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Simulation in Multicore Research <"

e Simulation is vital for exploring future architectures
— Experiment with new designs/technologies
— Abstract away details and focus on key elements
— Rapid exploration of design space
— Early software development for upcoming architectures

e The future of multicore simulation:
— Need to simulate 100’s to 1000’s of cores
— Massive quantities of computation

— High-level architecture is becoming more important than
microarchitecture

¢ On-chip networks, Memory hierarchies, DRAM access, Cache
coherence
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Graphite At-a-Glance
e Afast, high-level simulator for large-
Application scale multicores

' ' " ' ' e Application-level simulation where
threads are mapped to target cores

¢ Runsin parallel on multicore host

machines
EOre [EOre [EOre [Eore EOre Eore ¢ Multi-machine distribution
Target Multicore — Invisible to application

’/’// \\\ — Runs off-the-shelf pthread apps
e Relaxed synchronization scheme
a g g ? a g — Trades some timing accuracy for
: performance
Host Machines — Guarantees functional correctness
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Graphite slowdown on 8 host machines (64 cores total)
versus native execution on one 8-core machine

Min 41x
Max 3930x
Median 616x

* Typical slowdown for existing sequential simulators:
10,000x — 100,000x

e Results from SPLASH2 benchmarks on a 32-core
target processor

Graphite Performance

Graphite Trades Accuracy for Performance

e Simulator performance is a major limiting factor
— Limits depth and breath of studies, size of benchmarks
— Too much detail slows simulation
Cannot simulate 1000’s of cores
Most simulators are sequential, Graphite is parallel
Typical performance: 10,000x — 100,000x slowdown
Our target performance: 100x

* Performance vs. accuracy

Cycle-accurate: very accurate but slow
High-level: trade some accuracy for performance
For next year’s chips, you need cycle-accuracy
For chips 5-10 years out, you need performance

CSAIL
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Outline
* Introduction
e Graphite Architecture
— Overview
— Multi-machine distribution
— Clock Synchronization
e Results
e Conclusions
i Ssan

Graphite Overview

e Application-level simulator based on dynamic binary translation
— Uses Intel’s Pin
— App runs natively except for new features and modeled events
— On trap, model functionality and timing

¢ Simulation consists of running an application on a target
architecture

— Target specified by swappable models and runtime parameters
* Different architectures
e Accuracy vs. Performance
— Result:
e Application output
¢ Simulated time to completion
* Statistics about processor events
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s Graphite Architecture

- Target Architecture
Application 9

. Target Target Target
0 Core Core Core
Target Target Target

Core Core Core

Target| Target Target
Core Core Core

mapped to target
cores

Application Threads

Graphite \
° Target cores are
;4$3$ §99 S%S distributed among
Host Threads Host Host Host host processes
Process Process Process
AN /

* Processes can be

Host

Machines host machines

e Application threads

— On trap, use correct
target core’s models

distributed to multiple
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Simulated Target Architecture

Processor

Core DRAM

Controller

Cache

Hierarch
Network Y

Switch

Interconnection Network

e Swappable models for processor, network, and memory hierarchy
components

— Explore different architectures
— Trade accuracy for performance
e Cores may be homogeneous or heterogeneous

CSAIL
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Key Simulator Components
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Target
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Physical Transport | z

Transport Layer
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Communication Stack

Target Core

Application Thread

Messaging
API

Memory
System

Target Network Model

Transport Layer

Graphite implements a layered
communication stack.

The application thread
communicates with other threads
via messages.

— Graphite messaging API

— Simulated shared memory
Messages are routed and timed by
target architecture network model.
Transport layer delivers messages to
destination target core.

