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Abstract

Ultracold atoms in optical lattices are promising systems to realize and study
novel quantum mechanical phases of matter with the control and precision offered by
atomic physics. Towards this goal, as important as engineering new states of matter
is the need to develop new techniques to probe these systems.

I first describe our work on realizing Bragg scattering of infrared light from ul-
tracold atoms in optical lattices. This is a detection technique which probes the
spatial ordering of a crystalline system, and has led to our observation of Heisenberg-
limited wavefunction dynamics. Furthermore, we have observed the superfluid to
Mott insulator transition through the matter wave Talbot effect. This technique will
be particularly powerful for studying antiferromagnetic phases of matter due to its
sensitivity to the crystalline composition.

The second major component of this thesis describes a new scheme to realize the
Harper Hamiltonian. The Harper Hamiltonian is a model system which effectively
describes electrons in a solid immersed in a very high magnetic field. The effective
magnetic field manifests itself as a position-dependent phase in the motion of the
constituent particles, which can be related to gauge fields and has strong connections
to topological properties of materials. We describe how we can engineer the Harper
Hamiltonian in a two-dimensional optical lattice with neutral atoms by creating a
linear potential tilt and inducing Raman transitions between localized states. In
situ measurements provide evidence that we have successfully created the Harper
Hamiltonian, but further evidence is needed to confirm the creation of the ground
state of this Hamiltonian.
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Chapter 1

Introduction

The realization of Bose-Einstein condensates (BECs) in ultracold atomic sys-
tems [7, 23] opened a new direction in the study of macroscopic quantum phenomena.
These include the observation of matter wave interference [8], spinor dynamics [99],
and vortex lattices [1], significantly deepening our understanding of quantum mat-
ter. It was clear from early on in the experimental exploration of BECs that there
were deep connections between these atomic systems and those studied in condensed
matter systems [62]. These include superfluidity as observed in liquid helium and
superconductivity in various materials. At a fundamental level, many systems that
were only accessible in condensed matter systems were now also open for investigation
in atomic systems, but with different control parameters.

Some of the relevant properties and techniques that are unique to atomic systems
include the existence of Feshbach resonances which allow experimentalists to tune the
interaction energy between atoms [55], optical dipole traps to trap and manipulate
atoms [95], and the ability to control the dimensionality of the system between three
dimensions, two dimensions, and one dimensions [41]. Such controls allowed the
exploration of quantum matter in systems which were complementary to what had
been studied in condensed matter. The creation of quantum degenerate Fermi gases
further diversified the type of systems realizable [27], allowing atomic physicists to
study both bosonic as well as fermionic particles.

One major addition to the controllability and flexibility already discussed is the

17



ability to genereate an optical lattice potential to create a crystalline structure analoglous
to condensed matter systems [70, 13]. This has allowed the field to move in the di-
rection of creating systems directly analogous to novel solid state materials such as

high-temperature superconductors and magnetic phases of matter.

1.1 Quantum Simulation

Quantum simulation was first articulated by Richard Feynman [32], and the idea is
that you can create a quantum system with exactly the same parameters as another
one that is more controllable, and study what would have happened to the other
system. Groundbreaking work on the superfluid to Mott insulator transition with a
three-dimensional optical lattice [42] was an early success of how ultracold atoms in
optical lattices can realize interesting many body physics as those found in condensed
matter, where interactions between constituent particles in a lattice can be important.

Another example is the Fermi-Hubbard Hamiltonian [53], which in condensed
matter describes electrons in a crystal which can undergo a transition from a con-
ducting state to an insulating state and is of particular interest because of the belief of
its strong connection to high-temperature superconductors in condensed matter [69].
The exact same Hamiltonian has been realized in ultracold atomic physics, where a
fermionic atom resides in a three-dimensional crystal structure created by interfering
light beams [88, 61]. Thus the idea is that by studying the Fermi-Hubbard Hamilto-
nian in atomic systems, physicists can gain a better understanding of the mechanisms
behind high-temperature superconductors in condensed matter. Note the fact that
the atoms must be fermionic in this case to more accurately simulate a condensed
matter system made of electrons.

Fermions have a direct analogy to electrons in real condensed matter systems,
whereas fundamentally bosonic particles do not exist in condensed matter. However,
many interesting quasiparticles in condensed matter are bosonic in nature, including
Cooper pairs in superconductors [20], excitons in semiconductors [119], and magnons

in magnetic materials [14]. Thus although the constitutive particles in condensed
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matter are not bosons, understanding bosonic particles in ultracold atomic systems
can significantly add to our understanding of quantum matter. From a theoretical
point of view, bosonic systems are typically easier to calculate, so a precise comparison
between theory and experiment can be possible [106]. Also, validating experimental
techniques with bosonic systems where more experimental tools and understanding
are available is invaluable to exploring fermionic systems [11, 90, 77]. Finally, the non-
existence of fundamentally bosonic particles in condensed matter makes ultracold
bosonic systems unique in that systems which were previously only of theoretical

importance can now be studied experimentally [29].

