furthermore, the constant k1 is given by 

A(a)r/ax) - 
A4) = -2bk1 with k k = c/b, (All) 

and it follows that K= k + k1 = 2k so that equation (31 ) 
takes the form 

Ap = 2bkp (A - 2UQ), (A12) 

on the approximations of elongated-body theory. 
Although this theory can be simply used as above to 

estimate constants k and k1 for insertion in the general 
analysis of ? 3, nevertheless elongated-body theory is 
alternatively able to offer as follows a direct route to 
the determination of Ap. Such a determination may 

be readily derived from the standard formulation of 
elongated-body theory, as given on pp. 73-76 of 
Lighthill (1975); even though this expresses results in 
terms not of Ap but of a closely related quantity: the 
sideforce, 
Z per unit length, (A13) 

with which a cross-section of fish acts on the water. 
The notation (different from that of the present 

paper) used in those pages takes x as the distance of a 
cross-section from the anterior end of a fish swimming 
with velocity U and h(x,t) as the lateral displacement 
of that section at time t. Then, as water passes the 
fish's body at relative velocity U, it is pushed laterally 
with a velocity 
w = h/at + U ah/ax. (A14) 
The associated lateral momentum of water per unit 
length may be written 

m(x) w(x,t), (A15) 
in terms of an added-mass (or virtual-mass) coeffi- 
cient. Finally, a slice of water (of unit thickness) 
travelling at speed U past the fish acquires momentum 
at a rate 

Z = (a/at + U a/ax) m(x) w(x,t), (A16) 

equal to the sideforce Z per unit length. 
Now, at any point where the sectional shape as 

reflected in the coefficient m(x) is not varying signifi- 
cantly with x, the results (A14) and (A16) taken 
together give 

/aa \ /ah Oh\ 
Z= m(x) U- + U + 

M 0 h dh + h\ 
= t(x) [t2 + 2 U -2 + -f2) (A17) 

In particular, for the head of a clupeid fish in rigid- 
body motion with ct as the angle of yaw (and no 
centre-line curvature), the equations 

ah (g = - oc giving axat 
f2h \ 

a2h 
and ax , (A18) 

may be used, so that expression (A17) for Z can be 
written 
Z= m(A - 2UQ2); (A19) 
which accords with the form that was obtained in 
(A12) from application of the theory of ? 3 with the 
constants K and k1 given by (All). This simple 
check (which need not be pursued further) has 
been included just to demonstrate that the present 
analysis is consistent with results obtained by other 
methods. 

A.3. ESTIMATES FOR AN ELLIPSOIDAL 
SHAPE 

The general idea of fitting the measured shape of a 
herring's head by the front half of an ellipsoid was 
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explained in ? A.1. Here it is again emphasized that 
such a fit only needs to be made to quite a crude 
approximation, as given in figure 4 on the basis of 
photographs (E. J. Denton & J. A. B. Gray, unpub- 
lished results) of a herring's head and of cross-sections 
thereof. 

Here an ellipsoid with axes in the ratios 4.5:1.8:1 
has been used for such a crudely approximate fit. 
Figure 4a compares a tracing of the head's plane of 
symmetry with the corresponding curve (front half of 
an ellipse with axis-ratio 4.5:1) for the ellipsoid. In 
addition, figures 4b and 4c make comparisons of 
tracings of the cross-sections I and II with the 
corresponding cross-sections (ellipses of axis-ratio 
1.8:1) for the ellipsoid. These are additional to the 
comparison at cross-section III made already in 
figure 3. 

In attempting this rough ht, the criterion adopted 
was to represent the head by a half-ellipsoid as well as 
was practically possible without imposing any require- 
ment that the cross-section III through the lateral 
recesses should be situated exactly at the ellipsoid's 
centre. Now the estimation of k and k1 will be carried 
out in two stages. First of all, they are estimated on the 
oversimplified assumption that the lateral recesses lie 
on the central plane of the ellipsoid; afterwards, the 
effects of their position being somewhat displaced from 
the central plane are studied, and found to be 
insignificant. 

In the first of these investigations, then, the central 
plane of the ellipsoid is taken as the plane defined by 
X= 0 in the coordinate system of ? 3. The semi-axis in 
the Y-direction is b (where 2b is the distance between 
the lateral recesses), while those in the X- and z- 
directions are a and c with 

a:c:b = 4.5: 1.8: 1. (A20) 

(These notations adhere to the convention that semi- 
axes, a, b, c, are in the directions X, Y, z respectively, 
though not to any convention that their magnitudes 
should be in descending order.) The equation of the 
ellipsoidal surface is then 

X2 y2 z2 
2i.~~~~ + ^+ 2(A21) 

All of the required results are readily obtained by 
minor adaptations of the analysis on pp. 148-155 of 
Lamb (1932). (Readers should, however, be warned 
that the specification for the potential q used in all 
modern work, including the present paper, with the 
fluid velocity equal to +grad9, has opposite sign to 
the potential which Lamb adopted, with velocity 
- grad+.) 