— Host shared memory (same host
process)

— TCP/IP (different host processes)
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" parallel Distribution Challenges <"

* Wanted support for standard pthreads model
— Allows use of off-the-shelf apps
— Simulate coherent-shared-memory architectures

* Must provide the illusion that all threads are
running in a single process on a single machine
— Single shared address space
— Thread spawning
— System calls

14
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i Single Shared Address Space

-

Application

e All application threads runin a
single simulated address space

¢ Memory subsystem provides
modeling as well as

T CSAIL

functionality

¢ Functionality implemented as

Simulated Address Space

part of the target memory
Host Address Host Address
models Space Space

Host Address
Space

— Eliminate redundant work

— Test correctness of memory
models

15

across several host machines

correctly

core core core core core core

Target Multicore e Threads are automatically

e Graphite runs application threads

e Must initialize each host process

/// \\\ distributed by trapping threading
calls

Lllll

Host Machines

16
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. System Calls

* Three kinds of system calls need to be handled
specially
— System calls that pass memory operands to the kernel

— System calls that implement
synchronization/communication between threads

— System calls that deal with allocating and deallocating
dynamic memory

e Other system calls can simply be allowed to fall
through
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— Overview

— Multi-machine distribution
— Clock Synchronization

Results

Conclusions
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i Clock Synchronization

e Cores only interact through messages
* Clocks are updated with message timestamps

Core 2

19
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Clock Synchronization

* Threads may run at different speeds, causing clocks to
deviate

— Clocks are only used for timing, functional correctness is
always preserved

— Must be synchronized on explicit interaction
— Clocks may differ on implicit interaction = timing inaccuracy

* Define synchronization as managing the skew of different
target core clocks.

— This is not application synchronization!

* Graphite supports three synchronization schemes with
different accuracy and performance tradeoffs

20
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Synchronization Schemes
* Lax
— Relies exclusively on application synchronization events to
synchronize tiles’ local clocks
— Functionally, events may occur out-of-order w.r.t. simulated time
— Best performance; worst accuracy
e LaxP2P
— Observation: Timing inaccuracy is due to a few outliers
— Every N cycles, each target core randomly pairs with another
— If cycles differ by too much, ‘future core’ goes to sleep
— Good performance; good accuracy
* LaxBar
— Every N cycles, all target cores wait on a barrier
— Keeps cores tightly synchronized, imitates cycle-accuracy
— Worst performance; best accuracy
21
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Example Simulation (Lax)
Y Lax l
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i Example Simulation (LaxP2P)

1 Lax l Laxp2p

----------------------------- P2P Check --

----------- ] PéP Check ﬁ--

Application
Synchronization Point

Simulated time

v
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Real time

i |
) Example Simulation (LaxBar)

1 Lax l

R S
----------------------------------- Barrier —

-_—— e e == ———— - S R AT A e e ———— — — — — — Barrier -
--- -x ----------------------- Barrier - -

Application
Synchronization Point

v

Simulated time
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Real time
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Clock Skew Measurements <

Lax LaxP2P LaxBar
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* Graphs show clock skew for each scheme using the fmm benchmark
— Clock skew is the spread between minimum and maximum clocks at any given point
— Note: Spikes on graphs due to errors in measurement method

¢ Lax has largest skew (~2,000,000 cycles)

— Application synchronization events are clearly visible

— Fine-grain thread interactions can be missed or misrepresented
¢ Lax P2P has much lower skew (~30,000 cycles)

— Application synchronization events slightly visible
¢ LaxBar has low, constant skew (~4000 cycles)

25

-
i Outline
* Introduction
e Graphite Architecture
e Results
— Experimental methodology
— Simulator performance and scaling
— Synchronization scheme comparison
e Conclusions
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L 1024-Core Simulation
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No. Host Machines

e Matrix-multiply kernel running on 1024-core target

e Simulator speed-up almost linear
— 3.85x going from 1 to 10 host machines

27

e
) Experimental Methodology

* Target Architecture:

Featre———————— Jvawe |

Number of cores 32

L1 caches Private, 32 kB per tile

L2 caches Private, 3 MB per tile
Cache coherence scheme Full-map directory based
Interconnection Network 2-D mesh

e SPLASH-2 benchmark suite

* All experimental results collected on 8-core Xeon
host machines running Linux

28
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Performance Scaling
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¢ Graphite scales if the application scales