1.2 Motivations and Outline

The rubidium lab at MIT which I belong to and where the work described in
this thesis was done uses ultracold ¥ Rb atoms [100], which are bosonic, and has
been focusing on studying these atoms in optical lattices which closely mimic crystal
structure in condensed matter. In particular our major goal has been to realize new
magnetic forms of matter in its various guises.

One direction has been to realize and observe phase transitions to ferromagnetic
and antiferromagnetic phases [85]. The fermionic antiferromagnet is expected to have
deep connections with high-temperature superconductors, but the bosonic antiferro-
magnet is also expected to be interesting in its own right [39]. Towards that goal
this lab has developed the technique of spin gradient thermometry and spin gradient
demagnetization cooling, which has allowed us to measure and cool our system down
to 300 pK, putting us in striking range of these magnetic states [115, 116, 76]. I was
involved in the thermometry and cooling experiments in the first half of my Ph.D.
studies, and the published papers are presented in appendices D, E, and F. In this
thesis I describe our work on Bragg scattering applied to ultracold atoms, which will
allow us to study the antiferromagnetic state once it is created.

Another direction has been to realize Hamiltonians which can be described by

gauge fields [22]. These are analoglous to electrons in a magnetic field in condensed
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matter which gives rise to such phenomena as the quantum hall effect [107, 68, 120].
One important parameter for such systems is the magnetic flux enclosed per area,
where the area is determined by the relevant length scale of the system. In condensed
matter, the necessary magnetic fields to realize magnetic fluxes of order the magnetic
flux quanta where interesting effects are expected to occur are at around a billion
gauss due to the very small length scales involved of order angstrom [52], which is
unachievable in the laboratory. However, with cold atoms it may be possible to
realize such effectively high magnetic fluxes [59, 37]. Much experimental progress has
been made towards realizing and studying artificial gauge fields in ultracold atomic
systems [72, 3, 101], but simple and robust schemes to achieve high magnetic fluxes
have not yet been realized. In this thesis I describe a setup to realize very high
magnetic fields which can give rise to such fascinating features as the Hofstadter
butterfly, which is a fractal band structure.

This thesis is organized as follows. In chapter 2, I describe some of the basics
of optical lattices, as well as the behavior of particles in a sinusoidal potential. The
chapter also discusses the Bose-Hubbard Hamiltonian, Heisenberg Hamiltonian, and
the Harper Hamiltonian. In chapter 3, I describe our work on Bragg scattering to
study the Bose-Hubbard Hamiltonian and atomic dynamics. In chapter 4, I describe
the scheme we have developed to realize artificial magnetic fields as well as experi-
mental results to realize the Harper Hamiltonian. Then chapter 5 offers conclusions

and outlooks.
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Chapter 2

Ultracold Atoms in Optical

Lattices

A coherent laser beam is a particularly versatile tool to control dilute, ultracold
atomic systems due to their spectral purity as well as the controlability in spatial and
temporal structure. In particular laser beams are standard tools used to trap and
manipulate atoms to create new states of matter.

In this chapter I describe the principles behind optical lattices, as well as some
of the properties of atoms in an optical lattice potential and the different types of
Hamiltonians one can realize, including the Bose-Hubbard Hamiltonian, one of the
simplest ultracold lattice systems which exhibit strong interaction effects, the Heisen-
berg Hamiltonian, which describes magnetic phases of matter including ferromagnets
and antiferromagnets, and the Harper Hamiltonian, which exhibits topological prop-

erties of matter.

2.1 Optical Lattice Potential

Atoms that are sufficiently cold can by trapped at the focus of a Gaussian laser
beam which induces a light shift if red-detuned to an atomic transition, thereby
creating a potential minimum, which corresponds to an intensity maximum for the

cold atoms to sit in [19, 96].
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For an atom in an oscillating electric field E(¢) = FEé cos wt, the perturbing Hamil-

tonian H'(t) can be written

H'(t) = —d - E(1). (2.1)

The energy shift due to an oscillating electric field is given by

U = ST (22)
B’ Dyl [ 1 1
- _Zk: |4h | (_%jkangw) 2%

where Dy, = e(k|z|g), Oxg = w — Wiy, and I = cegE? /2.

So far we have only considered a single coherent laser beam, but if we have two
such beams, they can interfere and create a standing wave intensity pattern. The

resulting sinusoidal potential which the atoms see is called an optical lattice.

