
DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

Making Your Power PMAC Application Safe
Important note: Delta Tau Data Systems has provided many safety features on the Power PMAC
controller, and invested many resources to make Power PMAC a safe product. However, the
ultimate responsibility for the safety of a control system using Power PMAC must lie with the
system designer, utilizing the safety features on Power PMAC and in other parts of the system.

Watchdog Timer
Power PMAC has an on-board “watchdog timer”. This subsystem provides a fail-safe shutdown
to guard against many types of software and hardware malfunction. To keep it from tripping, the
hardware circuit for the watchdog timer requires that two base conditions be met. First, the
nominal 5-volt DC power supply must be greater than approximately 4.75V. If the supply voltage
is below this value, the circuit will trip and the Power PMAC system will go into a “hard”
watchdog failure. This feature is intended to prevent corruption of registers due to insufficient
supply voltage.

The second necessary condition is that the timer must see a square-wave input (provided by the
Power PMAC software) of a frequency greater than approximately 20 Hz, which means the
digital signal must be toggled more than 40 times per second. In the foreground, the real-time
interrupt routine decrements a counter (as long as the counter value is greater than zero), causing
the least significant bit of the timer to toggle. This bit is fed to the timer itself.

At the end of each background cycle, after one scan of one active background Script PLC
program and one scan of all active background C PLC programs, the background software resets
the counter to the value specified by saved setup element Sys.WDTReset. (If this is set to a value
less than 100, the counter is reset to 5000 each background cycle.)

Soft Watchdog Trips
If the processor is able to detect certain failures of the routines that support the watchdog timer, it
will execute a “soft” watchdog trip. In a soft watchdog trip, all programmed motions are aborted,
all motors are killed, and all interface hardware is locked into its reset state, which forces discrete
outputs to their “off” state and continuous outputs (e.g. DAC, PWM, PFM) to their zero state.
However, the processor continues to operate, and it can still communicate with a host computer.
The hardware of the watchdog timer circuit is disabled so it cannot shut down the processor
completely. The electrical power to the system must be removed and re-applied in order to clear a
soft watchdog trip.

The purpose of a soft watchdog trip is to detect certain conditions that would likely lead to a hard
watchdog trip and provide a safe shutdown of the system while keeping the processor alive so it
is easier to figure out what the underlying problem is and to fix it. Soft watchdog trips are usually
caused by user configurations that do not permit all tasks to execute in a timely fashion.

The first condition that causes the execution of a soft watchdog trip occurs if the processor sees
that the counter decremented by the real-time interrupt routine has reached a value of zero. In this
case, it will set global status element Sys.WDTFault to 1. A failure of this type typically means
that there is inadequate processor time remaining for background tasks, so the time between
background cycles is too large. The threshold time for this type of failure can be adjusted by
changing the setting of Sys.WDTReset.

MAKING YOUR APPLICATION SAFE 1

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

The second condition that causes the execution of a soft watchdog trip occurs if several
consecutive background cycles execute without a real-time interrupt occurring in between to
decrement the counter value. In this case, it will set global status element Sys.WDTFault to 2. A
failure of this type typically means that the interrupts have failed or been set with too large a
period (too low a frequency). Saved setup element Sys.BgWDTReset specifies the number of
background cycles that can execute without an intervening real-time interrupt before a trip. Note
that if it is set too large, it may not be able to detect this type of condition before a hard trip
occurs.

Note that if no phase or servo clock interrupt signals are detected by the processor during power-
up/reset, Power PMAC goes into a special “stay alive” mode executing background software
only. This mode is similar to, but distinct from, a soft watchdog trip. No motors may be enabled
in this mode, but the interface hardware is still active, permitting the user to configure the clock
signal sources correctly. However, if the clock signal interrupts were present at power-up/reset
and subsequently lost, a soft watchdog trip would occur because no real-time interrupt algorithms
would execute to decrement the counter.

Hard Watchdog Trips
If the hardware watchdog timer circuit detects either an undervoltage or an underfrequency
condition (which means that the software algorithms could not anticipate the condition and cause
a soft trip), a “hard” watchdog trip will occur. In a hard watchdog trip, all interface hardware is
locked in its reset state, which forces discrete outputs to their “off” state and continuous outputs
(e.g. DAC, PWM, PFM) to their zero state. In addition, the processor itself is completely shut
down, so no communications is possible.

In the event of a hard watchdog trip, the solid-state watchdog relay on the Power PMAC CPU
board toggles. The “normally open” contact opens (as it does when no power is present) and the
“normally closed” contact closes (again, as it does when no power is present). The system
designer can make use of this relay output as part of a “safety string” to make sure output devices
are properly disabled on a watchdog trip.

A hard watchdog trip is usually caused by a fundamental hardware problem that permits neither
foreground (interrupt) nor background tasks to operate properly, so a soft trip is not possible. The
electrical power to the system must be removed and re-applied in order to (try to) clear a soft
watchdog trip.

Following Error Limits
“Following error” is simply the difference between a motor’s net commanded position and its net
actual position at any given time. All applications will have non-zero following error on their
motors some (or most) of the time. The purpose of the servo loop is to try to drive this error to
zero, but it will not succeed perfectly.

While some following error is always to be expected in an application, sufficiently large
following errors can be indicative of serious, and often very dangerous problems, such as loss of
feedback, reversed feedback, or mechanical failure.

Fatal Following Error Limit
If the magnitude of a motor’s following error exceeds the limit set by Motor[x].FatalFeLimit,
Power PMAC will automatically “kill” that motor. When a motor is “killed”, its servo loop is

MAKING YOUR APPLICATION SAFE 2

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

opened, the servo output is forced to zero, and the amplifier is disabled. The status bit
Motor[x].FeFatal is set to 1 on this event; this bit is not cleared until the motor is disabled.