¢ Even non-ideal speedup still reduces latency and design
iteration time

29
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Mir
Performance Summary

Slowdown over native execution on 8 cores

Sequential (1 core) | 1 host* (8 cores) | 8 hosts* (64 cores)
Min 580x 94x 41x
Max 17,459x 4007x 3930x
Mean 8,027x 1751x 1213x
Median 6,940x 1307x 616x

* Host machines are 8-core servers

* Sequential simulator slowdown is unacceptable
¢ Slowdown versus native execution as low as 41x
— Would continue to drop with larger targets and more hosts

¢ Simulator overhead depends heavily on application
characteristics

¢ Still more room for optimization

30
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Synchronization Results

Performance

B lax M LaxP2P M LaxBar

tilul,

imc 4mec 1mec 4mc 1mec 4me
lu_cont ocean_cont radix

n

Simulation Runtime

¢ Normalized to Lax on a single host
e Trends

— Lax gives best performance

— LaxP2P is nearly as good

— LaxBar is significantly worse

Deviation (%)

Accuracy

10 100 26.6
8 h [
o el mll l y I- y .

imec 4mc 1mc 4mc 1mc 4mec
lu_cont ocean_cont radix

%-deviation from LaxBar on 1 machine
Trends

— Lax shows high deviation

— LaxP2P and LaxBar show generally

low deviation
31
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Lax Synchronization Results
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Summary

Graphite accelerates multicore simulation using multi-
machine parallel distribution

— Enables simulation of 1000’s of cores
— Invisible to application, runs off-the-shelf pthread apps

Graphite provides fast, scalable performance
— As little as 41x slowdown vs. native execution
— Up to 20x speedup on 64 host cores (across 8 machines)

LaxP2P synchronization provides a good balance
between performance and accuracy

9/23/2010
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Graphite Internals

Additional Details of the Architecture
and Operation of the Simulator

Ry
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Outline

* Multi-machine distribution
— Single shared address space
— Thread distribution
— System calls

e Component Models
— Overview
— Core
— Memory Hierarchy
— Network
— Contention
— Power

35
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Graphite Architecture
Application Target Architecture . .
e Application threads
Target Target Target
—> Core  Core  Core mapped to target
' Earget Earge‘. '(I;argel cores
ore ore ore
— On trap, use correct
o Target Target Target )
Application Threads Core Core |Core ta rget core's mOde|S
Graphite \
% * Target cores are
44443 999 S% distributed among
Host Threads Host Host Host host processes
Process Process Process
\ N I/
\ N Y e Processes can be
o distributed to multiple
Machines host machines

36
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" Parallel Distribution Challenges <"

* Wanted support for standard pthreads model
— Allows use of off-the-shelf apps
— Simulate coherent-shared-memory architectures

* Must provide the illusion that all threads are
running in a single process on a single machine
— Single shared address space
— Thread spawning
— System calls

37
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i Single Shared Address Space "

Application

e All application threads runin a
single simulated address space

e Memory subsystem provides
modeling as well as
functionality

Simulated Address Space
¢ Functionality implemented as

part of the target memory
Host Address Host Address Host Address
models Space Space Space

— Eliminate redundant work

.

— Test correctness of memory
models

38
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) Simulated Address Space "

Simulated Address Space

1 1 1
1 1 1 I

Pin 1 Models; Pin 1 Models.
1 1 1 1

Host Address Space Host Address Space Host Address Space

1
Pin 1 Models
1 |

e Simulated address space distributed among hosts

* Graphite manages the simulated address space
— Follows the System V ABI

39
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Managing the address space  <*"
I | Frogram tack | Dyramical |
:ﬂ'ﬂ: J %::: Heap :egment wa Eﬁ

Simulated Address Space
e Stack space is allocated at thread start

e Appropriate syscalls are intercepted and handled by Graphite
— mmap and munmap use dynamically allocated segments
— brk allocates from program heap

¢ Memory accesses corresponding to instruction fetch not redirected
— These accesses are still modeled