Consider two plane electromagnetic waves E;(r,t) and Eq(r,t) that are propagat-
ing in arbitrary directions k; and ks respectively, where Eq(r,t) = Epe e 7=t and
Es(r,t) = Epepe’®27=wt9) where € 5 are polarization vectors, Ej is the electric field
magnitude, k; » are the wavevectors, and ¢ is an arbitrary constant phase. The total

electric field is given by Eio(r,t) = Ey(r,t) + Eo(r,t). Then we have

Bt (r, 1) = Ej|€1e™ ™ + ey’ m9))2 (2.4)
= E§(2 + € - G;Gi(krr—kgr—qﬁ) + € - €2€_i(k1'r—k2-r—¢)) (2.5)
= 2E§(1 + €1 - €9 COS((kl - kg) - r — ¢)), (26)

where we assumed the polarization vectors to be real. Now consider the case when the

polarization vectors are parallel so that €;-€; = 1. Then, from cos®# = (1+cos 26)/2,
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we get

|Eor(r,1)]* = 4E7 cos® ((kl - k22) T ¢) (2.7)

= 4F7 cos® (keff T — g) (2.8)

where we define kog = (k; — ko) /2. If we define 6 such that k; - ky = cos @ and using
k =2m/\ we get

1
Aeft = =277 A, 2.9
T Sin(6/2) (2:9)
where ke = 27 /Aegr. Thus, by intersecting laser beams at various angles, one can
create an optical lattice with lattice spacings much greater than the wavelength of the

laser beam itself. Also, note that the direction of the optical lattice will be modulated

in the direction lA<1 - lA<2.

In the work described in this thesis # = 7, so Aeg = A and we have

|Eior (1, )| = 4E5 cos® (k T — g) : (2.10)

Thus this periodic modulation in the intensity pattern creates an optical lattice,
which the atoms reside in. The next section describes the properties of atoms in such
a sinusoidal potential. Typically the lattice laser beams are significantly bigger than
the optical dipole trap beams, so the spatial curvature due to the Gaussian envelope

of the lattice beams can be neglected.

2.2 Atoms in a Periodic Potential

In 1D, a single atom in a standing wave is described by the Hamiltonian

2
H = ;’_m + Vysin?(ka), (2.11)
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where m is the mass of the particle, and k; = 27/ for an optical lattice with laser

wavelength .

2.2.1 Bloch’s Theorem and Bloch Functions

Bloch’s theorem [9] tells us that if the Hamiltonian is invariant under translation
by one lattice period a, the Hamiltonian commutes with the translation operator T,

where
T = P and T, () = ¢y(x + a). (2.12)

Since T is unitary, it has eigenvalues such that

T (x) = "¢y (), (2.13)
where g € [=7/a, 7 /a]. Since
Gg(x +a) = y(), (2.14)
we can write
Pg() = €'y (), (2.15)

where u,(z) is a periodic function in z with period a i.e. uy(x) = uy(x + a). Because
the Hamiltonian and the translation operator commute, we can find simultaneous

eigenstates of H and T such that

Ho{M(x) = B¢l (x) and (2.16)
Tgb((]")(x) = eiq“gb(g”) (x). (2.17)
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¢y () are called Bloch eigenstates, and uy (z) are eigenstates of the Hamiltonian

(p+q)?
2m

H,= + Vo sin® (k). (2.18)

This follows from using the fact that
e et = p 4 q. (2.19)
We would now like to determine the Bloch functions, which are normalized so that

2 [ (n) B
?/0 o0 (2)Pda = 1. (2.20)

The analytical solutions are of the form of Mathieu functions. However, numerically

it is nicer to expand the Bloch functions in a Fourier expansion, where

o0

n 1 n,q) —ikjzj
uy () = Nz Z cé- ) gikiz, (2.21)
J

=—0Q

This allows us to reduce the problem to a linear eigenvalue equation in the complex

coefficients ¢;. To do this, take Schrodinger’s equation and use

1 o0 , 1
— dre™ " = \/215(k) and 6(ax) = —6(z). 2.22
=/ VRS(E) and §(as) = 5(0) 2.2
By doing so we get
!
> ijjfcﬁf"q) = B, (2.23)
=t

where

(

(27 + q/k)’Er + Vo /2, if j = j;
Hjy = -Vo/4, if |j— /| = 1; (2.24)

0 if |j— 5| > 1.

\
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Figure 2-1: Band structure for an atom in an optical lattice. From left to right are
the eigenvalues for an atom in a lattice for lattice depths Vy = 0FER, Vy = 5ER, and
Vo = 10ER as a function of the quasimomentum q.