On detecting an fatal following-error condition, if bit 0 of Motor[x].FaultMode is set to the
default value of 0, other motors in the coordinate system (even if they just have the “null”
definition – #x->0 – in that coordinate system) are automatically “aborted” (controlled
deceleration to enabled, closed-loop stop). If bit 0 of Motor[x].FaultMode is set to 1, other
motors in the coordinate system are automatically “killed” as well.

The coordinate system status bit Coord[x].FeFatal is set to 1 if the comparable motor status bit is
set to 1 for any motor in the coordinate system. Motors in other coordinate systems are not
affected.

If the coordinate system was executing a motion program at the time, the program execution
would be aborted as well. Aborting a motion program stops program calculations, resets the
program counter to the beginning, and discards any already computed motion equations from the
queue. Execution cannot simply be resumed at the aborted point (this point in the program can be
determined by use of the list apc on-line query command).

Motor[x].FatalFeLimit is expressed in the user’s motor units. The magnitude of these units is
determined by the feedback resolution, the encoder table entry’s scaling factor
EncTable[i].ScaleFactor, and the motor’s position-loop scaling factor Motor[x].PosSf. Most
users will scale the motor to units of “counts” or “LSBs” of the feedback sensor. However, others
may wish to use (much larger) engineering units such as millimeters, inches, or degrees. If the
user changes the definition of the motor units, the physical size of the fatal following error limit is
automatically changed. When changing from small to large motor units, the limit may be
increased so much as to be ineffective.

This limit may be disabled by setting Motor[x].FatalFeLimit to zero, or effectively disabled by
setting it very large, but this is strongly discouraged in any application that has the potential to
kill or injure people, or even to cause property damage. Disabling the fatal limit removes an
important protection against serious fault conditions that can cause runaway situations, bringing
the system to full power output faster than anybody could react.

Good tuning of your motor’s servo loop is important for safety reasons as well as performance
reasons. The smaller you can make your true following errors during proper operation, the tighter
you can set your fatal following error limits without getting nuisance trips. Particularly important
in this regard are the feedforward terms that can dramatically reduce the errors at high speeds and
accelerations.

Warning Following Error Limit
If the magnitude of a motor’s following error exceeds the limit set by Motor[x].WarnFeLimit,
Power PMAC will automatically set the motor status bit Motor[x].WarnFe and the coordinate-
system status bit Coord[x].WarnFe. These are “transparent” status bits; as soon as the magnitude
of the motor’s following error falls below the limit, the motor status bit is cleared. (The
coordinate system status bit is simply the logical “or” of all of the motor status bits in the
coordinate system.)

If Motor[x].CaptureMode is set to 2, the status bit Motor[x].WarnFe will be used as the trigger
flag for Power PMAC’s automatic triggered moves (homing-search moves, jog-until-trigger,

MAKING YOUR APPLICATION SAFE 3

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

programmed rapid-mode move-until-trigger) instead of the default input trigger. This permits
easy implementation of tasks such as homing into a hard stop, torque-limited screwdriving, etc.

Position (Overtravel) Limits
Power PMAC has both software and hardware “overtravel” position limit features. These are
intended to prevent motion accidentally commanded out of the legal range of positions.

Software Overtravel Limit Parameters
Power PMAC also has positive and negative software limit parameters for each motor. These can
be used to complement or replace the hardware limits. Saved setup elements Motor[x].MaxPos
and Motor[x].MinPos define the positive and negative software position limits, respectively, in
motor units, for each motor. These limits are referenced to the motor’s zero (home) position, and
do not change if the programming origin for the associated axis is offset. The value of
Motor[x].MaxPos must be greater than that of Motor[x].MinPos for these software limits to be
active. By default, both are set to 0.0, disabling them.

Action on Closed-Loop Trip
Power PMAC continually compares the motor’s actual position to these limits. If the actual
position of the motor exceeds the legal range set by these limits during a closed-loop move,
Power PMAC automatically “aborts” the motor. Aborting a motor causes a controlled
deceleration to a closed-loop zero-velocity state, using the saved setup elements
Motor[x].AbortTa and Motor[x].AbortTs. If these values are positive, they represent the
overall deceleration time and the S-curve time, respectively, in milliseconds. If these values are
negative they represent the inverse of the deceleration rate (in msec2 / motor unit) and inverse of
the S-curve jerk rate (in msec3 / motor unit).

Action on Open-Loop Trip
If the actual position of the motor exceeds the legal range set by these limits during an open-loop
move, the action is dependent on the setting of saved setup element Motor[x].FaultMode. If bit
1 (value 2) is set to the default value of 0, Power PMAC “aborts” the motor. This closes the servo
loop with the initial commanded velocity being equal to the present actual velocity, and causes a
controlled deceleration to a stop, just as if the loop were closed when the limit switch was
encountered. However, if bit 1 is set to 1 when the motor passes a software limit in open-loop
mode, Power PMAC “kills” (disables) the motor. This immediately causes a zero output
command and disables the amplifier.

Anticipating a Software Limit Trip
When possible, Power PMAC also compares the motor’s desired destination position to these
limit values as well. If the software overtravel limits are active, Power PMAC automatically
converts an indefinite positive jog command (j+, jog+) to a definite jog to the positive limit,
and an indefinite negative jog command (j-, jog-) to a definite jog to the negative limit. This
means that the jog move will stop at the limit value, not begin to stop as it passes the limit value.

The software position limits are automatically disabled during homing search moves until the
homing trigger is found. As soon as the trigger is found, the software limits are re-activated, using
the new home position as the reference.

If the coordinate system setup element Coord[x].SoftLimitStopDis is set to the default value of
0, when a motor in the coordinate system hits a software limit during a programmed move, the

MAKING YOUR APPLICATION SAFE 4

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

motion program is aborted, and all of the motors in the coordinate system are aborted as well.
However, if Coord[x].SoftLimitStopDis is set to 1, motion program execution will continue, and
the other motors in the coordinate system will continue to move while the offending motor is
stopped at the limit position as long as the commanded position is beyond the limit position. In
this mode, the software limits act as position saturation points, not error limits.