— Don’t support self modifying or dynamically linked code at the
moment

40
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) Memory Bootstrapping

e T
Stack | mw Kemnel
Segment Alocpted | Regerved

Simulated Address Space

* Need to bootstrap the simulated address space
— Copy over code and data from the application binary

— Copy over arguments and environment variables from
the stack

41
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Rewriting memory operands <"

Rewrite —|
AND addr, rax —>|_Emulation code

read(addr, 8) ' J write(addr, 8)

| L1 Cache |

| Cache Hierarchy |

Target Memory System

e Graphite uses Pin API calls to rewrite memory accesses

* Data resides somewhere in the modeled memory system
— May be on a different machine!

* Data access may span multiple cache lines

42

mir.
Rewriting memory operands (contd.) <"

I_ _l Rewrite
ADD addr, rax Emulation Code
-

@ Execute
I | |

read(addr, 8) @ @ write(addr, 8)

: I L1 Cache !

| Cache Hierarchy |

Target Memory System

e Solution: scratchpads!

43

9/23/2010



Mir e
Atomic memory operations <"
| LOCK CMPXCHG addr, m Emulation Code |
@ Execute
l | I
o ® )
|| L1 Cache || QJ
| Cache Hierarchy | :
| DRAM |
Target Memory System i e
¢ Need to prevent other cores from modifying data
— Lock the private L1 cache during execution
— This together with the cache coherence protocol ensures atomicity
44
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CSAIL

e Graphite runs application threads
across several host machines

e Must initialize each host process
correctly

core core core core core core

Target Multicore e Threads are automatically

/ / / \\\ S;iltsrib“ted by trapping threading
ok ke e e

Host Machines

45
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Process Initialization
(ngm\ G

. Wait for
Execute main()
(Process
2

* Need to initialize state correctly in each process
(glibc initialization, TLS setup)

* Execute initialization routines serially in each
process

* Process 0 executes main()

spawn request

46

Thread Spawning

e Thread distribution managed through MCP/LCPs
— MCP and LCPs not part of target architecture
— Perform management tasks (thread spawning, syscalls, etc.)

LCP

1CP

: Process 0 \Nli‘ocess 1 Process 2 LCP
[Ervues —
B | ‘
HER
—

0 - HE

L m0D BOD =

i OO0 000 e
: LiOoO 00O iooo

[ 1=
A 00

CSAIL
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. Thread Management

* MCP keeps table of thread state

e Performs simple load balancing on spawns
— Target cores striped across host processes
— Future work: better scheduling/load balancing

* Implements pthread API by intercepting calls
— Pthread_create() initiates a spawn request to MCP

— Pthread_join() messages MCP and waits for a reply
when thread exits

i
) System Calls
sigprocmask, -
File M open, access, sigsuspend, Signal
ile Management read, write sigaction Management
getrlimit,
Memory mmap, nanosleep,
Management munmap, brk gettid OtheTI
syscalls

kill, waitpid,
futex

Synchronization/C
ommunication

49
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File
Management

Memory
Management

Synchronization/
Communication

System Calls

open,
access,
read, write

/s

munmap,
brk

\“""‘m...._,./

=R

waitpid,

=

sigprocmask,
sigsuspend,

sigaction

gettimeofday,
uname,
getrlimit,
nanosleep

Signal
Management

Other
syscalls

Handled at the MCP

File Management

Memory
Management

Synchronization/C
ommunication

System Calls

open, access,

read, write

mmap,
munmap, brk

kill, waitpid,
futex

sigprocmask,
sigsuspend,

Signal
Management

sigaction

getrlimit, Other
nanosleep, syscalls

gettid

Handled locally

51
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Syscalls Handled Locally
Arguments are copied into a
Core local buffer (if needed)
%ov eax, 1
Syscall On Syscall Arguments copied back into
Executed Exit simulated memory (if needed)
Mechanism - Syscalls Handled Locally
52
i
Syscalls Handled Centrally
1) Arguments are copied
from simulated memory
Core On Syscall into a local buffer Sent to
Entry 2) Syscallis changed to McP
“NOP” (getpid)
mov eax, 1
Syscall
Executed
1) Syscall return value
On Syscall received from MCP
Exit 2) Arguments copied
back to simulated
memory