This problem can be diagonalized numerically using j € {—[,...,—[} and for the
lowest few bands, good results are obtained for relatively small [, i.e. [ ~ 10. The

numerically determined eigenvalues for the first few energy bands are given in Fig. 2-1.

2.2.2 Wannier Functions

It is often very convenient to write the Bloch functions in terms of Wannier func-
tions, which also form a complete set of orthogonal basis states. The Wannier func-

tions in 1D are given by

w/a .
wy(r — x;) = ,/%/ / dqué”) (x)e "% (2.25)

where z; are the minima of the potential. Each set of Wannier functions for a given

n can be used to express the Bloch functions in that band as

n a iqT;
ug )(z) = U%an(iﬁ — x;)e' (2.26)

This can be checked by plugging Eq. 2.26 into Eq. 2.25. Wannier functions have
the advantage of being localized on particular sites, which makes them useful for de-
scribing local interactions between particles. The Wannier functions are not uniquely
defined by the integral over Bloch functions since each wavefunction ¢§”) (x) is arbi-

trary up to a complex phase. However, it has been shown [65] that there exists for
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each band only one real Wannier function w,(x) that is
e cither symmetric or anti-symmetric about either x = 0 or z = a/2 and
e falls off exponentially i.e. |wy(x)| ~ exp(—h,z) for some h, > 0 as z — oco.

These Wannier functions are known as maximally localized Wannier functions, and
are the ones frequently used. If uén) (x) is expanded as in Eq. 2.21, the maximally
localized Wannier functions can be produced if all an,q) are chosen to be purely
real for the even bands 7.e. n = 0,2,4,..., and imaginary for the odd bands i.e.
n = 1,3,5,..., and are smoothly varying as a function of q. Wannier functions
for deeply bound bands are very close to the harmonic oscillator wavefunctions, and
for many analytical estimates of on-site properties, the Wannier functions may be
replaced by harmonic oscillator wavefunctions if the lattice is sufficiently deep. The
major difference between the two is that the Wannier functions are exponentially

localized, i.e. |w,(z)| ~ exp(—h,x), whereas the harmonic oscillator wavefunctions

decay more rapidly in the tails as exp{—x?/(2a0)?}.

2.2.3 Wannier-Stark States

Now consider a situtation where in addition to the periodic lattice potential we
have a linear lilt potential due to an effective constant time-independent force F' such

that we obtain the Wannier-Stark Hamiltonian [45, 40]

2

H= 2p—m + Vysin?(ky) + Fa. (2.27)

Note that the linear tilt destroys the translation symmetry of the tiltless Hamiltonian,
and so the Wannier wavefunctions will not be the proper description of a localized
state. Being able to describe the localized wavefunctions resulting from this Hamil-
tonian, called Wannier-Stark states, is important in understanding our scheme for
engineering the Harper Hamiltonian in an ultracold atomic system which is further

described in chapter 4.
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Figure 2-2: Wannier-Stark states in a tilted lattice.

In a sufficiently deep lattice such that the tight-binding approximation can be
used, and a sufficiently steep tilt such that the bare tunneling energy J (this parameter
is explained in the following section) is smaller than the energy offset between adjacent
sites Fla, the Wannier-Stark Hamiltonian can be diagonalized in the basis of the

Wannier-Stark states |V, ;) given by

o) = Xmi Ton—i (;—‘2) jm), (2.28)

where |m) are Wannier functions centered at site m, and J,,_;(z) are Bessel functions.
Thus when one is interested in the properties of a lattice system in the presence of a
linear tilt potential, the Wannier-Stark states should be used instead of the Wannier

states. Wannier-Stark states are depicted in Fig. 2-2.
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2.3 Bose-Hubbard Hamiltonian and the Mott In-

sulator

Although band theory for non-interacting particles has been hugely successful in
explaining the properties of a wide range of metals [9], there are a few shortcomings.
In particular, there are a class of materials, including NiO, which band theory would
predict should be conductors, but are in reality insulators [24]. The Hubbard model
proposed by John Hubbard has been shown to explain quite well why this material
is insulating [53, 63]. In particular, this model Hamiltonian captures the interactions
between the electrons effectively in the tight-binding approximation and is a useful
model to begin to understand the effects of interactions between constitutent particles

in a lattice system.

The Bose-Hubbard Hamiltonian also describes a quantum phase transition be-
tween a superfluid state and an insulating state, called the Mott insulator [33, 58].
This was first observed in an ultracold atomic system in 2002 [42] and has been stud-
ied extensively since then. In chapter 3 of this thesis I describe our work on studying
this quantum phase transition using the technique of Bragg scattering. The Mott
insulating state is also the starting point in realizing spin gradient thermometry and
demagnetization cooling, where the published papers [76, 116, 115] are included in
this thesis as appendices D, E, and F.