With the special lookahead buffer active (lookahead buffer defined, Coord[x].LHDistance > 0),
then for segmented moves in the coordinate system (linear, circle, PVT mode moves with
Coord[x].SegMoveTime > 0), Power PMAC checks the destination position of each motor for
each segment computed against the software limits at lookahead time. If it finds a violation, it
will work backwards through the lookahead buffer to compute a deceleration to a stop at the limit
for the offending motor that is within the acceleration limits for the motor. Depending on the
setting of Coord[x].SoftLimitStopDis, it may also stop the other motors simultaneously.

Hardware Overtravel Limit Switches
The axis-interface circuitry associated with each servo interface channel in a Power PMAC
system has positive and negative hardware overtravel limit switch inputs. The exact nature of this
input circuitry and instructions for connecting the limit switches are described in the Hardware
Reference manual for each Power PMAC and axis-interface accessory.

Limit Switch Interface Circuitry
Generally, these inputs are optically isolated, with a failsafe circuit design. The limit switches
must be “normally closed”, conducting current through the opto-isolator when the axis is not in
the limit. (Usually these are “AC optos” that can conduct current in either direction, permitting
sinking or sourcing limit switches.) This conducting condition produces a “zero” state in the flag
register for the channel in the Servo IC; the processor must read this zero to permit motion in that
direction. To ensure failsafe operation, this polarity cannot be changed by the user.

Anything that stops current from flowing through the opto-isolator, whether from actually hitting
the limit, from cable disconnection, or from loss of power supply for the limit circuit, produces a
“one” state in the Servo IC. When the processor sees this, it will not permit motion in that
direction.

Saved setup element Motor[x].pLimits for the motor must contain the address of the flag register
for the channel into which these limit switches are wired (usually Gaten[i].Chan[j].Status.a). If
Motor[x].pLimits is set to 0, the hardware overtravel limit function for the motor is disabled.
Some users will want to do this permanently, as for a continuously rotating rotary axis; others
will want to do this temporarily, as when homing into a limit switch.

Saved setup element Motor[x].LimitBits specifies which 2 bits of the 32-bit register specified
are read for the status of the limit inputs. This should be set to 25 when using a PMAC2-style
“DSPGATE2” IC, as on an ACC-24E2x UMAC board, or to 25 when using the standard
MACRO-ring protocol. It should be set to 9 when using a PMAC3-style “DSPGATE3” IC, as on
an ACC-24E3 UMAC board.

Action on Closed-Loop Trip
The limit input signals are direction sensitive for closed-loop moves: the positive-end limit pin
only stops positive direction moves (those coming at it from the negative side), and the negative-
end limit pin only stops negative direction moves (those coming at it from the positive side). This

MAKING YOUR APPLICATION SAFE 5

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

makes it possible to command a move out of the limit that you have run into. However, this also
makes it essential to have your limit switches wired into the proper inputs, or they will be useless.

Controlled Stop
When a motor hits a limit when the servo loop is closed, the action is dependent on the setting of
bit 2 (value 4) of Motor[x].FaultMode. If this bit is set to its default value of 0, Power PMAC
automatically “aborts” the motor. Aborting a motor causes a controlled deceleration to a closed-
loop zero-velocity state, using the saved setup elements Motor[x].AbortTa and
Motor[x].AbortTs. If these values are positive, they represent the overall deceleration time and
the S-curve time, respectively, in milliseconds. If these values are negative they represent the
inverse of the deceleration rate (in msec2 / motor unit) and inverse of the S-curve jerk rate (in
msec3 / motor unit).

If the motor hit the limit during a motor move such as a jog move, the other motors in the
coordinate system are not affected. However, if the motor hit the limit during a motion program
commanded move, the motion program is stopped and all of the motors in the coordinate are
aborted as well. Note that if the coordinate system has been executing a path move, this
deceleration will not necessarily be along that path. Motors in other coordinate systems are not
affected in either case.

Disabled Stop
However, if bit 2 (value 4) of Motor[x].FaultMode is set to 1, then this motor is “killed” (open-
loop, zero command output, amplifier disabled) on hitting a hardware limit. (Note, however, that
if the motor is already in an “abort” deceleration from exceeding a software overtravel limit, no
further action will be taken when the hardware limit is hit.) Other motors are affected just as for
an “abort” stop of this motor.

The behavior of this mode of operation is based on the idea that the software limits should be
used to catch controlled excursions out of the intended range of operation, as when too large a
position is commanded. In this case, a controlled stop is quicker, covers a shorter distance, and is
easier to recover from. The hardware limit switches, which should be set just outside the software
limit positions, are used to catch uncontrolled excursions out of the intended range of operation,
when there is a problem with feedback so the software limits do not work.

Action on Open-Loop Trip
The limit input signals are not direction sensitive for open-loop moves: hitting either limit switch
on any open-loop move of either sign (or zero) will cause a limit fault.

Controlled Stop
The user has a choice for what happens when a motor hits a limit switch when the servo loop is
open. If bit 1 (value 2) of saved setup element Motor[x].FaultMode is set to the default value of
0, Power PMAC “aborts” the motor. This closes the servo loop with the initial commanded
velocity being equal to the present actual velocity, and causes a controlled deceleration to a stop,
just as if the loop were closed when the limit switch was encountered.

Disabled Stop
However, if bit 1 (value 2) of Motor[x].FaultMode is set to 1 when the motor hits a limit switch
in open-loop mode, Power PMAC “kills” (disables) the motor. This immediately causes a zero
output command and disables the amplifier.

MAKING YOUR APPLICATION SAFE 6

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

In either case, other motors, whether in the same coordinate system or in a different coordinate
system, are not affected.

Encoder Loss Detection
Loss of the feedback sensor signal is potentially a very dangerous condition in closed-loop
control, because the servo loop no longer has any idea what the true physical position of the
system is – usually it thinks it is “stuck” – and it can react wildly, often causing a runaway
condition. Many of the safety checks performed, such as fatal following error limits, integrated
current limits, overtravel limit switches, and amplifier fault signals, may be ineffective in this
type of situation, reacting too late, or not at all. For this reason, many people want the capability
to directly monitor the presence of the feedback signal.