The required potentials b1 and (fr take simple forms 
in terms of ellipsoidal coordinates A, u, v such that the 
given ellipsoid (A21) is the surface A= 0. The relation- 
ship between the cartesian coordinates X, Y, z and 
these ellipsoidal coordinates is such that 

ax lx 
A -a2 + A' 

OY bY 
Oa -b2 + A' 

az I2Z 
AA c2?A'(A22) OA\ c + A) 

(see Lamb 1932, p. 149). 

The potential /1 may be shown to take a form 
00 dA 

- - C2Y (a2 + A)1/2 (b2 + A)3/2 (c2 + )1/2 (A23) 

with C2 constant. Here, the boundary condition on 
01, specifying unit velocity of the surface in the 
Y-direction, gives 

01/0A = Y/fIA for A =0. (A24) 

By (A22), this may be written 

c2y C2Y fo Y 
ab 3c 2b2 abc 2b2 

in terms of the non-dimensional constant 

00o d,A 
ro= abc (2 + A)1/2 (b2 + A)3/2 (c2 _+ )1/2' 

and this determines the value of C2 as 
2 = abc /(2 - fo). 

(A25) 

(A26) 

(A27) 

Equations (A23) and (A26) show that the value of 
)1 on the surface of the ellipsoid is 

1= - (C2Y,o)/abc = - flo/(2 - o), (A28) 

and this confirms its direct proportionality to Y as 
stated in ? 4. Furthermore, equation (A28) gives 

AO1 = - 2bk with (A29) 

A simple numerical integration in the case (A20) now 
gives 

)o = 1.184, k= 1.45. (A30) 

It may be of some interest to quote also the value of 
o)f which (as we find by interchanging the X and Y 
coordinates and the corresponding axes a and b) is 

A ++dA 
w 

- 
Cth 

X 
(a 

2 
A)32 (b2 + A)1/2 (C2 + A) 

(A31) 

with 

abc 
G2 - 

2 - aO 
where 

0? dA 
0 = abe i (a2 + A)3/2 (b2 + A)1/2 (c1 A)1/2 (A32) 

Here, numerical integration gives oo=0.185. An esti- 
mate of 0acf/aX for X= 0, which was given in ? 3, was 
obtained from (A31) as 

-c1 - = - 0.102. 
daxJx 

= 
abc 2 - ao (A33) 

Next, (Pr is given in the form 

00o~ dA 
rC = XYJ + A)3/2 (b2 + A)3/2 (c2 + A)1/2 (A34) 

and must satisfy the boundary condition 

arx aoy ax 
, = X ,AY X on A = 0. (A35) 
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Figure 4. (a) Plain line: plane of symmetry of the head of a herring of length 10 cm. Broken line: ellipse of axis-ratio 
4.5: 1. For cross-sections at planes I, II and III see figures 4(b), 4(c) and 3 respectively. (b) Plain line: cross-section of 
herring head by plane marked I in (a). Broken line: ellipse of axis-ratio 1.8: 1. (c) Plain line: cross-section of herring 
head by plane marked II in (a). Broken line: ellipse of axis-ratio 1.8:1. 

But because, according to equations (A26) and 
(A32), 
fl - Ao = 

co dXe 
abc(a2- b2) f (a2 + A)3/2 (b2 + A)3/2 (2 + A)1/2 

this boundary condition may be written 

r I (XY( + ) abc( 2)] 

Co- a2 b c r+ ~ 
abc(a2 - b2): IXY63 (11)ioO~ 

(A36) 

(A37) 
so that 

Co 
(a2 - b2) abc 

(A38) aZ + bz 
a2 -b2 

These results confirm once more that o)r=0 on the 
plane X= 0 as stated in ? 3. Also, equations (A34) and 
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(A36) show that, on the cross-section X= 0 of the 
ellipsoidal surface A =0, 

CX cY - k1Y, (A39) x OYabc (a2 - b2)- 

with 

(a2 - b2) (/o - Lo) = 
2(a2 - b2) - (a2 + b2) (flo - ) (A40) 

Note that the X-differentiation (A39) is carried out 
keeping A constant because the X-direction is tangen- 
tial to the surface A=0. Also, while once again 
confirming the proportionality to Y stated in ? 4, 
equation (A39) specifies k1 as the constant defined so 
that A(0)br/lX) = - 2bkl. Finally, the numerical values 
for Loo and Po given above for the axis-ratios (A20) lead 
to the value k1 = 1.11 quoted in ? 3. 