Now in an ultracold atomic system, for bosonic atoms in a lattice and an external

trapping potential, the Hamiltonian operator is given by [58]

2m

= [t " V) + Vi) ) 0(x)

n 1 4mah?
2

/ Pt (08T () () (x), (2.29)

where 1 (x) is a boson field operator for atoms in a given internal atomic state, Vj(x)
is the optical lattice potential, and Vr(x) is the additional slowly varying external

trapping potential, such as a magnetic or optical dipole trap. In the simplest case,
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the optical lattice potential has the form Vj(x) = 22:1 Vio sin®(kz;) with wavevector
k = 27 /X where )\ is the wavelength of the lattice beam. The interaction potential
between the atoms is approximated by a short-range pseudopotential where a is the
s-wave scattering length and m is the mass of the atom. If we assume the energies of
the system are low enough that the atoms remain in the lowest band, we can expand
the field operators in the Wannier basis and keep only the lowest vibration states and
write ¢(x) = Y, a;w(x — x;). This then allows us to simplify Eq. 2.29 to obtain the
Bose-Hubbard Hamiltonian

H=-J> ala;+ %UZm(m —1)+ Y e, (2.30)
(4,9) % )

where (i, j) denotes a sum over the nearest neighbor sites, the operators n; = ajai
count the number of bosonic atoms at site i. The annihilation and creation operators,
a; and aZT respectively, obey the canonical commutation relations [a;, a}] = 0;;. The
parameter U = 4rah? [ d®z |w(x)|* /m corresponds to the strength of the on-site
repulsion of two atoms on the lattice site 7, a is the s-wave scattering length of the
atom, J = [ dPrw*(x — x;)[~ V2 + Vy(x)Jw(x — x;) corresponds to the hopping
matrix element between adjacent sites i and j, and ¢; = [ PzVp(x)|w(x —x;)|* ~

Vr(x;) corresponds to an energy offset of each lattice site.

One can use a harmonic approximation about the minima of the potential wells

to determine these parameters. In particular, for 1D,

P P’
H' = 5 W sin?(kx) =~ o+ Vok?ax? (2.31)
2
p 1 2.2
_ : 2.32
v + 5w (2.32)

2Vok?  AERV 4FERV
2 0 R V0 [4LR Vo
= w’ = T =>w= 2 (2.33)

where Fr = h%k?/(2m) is the recoil energy. Furthermore, the ground state eigenfunc-
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tion of this Hamiltonian can be written

1 _a?
where
h h

= = ) 2.35
7 mw  mY2(4ER V)4 (2.35)

The generalization to 3D is given by

1 _(2327722+23;722+2222)

wix) = 7r3/4(010203)1/26 Lo (2.36)

Using the expression for U and the above approximate Wannier function, we may

write
4 2
U= mah P |w(x)[* (2.37)
m
8
~ \/;k;a (ErViVaVa)Y* . (2.38)

In all experiments described in this thesis, we work with lattice lasers of wavelength
1064 nm and 8"Rb atoms which weigh 1.443 x 10~% kg with s-wave scattering length
of 100ay (in reality, the scattering length depends on the hyperfine states that are
undergoing the scattering, but for 8’Rb all relevant scattering lengths are identi-
cal to within about 1% and so differences are typically negligible) [116]. For these
parameters, Fig. 2-3 shows the interaction energy U, tunneling energy J, and the
superexchange energy J?/U as a function of lattice depth in units of the recoil energy

ER. These three terms set the energy scale of the system.

The on-site interaction energy term can be most naturally be understood as an
energy between any two atoms on a single lattice site. In particular, if a lattice site

has n atoms in it, then there are n choose 2 pairs that one can form, and each of
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Figure 2-3: Dependence of Bose-Hubbard Hamiltonian parameters on lattice depth.
Calculations are done for a 3D optical lattice of equal lattice depth in all three di-
rections created by a laser of wavelength 1064 nm and 8"Rb atoms which weigh
1.443 x 1072 kg with s-wave scattering length of 100ay.

these pairs contributes an energy U to the lattice site. This then gives us

n n(n —1)

E, = U= U. (2.39)
5 2

Consider the case of zero tunneling, so that J = 0. The Hamiltonian is then

simplified to
1 . R

It is clear that the eigenstate is the one where each lattice site has an integer number
of atoms n;. Furthermore, the Hamiltonian is now an independent sum of all of the

lattice sites. Therefore for the case of J = 0, we need only consider a single lattice
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site. The energy of a single lattice site with n atoms is then

1
E, = %U — pn. (2.41)

The energy of a lattice site with n — 1 atoms is

(n—1)(n-2)
2

E, = U—pu(n—1). (2.42)