Many of Power PMAC’s servo interfaces have circuitry dedicated to monitoring the presence of a
proper feedback signal. In addition, Power PMAC can automatically check these circuits for loss
of sensor signal and take appropriate shutdown action.

Signal Loss Detection Circuits
Different types of feedback sensors require different circuits to monitor for loss of the signal, or
at least loss of a valid signal. Power PMAC interfaces provide circuits for several of the most
common types of feedback sensors.

Digital Quadrature Encoders
Digital quadrature encoders are one of the most common types of feedback sensors used in
motion control systems. Almost always, the individual channel signals are differential pairs at 5V
levels. Most Power PMAC interfaces for these encoders have circuitry that checks for the
presence of a proper differential signal pair on each signal channel, utilizing “exclusive-OR”
(XOR) logic gates, which output a high level for a proper differential signal, when the two inputs
to the gate are at different logical levels.

When there is no longer a proper signal driving the inputs on the interface, both lines are pulled to
a high logical level internally, so the XOR gate outputs a low level indicating encoder loss. These
gate outputs from the A and B encoder channels are logically combined to create a single
present/lost signal for the encoder (if either channel is invalid, it will indicate “lost”). For
interfaces using the PMAC2-style DSPGATE1 ASIC, such as the ACC-24E2x UMAC axis-
interface boards, this flag is found in the low-true element Gate1[i].Chan[j].EncLossN. For
interfaces using the PMAC3-style DSPGATE3 ASIC, such as the ACC-24E3 UMAC axis-
interface boards and the Power Brick products, this flag is found in the high-true element
Gate1[i].Chan[j].LossStatus.

Analog Sinusoidal Encoders and Resolvers
Analog sinusoidal encoders and resolvers provide simultaneous “sine” and “cosine” signals into
the analog-to-digital converters of the Power PMAC interface circuitry for these devices. In
proper operation, the sum of the squares of the converted values for these two signals should be
roughly constant, and significantly different from zero. The PMAC3-style DSPGATE3 ASIC
used on the ACC-24E3 UMAC axis-interface board and in the Power Brick products
automatically computes this sum-of-squares value every sample cycle. The latest value is always
available in the 16-bit element Gate3[i].Chan[j].SumOfSquares. In addition, if all of the highest
4 bits of this element are zero, so the value is less than 1/16 of full range, the status bit
Gate3[i].Chan[j].SosError is automatically set to 1.

MAKING YOUR APPLICATION SAFE 7

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

Serial Encoders
Power PMAC provides interfaces for many of the most popular serial encoder protocols. For
most of these interfaces, the receiving logic can detect that no data has been received in response
to the cycle’s “position request” output, and set a “timeout error” flag that can be read by the
processor. This flag bit can be used to detect encoder loss. Note that the SSI and SPI protocols
cannot provide this detection.

If the serial-encoder interface of the PMAC3-style DSPGATE3 ASIC used on the ACC-24E3
UMAC axis-interface board and in the Power Brick products is used, this “timeout error” flag is
bit 31 of the element Gate3[i].Chan[j].SerialEncDataB. If the FPGA-based ACC-84E UMAC
serial-encoder-interface board is used, this flag is bit 31 of the element
Acc84E[i].Chan[j].SerialEncDataB.

It is also possible to utilize an error-checking mechanism in the data such as parity or cyclic
redundancy check (CRC) bits. The Power PMAC interfaces for serial encoders can evaluate these
mechanisms and determine whether the data set was valid or not. This is particularly
recommended for the SSI and SPI protocols, where the data patterns cannot be used to detect a
timeout error.

For the SSI protocol, the parity error flag is bit 31 of Gate3[i].Chan[j].SerialEncDataB or
Acc84E[i].Chan[j].SerialEncDataB. For the SPI protocol, any error reporting is vendor specific,
but would be found (if it exists) in a high bit of one of these registers.

Software Setup for Loss Detection
Power PMAC permits automatic checking for sensor loss on each motor, and if loss is detected,
an immediate shutdown action. There are four saved setup elements for each motor to configure
this functionality:

• Motor[x].pEncLoss Address of register with sensor loss flag
• Motor[x].EncLossBit Bit number of sensor-loss bit in pEncLoss register
• Motor[x].EncLossLevel Sensor-loss logical state
• Motor[x].EncLossLimit Sensor-loss maximum number of fault detections

Note that if Motor[x].pEncLoss is set to its default value of 0, loss detection is disabled for the
motor. Therefore, there is no automatic sensor-loss detection by default. The user must explicitly
configure it in an application.

Typical settings of these elements for the common types of feedbacks are discussed below.

Digital Quadrature Encoders
For digital quadrature encoders connected to an ACC-24E2x UMAC axis-interface board with a
PMAC2-style DSPGATE1 ASIC, the following settings should be used.

Motor[x].pEncLoss = Gate1[i].Chan[j].EncLossN.a // Encoder-loss register
Motor[x].EncLossBit = 13 // Loss bit number
Motor[x].EncLossLevel = 0 // Low-true fault

Note that instead of the Gate1[i] structure name, it is also possible to use the alias name for the
particular board: Acc24E2[i], Acc24E2A[i], or ACC24E2S[i]. Socketed resistor packs on the

MAKING YOUR APPLICATION SAFE 8

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

circuit boards must be reversed from their default orientation to enable the creation of the loss
signal in the accessory. Consult the Hardware Reference Manual for the accessory for details.

For digital quadrature encoders connected to an ACC-24E3 UMAC axis-interface board with a
PMAC3-style DSPGATE3 ASIC, or to a Power Brick control board, the following settings
should be used:

Motor[x].pEncLoss = Gate3[i].Chan[j].LossStatus.a // Encoder-loss register
Motor[x].EncLossBit = 28 // “Transparent” loss bit number
Motor[x].EncLossLevel = 1 // High-true fault

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the
particular board: Acc24E3[i] or PowerBrick[i].