All of the above estimates for the ellipsoidal shape 
(A21) in relation to the case when the lateral recesses 
lie in the central plane X=0 are changed very little 
when they lie in a plane X=Xo displaced, like the 
plane III of figure 4, by just a moderate fraction of the 
semi-axis a. In such a case, of course, the distance 
between the lateral recesses is altered to 2bo, with 

b b( - X2) 1/2 1 -' 

constant when the X-differentiation is carried out. If it 
could, then equation (A23) would give ,Il/aX=0 so 
that 

a?rO 
ax 

0x = -klY and A ̂ ( -2bok ox ox 

as in (A39) and (A40). 
Although the results (A44) are not exact, neverthe- 

less they are a close approximation where the surface 
is inclined at only a small angle 0 to the X-direction. 
Then, because SrO is the potential for rotation at unit 
angular velocity about X=Xo, Y=0, the derivative 
aCr0/analong the outward normal to the ellipsoid is 
itself small (equal to + bosinO at Y= + bo) and the 
main difference between values of ()ro/OX keeping Y 
constant or keeping A constant is proportional to 
O>ro/On. Specifically, 

ar O orON ae/ro r - ~ 
~axj,const 

cosO + sin 0, ax axan 
so that 

(A45) 

(A46) (A41) A^( ) - 2bo (k cos O + sin20), 
\ o 

(A44) 

and it is this value bo that must replace b in the where the bracketed quantity on the right-hand side 
definitions (14) and (25) of k and ki. On the other represents a corrected value of k1. In a case like that 
hand, since equations (A28) and (A29) give ql= -kY shown in figure 4, however, with Xo/a about 0.3, the 
on the surface, it follows that angle 0 is about 4? and then the correction to kl only 
AO ?= -2bok, (A42) changes it in the third decimal place, and is of no 

importance in the context of the present paper. 
without any change whatsoever in k. The final conclusion of this Appendix, then, is that 

A little more care is needed to derive the corres- the constants k and ki, which are both 1.8 on 
ponding result for k1. First of all, this depends on the elongated-body theory (? A.2), take the smaller values 
potential qro bfor rotation at unit velocity about an axis 1.45 and 1.11 respectively for the ellipsoidal shape. As 
X= X0, Y=0. The relationship between OrO and the explained at the end of ? A. I, appropriate choices for 
potentials defined above (Or for rotation about the values of k and kl will be intermediate between the 
X= Y= 0 and '/ for translation in the y-direction) is estimates given on the two theories, but slightly closer 
readily seen to be to those for the ellipsoidal shape; which leads to the 

rO= (/)r-X01 (A43) proposed rough estimates (Pro == (Pr - XQ(P\' (A4)3) 

Secondly, in the determination of 8aro/lX, it is less k 6 and k 1.4. (A47) 
obvious than in (A39) that A can legitimately be kept 

Phil. Trans. R. Soc. Lond. B (1993) 


	Article Contents
	p. 129
	p. 130
	p. 131
	p. 132
	p. 133
	p. 134
	p. 135
	p. 136
	p. 137
	p. 138
	p. 139
	p. 140

	Issue Table of Contents
	Philosophical Transactions: Biological Sciences, Vol. 341, No. 1296 (Jul. 29, 1993), pp. 113-202
	Front Matter
	Stimulation of the Acoustico-Lateralis System of Clupeid Fish by External Sources and their Own Movements [pp.  113 - 127]
	Estimates of Pressure Differences across the Head of a Swimming Clupeid Fish [pp.  129 - 140]
	Head Turning in Herring and Some other Fish [pp.  141 - 148]
	Analysis of the Effects of Vagal Stimulation on the Sinus Venosus of the Toad [pp.  149 - 162]
	Stomach Stones for Feeding or Buoyancy? The Occurrence and Function of Gastroliths in Marine Tetrapods [pp.  163 - 175]
	Hexadecanol and Hexadecyl Formate in the Venom Gland of Formicine Ants [pp.  177 - 180]
	The Ecotron: A Controlled Environmental Facility for the Investigation of Population and Ecosystem Processes [pp.  181 - 194]
	Oedipal Mating as a Factor in Sex Allocation in Haplodiploids [pp.  195 - 202]
	Back Matter