Consider the energy difference between the configuration with n — 1 atoms and n
atoms. Since the two terms in the energy have opposite signs, it is possible for there
to be a critical n where it is just barely favorable to have one more particle in the
site. The relevant energy to determine this critical n is the energy different between

E, and E,_;. This is found to be
AE,=E,—FE,1=Mn-1)U - pu. (2.43)
The maximum possible n is determined by AF,, < 0. This implies

Moy < % 41 = e = Int (%) Tl (2.44)

This discreteness of the possible occupation number is a distinct signature of the
Mott insulator state and is what gives rise to the so-called ‘wedding cake structure.’
Such a discrete spatial structure is particularly amenable to the technique of Bragg

scattering, which is described in detail in this thesis [77].

2.3.1 Mott Insulator Phase Diagram

Depending on the parameter J/U and p/U, the system can be either in a Mott
insulator or superfluid phase [79, 108]. The phase diagram can be found by considering
the energy of the system using second-order perturbation theory. This requires a
mean-field approximation, where the nearest-neighbor interactions as expressed by

the term in the Hamiltonian with J are decoupled into single-site operators and an
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order parameter v, which in this case is ©» = \/n. Furthermore, Landau’s theory of
second order phase transitions says that phase transitions occur when d?E/dy? = 0,
where the energy E can be expressed as E = ag + axp? + O(y*), which requires that
at the phase transition, a; = 0. With this understanding, the phase boundary is

given by the equation

U n+1 n
_ 2.45
zJ n—u/U+1—n+/L/U’ (2.45)

where z is the coordination number (2 x 3 = 6 in the case of a 3 dimensional lattice),
and the occupation number n is given by n = Integer(u/U) + 1 for u/U > 0 and
n = 0 otherwise. The phase diagram determined by this expression is given in Fig. 2-

4, where regions of occupation number up to 5 are shown.

Phase Diagram of the Mott Insulator
0.2 ‘ ‘
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Figure 2-4: Phase diagram of the superfluid to Mott insulator transition. The colored
regions correspond to the Mott insulator phase, and the white regions correspond to
the superfluid phase. Occupation number regions of up to 5 are shown. The boundary
is given by Eq. 2.45.
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2.3.2 Non-Zero Temperature Effects

So far our description of the Bose-Hubbard Hamiltonian has assumed zero temper-
ature. But of course in reality the system realized in an experiment is at a non-zero
temperature. Understanding the system at non-zero temperature is particularly im-
portant when one is hoping to realize even lower energy Hamiltonians such as the
Heisenberg Hamiltonian which we describe in the next section. Our results on spin
gradient thermometry and demagnetization cooling, included in this thesis as appen-
dices D, E, and F, relied strongly on our understanding of non-zero temperature

effects.

Consider a Mott domain with n atoms per site. Then it is reasonable to expect that
the lowest-lying excited states are particle and hole states, where an additional particle
has been added/removed from the background occupation number of n [36, 51]. The

energies of a particle and a hole are

1 —1
En,particle = (n —; )nU - n(n2 )U = nU; (246)
-1 -2 —1
Eppe = )2(” Jy - n(n2 = (-1 (2.47)

This particle-hole approximation allows us to truncate the Hilbert space of a lattice
site to states with n — 1, n, and n 4+ 1 atoms. Other states are suppressed by factors
of e7PY. Assuming BU < 1, this approximation is expected to be valid. In general,

the partition function for a single site can be written,

2= 3 e PHM) _ § e Anlnm U/ 2mpem) (2.48)

n

Truncating this to the relevant states and factoring the common term, we get

o o BHm=1) | ~BH() | ~BH(nt1) (2.49)
x e Bl=m=1U+n) 4 | | (=B0U-p) (2.50)
— e_B(EholeJ"ll/) + 1 + e_ﬁ(Eparticle_ll/) (251)
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With this partition function, we can write down the probability for there to be a hole

and particle in any given Mott region with occupation number n. This is found to be

e_ﬁ(Ehole“l‘u‘)

Phole = > (252)
efﬁ(Eparticlefp‘)

Pparticle = > —. (253)

We can now calculate the mean occupation number at non-zero temperature as a
function of the chemical potential and the interaction energy, given the probability

of holes and particles. This is given by

n=mn+ Pparticle — Phole- (254)

This is plotted as a function of /U for various values of U/kgT in Fig. 2-5. One can
see that the sharp steps a T' = 0 become rounded as the temperature increases, and
roughly at kgT /U = 0.2, the sharpness has almost completely faded away. This value

of 0.2 is commonly accepted as the ‘melting temperature’ of the Mott insulator.