Analog Sinusoidal Encoders and Resolvers
For analog sinusoidal encoders and resolvers connected to an ACC-24E3 UMAC axis-interface
board with a PMAC3-style DSPGATE3 ASIC, or to a Power Brick control board, the following
settings should be used:

Motor[x].pEncLoss = Gate3[i].Chan[j].SosError.a // Sum-of-squares error register
Motor[x].EncLossBit = 31 // Sum-of-squares error bit number
Motor[x].EncLossLevel = 1 // High-true fault

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the
particular board: Acc24E3[i] or PowerBrick[i].

There is not a dedicated loss-error bit for analog sinusoidal encoders connected to an ACC-51E
UMAC board, or for resolvers connected to an ACC-58E UMAC board.

Serial Encoders
For serial encoders connected to an ACC-24E3 UMAC axis-interface board or to a Power Brick
control board with a PMAC3-style DSPGATE3 ASIC, the following settings should be used for
encoder protocols with a “timeout error” flag (EnDat, Hiperface, Sigma I, Sigma II/III/V,
Tamagawa, Panasonic, Mitutoyo, and Kawasaki):

Motor[x].pEncLoss = Gate3[i].Chan[j].SerialEncDataB.a // Status & error register
Motor[x].EncLossBit = 31 // Timeout error bit number
Motor[x].EncLossLevel = 1 // High-true fault

Note that instead of the Gate3[i] structure name, it is also possible to use the alias name for the
particular board: Acc24E3[i] or PowerBrick[i].

The same settings are valid for an SSI encoder with parity checking to use the parity-error bit.

For serial encoders connected to an ACC-84E UMAC FPGA-based serial-encoder interface
board, the following settings should be used for encoder protocols with a “timeout error” flag
(presently implemented protocols are EnDat, Hiperface, Sigma I, Sigma II/III/V, Tamagawa,
Panasonic, and BiSS):

Motor[x].pEncLoss = Acc84E[i].Chan[j].SerialEncDataB.a // Status & error register
Motor[x].EncLossBit = 31 // Timeout error bit number

MAKING YOUR APPLICATION SAFE 9

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

Motor[x].EncLossLevel = 1 // High-true fault

Setting the Encoder Loss Limit Value
It is possible with these loss-detection circuits that a brief transient electrical condition can
momentarily cause the circuit to indicate a sensor loss when none has actually occurred. For this
reason, Power PMAC permits you to specify the number of occurrences of the loss detection
before tripping on an error condition. This is done with saved setup element
Motor[x].EncLossLimit.

Each real-time interrupt (RTI) period, Power PMAC will check for encoder loss on each motor
with this functionality enabled. If the specified bit is in its “loss” state, Power PMAC will
increment the status element Motor[x].EncLossCount by 1. If the specified bit is not in its “loss”
state, Power PMAC will decrement this element by 1 (but never take it below 0).

If the value of Motor[x].EncLossCount ever exceeds that of Motor[x].EncLossLimit, an
encoder-loss error will be generated. With Motor[x].EncLossLimit at its default value of 0, a
single detection of the loss state will cause a trip.

The optimal setting of Motor[x].EncLossLimit must balance quick response to a true error while
robustly avoiding any nuisance trips. Typically a setting of 3 or 4 will provide this balance.

Action on Encoder-Loss Error
When Motor[x].EncLossCount becomes greater than Motor[x].EncLossLimit and Power
PMAC generates an “encoder-loss” error, it automatically “kills” the motor, putting it in open-
loop mode with zero command output and amplifier disabled. It also aborts any motion program
presently running in the motor’s coordinate system. The status bit Motor[x].EncLoss is set to 1
to indicate this error.

If bit 0 (value 1) of Motor[x].FaultMode is set to its default value of 0, any other motors in the
coordinate system will be “aborted” (decelerated to a closed-loop enabled stop according to
Motor[x].AbortTa and Motor[x].AbortTs). If this bit is set to 1, any other motors in the
coordinate system are also “killed”. Motors in other coordinate systems are not affected in either
case. Note that the action on an encoder-loss fault is identical to that for a fatal following error
fault, amplifier fault, or I2T fault.

Automatic Brake Control
Power PMAC provides the capability for automatic brake control on the motors it controls. The
user can specify a digital output to be used to enable and disable a brake on the motor with
configurable timing on the release and engagement of the brake as the motor is enabled and
disabled. This is particularly useful for motors with a net load offset such as a gravity load on a
vertical axis. Only a few saved setup elements must be configured to enable this functionality; no
user algorithm is required.

Specifying the Brake Control Output
The brake control functionality is enabled by setting Motor[x].pBrakeOut to the address of the
register containing the output bit. If this register (or the bit in the register) has an element name,
the address can be specified using the “.a” suffix on the element name. For example:

Motor[4].pBrakeOut = Acc24E3[1].Chan[0].OutFlagB.a

MAKING YOUR APPLICATION SAFE 10

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

Motor[5].pBrakeOut = Acc68E[0].DataReg[5].a

If there is no element name for the register, as with an ACC-11E UMAC I/O board, the address
can be specified directly. For example:

Motor[6].pBrakeOut = Sys.piom + $A0000C

If Motor[x].pBrakeOut is left at its default value of 0, the automatic brake-control functionality
for the motor is disabled.

Motor[x].BrakeOutBit specifies which bit in this 32-bit register is to be used for the output
control. It is the location on the 32-bit data bus, not necessarily the offset from the lowest bit with
an output. For example, I/O boards using the IOGATE IC have outputs only in bits 8 – 15 of the
32-bit bus, so a value from 8 to 15 should be used to specify one of these outputs.

Note that there is no software polarity control of the brake output bit. The bit is always set to 0 to
engage the brake, and to 1 to release the brake. This is to encourage “fail-safe” implementations
of the brake control, because a 0 typically sets a non-conducting output state, and most failure
modes are non-conducting. In additions, output bits are forced to zero on controller reset
(including watchdog timer trip) or shutdown.