Mechanism - Syscalls Handled Centrally at the MCP

53
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. Application Synchronization — =**

* Normal futex / atomic instructions
— Useful for pthread style programs
— Falls through to mechanisms previously described
— Implemented via memory system
* Application function calls (i.e., Barrier())
— Gets replaced by a simulated version

— Allows exploration of architectural support for
synchronization mechanisms

— Does not depend on the memory system

54
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Outline

* Multi-machine distribution
— Single shared address space
— Thread distribution
— System calls

e Component Models
— Overview
— Core
— Memory Hierarchy
— Network
— Contention
— Power

55
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" Simulated Target Architecture

Processor
Core

DRAM
Controller

Target Cache

[N Ti Hierarch
uis Network Y

N Switch

Interconnection Network

* Swappable models for processor, network, and memory
hierarchy components

— Explore different architectures
— Trade accuracy for performance
* Cores may be homogeneous or heterogeneous

56
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Modeling Overview

* Functional and timing components are separate where
possible

— Exceptions made for performance reasons

* Functionality
— Direct-execution of as many instructions as possible
— Trap into simulator for new behaviors

e Timing (performance)

— Inputs from front end and functional components used to
update simulated clock

e Each tile actually has two threads
— User thread is the original application thread instrumented by
Pin
— Sim thread executes most models (including memory and
network)

CSAIL

57
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Interaction between Models :
T T T Ty
1
1
I User Thread _ Front End . . '
: (application thread running on Pin) .
S }
:_ _______________ Core | % T TTT !
I Sim Thread Model \ Cache Memory :
i Model Controllers/DRAM |
1
I A '
| 1
! i :
| Inputs from all models i
I Network | _________ Contention '
| Model vocel TR
1
| I
| o o o o o o o o o e 22
Mii

Core Modeling

Performance model completely separate from functional
component

— Application executes natively

— Stream of events fed into timing model

Inputs from Pin as well as dynamic information from the
network and memory components

— Instruction stream

— Latency of memory and network operations
The current model is a simple in-order model

— Fixed number of cycles for different classes of instructions

— Allows multiple outstanding memory operations

“Special instructions” used to model aspects such as
message passing

TCSAIL

59
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Memory Modeling

Private L1, L2 caches in each tile
Directory-based coherence scheme for L2
— Directory in DRAM, directory caches in each tile

— Directory caches communicate with DRAM controllers via
network messages

Configurable number of controllers/DRAM channels

Memory models are both functional and timing

— Target coherence scheme used to maintain coherence
across machines

— Messages are used both to communicate data/update
state and to compute latencies

DRAM contention modeled by queuing models

CSAIL

60

Network models

Functional and timing components
— Functional: Determines routing algorithms
— Timing: Calculates latencies

CSAIL

Uses Physical Transport layer to send messages to

other cores’ network models

Calculates queuing and delivery latencies for
packets
Opportunity for performance/accuracy trade-off

— Timing may be analytical, fully detailed or a
combination

61
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i Contention Models
e Used by network and DRAM to calculate
gueuing delay
e Analytical Model
— Using an M/G/1 Queuing Model
— Inputs are link utilization, average packet size
e History of Free Intervals
— Captures history of network utilization
— More accurately handles burstiness and clock
skew
Mir

Power Models

Work in progress
Activity counters track events during simulation

— E.g., cache access, network link traversal

— Energy calculated from static and dynamic components
* Models available for following components:

— Network (using Orion)

— Caches (using CACTI)
Currently under development:

— Cores (using Wattch)

— DRAM

9/23/2010
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. Summary

* Special techniques used for distributed
simulation:
— Single, distributed shared address space
— Thread spawning and distrbution
— Syscall interception and proxying

e Graphite provides models for core, memory,
and network subsystems

e Contention and power models are used to
support the other models

CSAIL
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