2.4 Heisenberg Hamiltonian and Quantum Mag-

netism

The Heisenberg Hamiltonian is a model which describes spin-spin interactions
in a lattice and gives rise to phases such as ferromagnetic and antiferromagnetic
states [29]. This Hamiltonian can be realized from the Bose-Hubbard Hamiltonian in
the perturbative limit of J/U < 1, where the relevant energy scale becomes J? /U, also
called the superexchange energy scale. This energy scale corresponds to a temperature
of order 100 pK for rubidium atoms in a 3D lattice of lattice spacing a few hundred
nanometers. Our work on spin gradient thermometry and demagnetization cooling,
included in this thesis as appendices D, E, and F, were particularly driven by our
goal of realizing the Heisenberg Hamiltonian which requires very low temperatures.

Our work on Bragg scattering, described in chapter 3, was undertaken with the goal

36



Average Occupation Number as a Function of Chemical Potential

3 T T T T T
kBT/U=O
25 kBT/U=O.01 1
7
kBT/U=O.05 ;
_ e
ok = — kBT/U—O.l : — _
k_T/U=0.2 ke
B
@ s
& /
% 15 y k
c
/
s
1+ e - i
7
/
/
0.5 ( R
/'
0 L —_ - Il Il Il
-1 -0.5 0 0.5 1 1.5 2

Figure 2-5: Average occupation number as a function of chemical potential for various
temperatures. These steps are often call the ‘wedding cake structure.’

of applying it to study spin ordering once the Heisenberg Hamiltonian is realized.

Let us start with a system where two different effective spin species interact dif-
ferently in a lattice [29]. Denote the two relevant internal states with the effective
spin index o =7, ] respectively. These two spins are trapped in a perodic potential
V.o sin®(k, - r) in a certain direction p where k,, is the wavevector of light. For suffi-
ciently strong periodic potential and low temperatures, the low energy Hamiltonian

is given by

(i,9),0

1
- _ t s - (e — Tl
H = Z (tﬂoaiaaja + HC> + 9 Z Uonw (nw 1) + U'N Z USAR (255)
where (i,j) denotes the nearest neighbor sites in the direction u, a;, are bosonic
annihilation operators for atoms of spin ¢ localized on site i, and n;, = ajoaw.

Using the harmonic Wannier functions, the spin-dependent interaction energy Uy,
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is given by

Araq h?
Uy = T [ (o o) (2.56)
] L
~ \/;kam (BrVan Var V)", (2.57)

where V1) = 4V,4 V., / (VMIT/ 24 Vul f ?)2 is the spin average potential in each direction.

2.4.1 Anisotropic Heisenberg Hamiltonian

Using a generalization of the Schrieffer-Wolff transformation [50, 89] (or another
method [67]), to leading order in ¢,,, /Us;, Eq. 2.55 is equivalent to the effective Hamil-

tonian

H= [Nizoios = N (0707 +olal)], (2.58)
(6,3)

where o7 = ny —n;y, of = aZTTcm + a;riaﬁ, and 0! = —z'(ajTau - aLaiT) are the usual

spin operators. The parameters A\,, and A\, are given by

20h, Uy U

12, + t? t? t? toat
Mo = 2% B ang ), *g 2 (2.59)
™

Note that the Hamiltonian in Eq. 2.58 is the well-known anisotropic Heisenberg model
(XX Z model) which arises in various condensed matter systems [10].
One can also consider the case where an external magnetic field along the z di-

rection is applied. The Hamiltonian then becomes
H = Z (Nzoio? — Mo (0707 +0lo?)] — Z h.o?. (2.60)
(i.3) i

Now assume that the tunneling and same-spin interaction energies are the same for
the two spin states. We can perform a variational calculation on the minimum energy
of this system by two trial functions (i) a Néel state in the z direction {o;) = (—1)%e,;

(ii) a canted phase with ferromagnetic order in the x — y plane and finite polarization
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in the z direction (o;) = cosfe, + sinfe,. Here 6 is a varational parameter and e, ,
are unit vectors in the direction x, z. We then take the expectation value of H for

each case to get

Z\,
2

Z\, . Z\ .
, and (H)p = 5 sin? § — TL cos® 0 — h, sind, (2.61)

(H)n = -

where (H)y and (H)p are the Néel and canted phases respectively and Z is the

coordination number corresponding to the number of nearest neighbors.