Specifying the Brake Timing
Two saved setup elements control the timing for releasing and engaging the brake on the enabling
and disabling of the motor. Motor[x].BrakeOffDelay specifies the delay in milliseconds from
the time the motor is enabled (open-loop or closed-loop) and the specified brake-control output is
set to 1 to release the brake. The purpose of the delay is to give the system enough time to ensure
that proper control is established before brake release.

Motor[x].BrakeOnDelay specifies the delay in milliseconds from the time the specified brake-
control output is set to 0 to engage the brake to the time the motor is disabled on a controlled
(delayed) disabling. The purpose of the delay is to provide enough time for the brake to engage
fully before servo control is removed. Delayed disabling is performed using the motor dkill
command or the coordinate-system ddisable command; both of these can be given as on-line
commands or buffered program commands.

There is no delay if standard disabling commands (k, kill, disable) are used, or if the motor
is disabled due to a fault condition (fatal following error, amplifier fault, encoder loss). In these
cases, the motor is killed at the same time the brake engagement is commanded.

Amplifier Enable and Fault Lines
The use of the amplifier-enable (AENAn) output and the amplifier-fault (FAULTn) input lines
for each motor are important for safe operation. Without the use of the enable line, disabling the
amplifier relies on precise zero offsets in Power PMAC’s outputs and the amplifier’s inputs. The
amplifier-enable line used for the motor is specified by the address in saved setup element
Motor[x].pAmpEnable (usually Gaten[i].Chan[j].Ctrl.a). It is usually part of the same ASIC
channel as the other flags used for the motor.

The enable/disable polarity of the amplifier-enable line cannot be changed in software. From the
software viewpoint, a 0 in the bit controlling the line means “disable”, and a 1 means “enable”.

MAKING YOUR APPLICATION SAFE 11

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

Failures such as watchdog timer trip use hardware circuits to force the output to a “disable” (0)
state (which is why software polarity control is not permitted).

Without the use of the fault line, Turbo PMAC may not know when an amplifier has shut down
and may not take appropriate action. The amplifier-fault line used for the motor is specified by
the address in Motor[x].pAmpFault (usually Gaten[i].Chan[j].Status.a). This is usually part of
the same ASIC channel as the other flags used for the motor.

Saved setup element Motor[x].AmpFaultBit specifies which bit of the 32-bit register specified is
read for the status of the amplifier input. This should be set to 23 when using a PMAC2-style
“DSPGATE2” IC, as on an ACC-24E2x UMAC board, or to 23 when using the standard
MACRO-ring protocol. It should be set to 7 when using a PMAC3-style “DSPGATE3” IC, as on
an ACC-24E3 UMAC board.

The fault/no-fault polarity of the amplifier-fault input is determined by the saved setup element
Motor[x].AmpFaultLevel. If set to the default value of 1, the input state that produces a 1 in the
bit read by the processor is viewed as a fault condition. If set to 0, the input state that produces a 0
in the bit read by the processor is viewed as a fault condition.

On detecting an amplifier fault condition, the motor is automatically “killed” (open-loop, zero-
output, amplifier disabled). If bit 0 (value 1) of Motor[x].FaultMode is set to the default value of
0, other motors in the coordinate system (even if they just have the “null” definition – #x->0 –
in that coordinate system) are automatically “aborted” (controlled deceleration to enabled, closed-
loop stop). If bit 0 (value 1) of Motor[x].FaultMode is set to 1, other motors in the coordinate
system are automatically “killed” as well.

Integrated Current (I2T) Protection
Power PMAC can be set up to fault a motor if the time-integrated current levels exceed a certain
threshold. This can protect the amplifier and/or motor from damage due to overheating. It
integrates the square of current over time – commonly known as I

2
T (“eye-squared-tee”)

protection. Power dissipation in a resistive element is proportional to the square of the current,
and integrating this power dissipation over time provides a good estimate of the resulting heating.

Some amplifiers have their own internal integrated-current protection, but others do not. Power
PMAC’s integrated-current protection can be used in either case. It can be used with any
amplifier for which Power PMAC computes current commands, whether or not Turbo PMAC
also performs the commutation and/or digital current loop functions. If Power PMAC is closing
the current loop for the motor, this function uses the measured current values; otherwise it uses
the commanded current values. This protection is not suitable for use in systems where Power
PMAC outputs a velocity command, either as an analog voltage or a pulse frequency.

Two saved setup elements control the functioning of the I
2
T protection for each motor.

Motor[x].I2tSet is the continuous current limit magnitude. It has the same units as the
Motor[x].MaxDac instantaneous output limit, bits of a signed 16-bit output device (even if some
resolution is used). Both have a maximum magnitude of 32,767, which is the size of Power
PMAC’s maximum possible output. Generally Motor[x].I2tSet will be 1/4 to 1/2 of the
magnitude of Motor[x].MaxDac.

MAKING YOUR APPLICATION SAFE 12

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

When the magnitude of the instantaneous current value is greater than Motor[x].I2tSet, the
integrated current value will increase. When it is less than Motor[x].I2tSet, the integrated current
value will decrease (until equal to zero).

Motor[x].I2tTrip is the integrated current limit parameter. If Motor[x].I2tTrip is set to 0, this
function is disabled. If Motor[x].I2tTrip is greater than 0, Power PMAC will compare the
integrated current value to Motor[x].I2tTrip. When the integrated current value exceeds this
value, Power PMAC will fault this motor as if an amplifier fault had occurred. The offending
motor is killed; if it was in a coordinate system running a motion program, that motion program
aborted, and the motion of the other motors in the coordinate system is aborted.

Power PMAC’s I
2
T function works according to the following equation (using signed 16-bit

output units):

t
IxxII

SumSum dq ∆
















−





+





+=

222

32768

57

3276832768

where:

Iq (quadrature current) is the commanded torque-producing output of the PID filter in units

of a 16-bit DAC;

Id (direct current) is the magnetization current command as set by Motor[x].IdCmd. This is
usually zero except when Power PMAC is doing vector control of induction motors.

∆t is the time since the last sample in seconds

If Sum exceeds Motor[x].I2tTrip, an integrated-current fault will occur. When instantaneous
current levels are below Motor[x].I2tSet, Sum will decrease, but it will never go below zero.

Power PMAC I2T Protection Feature

I2T Fault

2I

Saturation

Integrator
Charge-Up

Integrator
Discharge

22].[M tSetIxotor

2].[M MaxDacxotor

232768

time
(servo cycles)

~

~ ~
~

MAKING YOUR APPLICATION SAFE 13

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

Example: With Motor[x].MaxDac = 30,000, continuous current limit Motor[x].I2tSet = 15,000
(half of maximum), magnetization current Motor[x].IdCmd = 0, and servo update time of 100
microseconds, the motor hits an obstruction, and the command output saturates at 30,000. The
integrated-current protection function will calculate during this time:

[]
[] 4488

222

1075.6101025.2109

000,150000,30

×+=×−×+=
∆−++=

− SumSumSum

tSumSum

Sum will increase at a rate of 67,500 per servo cycle, or 675,000,000 per second. If you want the
motor to trip after 2 seconds of this condition, you should set Motor[x].I2tTrip to 675,000,000 *
2, or 1,350,000,000 (1.35E9).

When an integrated-current fault occurs on a motor, Power PMAC reacts just as for an amplifier
fault error. The offending motor is killed, and other motors in the coordinate system are aborted
or killed, as determined by bit 0 of Motor[x].FaultMode. Power PMAC sets the amplifier fault
motor status bit and a separate integrated-current fault motor status bit. Both bits are cleared
when the motor is re-enabled.

Note: When Power PMAC is not commutating a motor with I
2
T protection, make sure

magnetization current parameter Motor[x].IdCmd is still set to 0. In this setup,
Motor[x].IdCmd will not affect operation, but it will affect integrated-current calculations.

For maximum protection, Power PMAC performs the I2T calculations even when the motor is
killed. In normal operation, measured currents should be very near zero in the killed state, and
this is not important. However, it is possible during initial setup that incorrect settings cause
Power PMAC to detect high current values, and it may take some time even after the settings
have been corrected for the integrated values to “decay” to permit the amplifier to be enabled.

Velocity Limits
Power PMAC provides several limits on the velocities that can be commanded of axes and
motors.

Programmed Vector Velocity Limit
Each coordinate system has a vector velocity limit in Coord[x].MaxFeedrate, expressed in axis
units per time unit. (The time unit is set by Coord[x].FeedTime, in milliseconds.) If a move is
specified by vector velocity (linear or circle mode move specified with F instead of tm), the
specified vector velocity (feedrate) is compared to this parameter. If the value is greater than the
limit, the limit value is used for the move instead.

Programmed Motor Velocity Limit
Each motor has a programmable velocity limit in Motor[x].MaxSpeed, expressed in motor units
per millisecond. This limit has several functions. First, it serves as the commanded velocity for
the motor in rapid-mode moves if the Motor[x].RapidSpeedSel is set to the default value of 0.

Second, for linear-mode moves (with or without move segmentation enabled),
Motor[x].MaxSpeed serves as the maximum velocity permitted, calculated on a move-by-move
basis. If the commanded velocity requested of a motor for a move exceeds the limit for the motor,
the move is slowed so that the velocity limit is not exceeded. In a multi-axis programmed move,

MAKING YOUR APPLICATION SAFE 14

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

all axes in the coordinate system are slowed proportionally so that no change in path occurs and
coordination is maintained.

In addition, for linear, circle and PVT-mode moves executed with segmentation enabled
(Coord[x].SegMoveTime > 0) and the special lookahead buffer active (lookahead buffer defined,
Coord[x].LHDistance > 0), it serves as the maximum velocity for each segment of the motion.
This can be particularly valuable for non-Cartesian coordinate systems defined with Power
PMAC’s kinematic equations; very high motor velocities can inadvertently be commanded near
“singularities”. The lookahead algorithm can detect these problems beforehand, and slow the
motion down along the path into the problem point, observing the Motor[x].InvAmax motor
acceleration limits for all axes in the coordinate system.

Velocities are compared to these limits assuming the % value for the coordinate system is 100
(real time), as the % value is used after this limit check. This means that other % values will
result in different effective limits. However, for segmented moves, this limit check occurs after
the segmentation override value Coord[x].SegOverride is used, so the effective limit remains the
same regardless of what segmentation override value is used.

Position-Following Velocity Limit
Each motor can specify the maximum velocity magnitude that can result from the position-
following function. If Motor[x].MasterMaxSpeed is greater than zero, it specifies this limit in
motor units per servo cycle. If the speed of the master and the following ratio in
Motor[x].MasterPosSf request a higher speed in any servo cycle, the resulting speed will be
limited to this magnitude. Note that if this following is superimposed on programmed moves,
only the component of speed from the following is limited by this parameter; total speed could be
greater. For more detail on this feature, refer to position-following section of the chapter
Synchronizing Power PMAC to External Events.

Acceleration Limits
Power PMAC provides several limits on the accelerations that can be commanded of axes and
motors.

Programmed Vector Acceleration Limits
Each coordinate system has two vector acceleration limits that act at move computation time.
They are intended for path-based applications, and are calculated in the plane in XYZ Cartesian
space that is defined by the normal command. By default, the XY-plane is used.

Coord[x].MaxCirAccel limits the V2/R centripetal acceleration from a programmed circle-mode
move. If the programmed velocity would produce a centripetal acceleration higher than this limit,
the velocity is automatically slowed at the move computation time so that this limit is not
violated. This is done independently of any motor acceleration limiting.

Coord[x].CornerAccel specifies the acceleration in blending between any two linear and/or
circle-mode moves, calculated based on the corner angle in the specified plane and the
programmed speed of the moves. It calculates the blending time necessary to achieve this
acceleration without exceeding it, ignoring the value in Coord[x].Ta, but will not use a time less
than Coord[x].Td.

MAKING YOUR APPLICATION SAFE 15

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

Programmed Motor Acceleration Limit
Each motor has a programmable acceleration limit set by Motor[x].InvAmax, expressed in
milliseconds2 per motor unit. As the name implies, this is the inverse of the maximum rate of
acceleration. This limit has multiple functions.

First, for simple linear-mode moves with move segmentation disabled (Coord[x].SegMoveTime
= 0), Motor[x].InvAmax specifies as the maximum acceleration permitted, calculated on a
move-by-move basis. If the commanded acceleration requested of a motor for a move by the
change in velocity and the acceleration times exceeds the limit for the motor, the acceleration
times are extended so that the acceleration limit is not exceeded. In a multi-axis programmed
move, the times for all axes in the coordinate system are identically extended so that full
coordination is maintained.

Note that in blending linear-mode moves, the acceleration time occurs half in the incoming move
and half in the outgoing move. Extending the acceleration time of a blend therefore causes the
blend to occupy more time in both the incoming and outgoing moves. It is not possible to extend
the acceleration time past the start of the constant-speed portion of the incoming move. In this
mode of operation, if observing the acceleration limit requires that the blend time be extended
past this point, the blend time will only be extended to this point, and the acceleration limit will
be violated. (If your application requires more sophisticated acceleration limiting than this, you
will need to use the special buffered lookahead function that can spread acceleration over
multiple moves. This is discussed below.)

Second, for linear, circle, and PVT-mode moves executed with segmentation enabled
(Coord[x].SegMoveTime > 0) and the special lookahead buffer active (lookahead buffer defined,
Coord[x].LHDistance > 0), it serves as the maximum acceleration for each segment of the
motion. The lookahead algorithm can detect these problems beforehand, and slow the motion
down along the path into the problem point, observing the Motor[x].InvAmax motor
acceleration limits for all axes in the coordinate system.

Accelerations are compared to these limits assuming the % value for the coordinate system is 100
(real time), as the % value is used after this limit check. This means that other % values will
result in different effective limits. However, for segmented moves, this limit check occurs after
the segmentation override value Coord[x].SegOverride is used, so the effective limit remains the
same regardless of what segmentation override value is used.

Position-Following Acceleration Limit
Each motor can specify the maximum acceleration magnitude that can result from the position-
following function. If Motor[x].MasterMaxAccel is greater than zero, it specifies this limit in
motor units per servo cycle per servo cycle. If the motion of the master and the following ratio in
Motor[x].MasterPosSf request a higher acceleration magnitude in any servo cycle, the resulting
acceleration will be limited to this magnitude. Note that if this following is superimposed on
programmed moves, only the component of acceleration from the following is limited by this
parameter; total acceleration could be greater. For more detail on this feature, refer to position-
following section of the chapter Synchronizing Power PMAC to External Events.

Command Output Limits
Each motor has a programmable limit for the servo-loop command output magnitude set by
Motor[x].MaxDac. If the servo algorithm computes a command output of a greater magnitude,

MAKING YOUR APPLICATION SAFE 16

DELTA TAU POWER PMAC USER’S MANUAL JAN-2011

the magnitude of the output used is limited to this value. Despite the name of this element, it can
be used even when the output device is not a D/A converter.

This limit is expressed in units of a signed 16-bit output (even if the actual output device has a
different resolution). Full range is thus 32,767 (215-1). If Motor[x].MaxDac is set to 32,767, it
performs no limiting function. It is used regardless of the servo algorithm selected.

The limit is used both in the case where the servo-loop output is written directly to the output
device (i.e. no Power PMAC commutation for the motor) and the case where the servo-loop
output serves as the torque (quadrature) command input to the commutation algorithm. For
torque-mode, sinewave-mode, and direct-PWM amplifiers, this limit serves as a torque, or
current-magnitude limit. For velocity-mode or pulse-and-direction amplifiers, it serves as a
velocity limit.

In servo cycles where the limit is active, reducing the command output of the servo loop, Power
PMAC’s anti-windup protection activates (for the built-in servo algorithms) to prevent oscillation
when coming out of the limiting condition.

MAKING YOUR APPLICATION SAFE 17

	Making Your Power PMAC Application Safe
	Watchdog Timer
	Soft Watchdog Trips
	Hard Watchdog Trips

	Following Error Limits
	Fatal Following Error Limit
	Warning Following Error Limit

	Position (Overtravel) Limits
	Software Overtravel Limit Parameters
	Action on Closed-Loop Trip
	Action on Open-Loop Trip
	Anticipating a Software Limit Trip

	Hardware Overtravel Limit Switches
	Limit Switch Interface Circuitry
	Action on Closed-Loop Trip
	Controlled Stop
	Disabled Stop

	Action on Open-Loop Trip
	Controlled Stop
	Disabled Stop

	Encoder Loss Detection
	Signal Loss Detection Circuits
	Digital Quadrature Encoders
	Analog Sinusoidal Encoders and Resolvers
	Serial Encoders

	Software Setup for Loss Detection
	Digital Quadrature Encoders
	Analog Sinusoidal Encoders and Resolvers
	Serial Encoders
	Setting the Encoder Loss Limit Value
	Action on Encoder-Loss Error

	Automatic Brake Control
	Specifying the Brake Control Output
	Specifying the Brake Timing

	Amplifier Enable and Fault Lines
	Integrated Current (I2T) Protection
	Velocity Limits
	Programmed Vector Velocity Limit
	Programmed Motor Velocity Limit
	Position-Following Velocity Limit

	Acceleration Limits
	Programmed Vector Acceleration Limits
	Programmed Motor Acceleration Limit
	Position-Following Acceleration Limit

	Command Output Limits