We can minimize the expression for the canted phase with respect to 6 to get
cosO(Z (A, + Ap)sinf — h,) = 0. (2.62)

The energy is minimized when

h, y 1
ZA T+ N/

cos =0 or sinf= (2.63)

The two values that minimize the energy are § = 7/2,sin"'(h./Z(\. + A1)). Note

0 = m/2 corresponds to the z ferromagnetic phase, and whose energy is given by

(H), =222 . (2.64)

At this point, we are ready to determine the phase boundaries between the z
ferromagnet, xy ferromagnet, and the antiferromagnet states. We can let y = A, /A,
and x = h,/Z\, for ease of manipulation. Then if we consider (H), = (H)p, we

obtain
y=x—1=h,=2Z(\,+\). (2.65)
We can also consider (H)x = (H)p to obtain

y=val+1l=h, =272/ —)\. (2.66)
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The phase diagram dictated by Egs. 2.63, 2.65 and 2.66 is given in the left plot
of Fig. 2-6. For an actual ultracold atomic experiment, we can assume that there are
no spin-flips and that the density of atoms throughout the sample must remain the
same. To explore this phase space, we can apply a controlled magnetic field gradient,
so that B ~ z(dB/dx) and can take a slice along the horizontal direction with one
sample. If we create a sample with an equal mixture of T and | atoms, then from the
previous assumption, the only thing that the spins can do is rearrange themselves in
the sample. Spin 1 atoms will congregate in the lower field region and spin | atoms
will congregate in the higher field region. Then it is natural to expect the center of
the sample to have zero spin, and the sample will have a symmetric spin profile about
the center.

As can be seen in the Hamiltonian, the energy scale for these phases are of or-
der t*/U, which for typical experimental paramters for ¥ Rb are on the order of 100
pK [15]. Thus this low energy scale causes difficulties in preparing such phases of mat-
ter. However, recent work performed in this group shows that such low temperatures
can be achieved by the method of adiabatic spin gradient cooling [76].

These phase diagrams represent magnetic phases of matter, which in its fermionic
incarnation is believed to form the basis for high-temperature superconductors [69].
Thus there is great technological as well as scientific interest in understanding the

properties of this Hamiltonian.

2.4.2 Quantum Magnetism and Bragg Scattering

The Bose-Hubbard Hamiltonian has been studied extensively since its observation
in 2002 [42]. One major step in this field would be to study an even lower temperature
phase, which is the Heisenberg Hamiltonian. Bragg scattering will be a powerful tool
to study the magnetic phases of matter arising from the Heisenberg Hamiltonian
by making use of spin-dependent scattering, as was done in neutron scattering to
observe the antiferromagnetic state [91]. Chapter 3 describes our work to study the
Bose-Hubbard Hamiltonian with Bragg scattering, thus paving the way towards its

employment in the search for quantum magnetism in optical lattices.
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Figure 2-6: Phase diagrams of the Heisenberg Hamiltonian. The left figure is charac-
terized by the following order parameter: I, z-Néel order; II, z-ferromagnetic order;
and III, xy-ferromagnetic order. The right figure is the same plot as the left figure
but with the spin along the magnetic field direction (sin #) represented by the vertical
axis.

2.5 Harper Hamiltonian and Gauge Fields

Gauge fields play an important role in various areas of modern physics, from
particle physics, where the Standard Model relies heavily on gauge fields [81], to
condensed matter physics, where gauge fields can explain the integer and fractional
quantum Hall effects [107, 68]. Quantum Hall effects are interesting because they
can manifest topological properties of wavefunctions, which could form the basis
of a robust quantum computing platform due to the fact that environmental noise
have a much more difficult time perturbing topological properties of matter [64].
In condensed matter, gauge fields can help to explain the dynamics of electrons in
magnetic fields. However, gauge fields in condensed matter systems can be more
general than magnetic fields because they can describe non-abelian gauge fields [94,
48].

One particular type of Hamiltonian that can give rise to such quantum Hall ef-
fects is the Harper Hamiltonian [105]. This Hamiltonian describes the dynamics and
energy levels of electrons moving in the presence of a magnetic field and a background

lattice in the tight-binding limit [49]. This Hamiltonian has been shown to exhibit
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Figure 2-7: The Hofstadter butterfly [52]. This plot shows the fractal nature of the
Harper Hamiltonian. The z-axis is in units of the eigenenergy per tunneling energy
and the y-axis is in units of the enclosed flux quanta.

a fascinating fractal band structure which is colloqually called the ‘Hofstadter but-
terfly’, named after the discover Douglas Hofstadter [52]. Such a band structure is
shown in Fig. 2-7.

The particular Harper Hamiltonian we are interested in can be written as

_ § % m,n T —1 m,n

m,n

— JZ (a;rn’nﬂam,n + a;’nam7n+1> (2.67)

m,n
where K and J are tunneling amplitudes in the z and y directions respectively, a,ﬁw
and a,,, are the creation and annihilation operators, respectively, at site (m,n), and
the indices m and n are for the x and y lattice positions respectively. In general, for
the scheme we are interested in we can write ¢, , = m@,+n¢,. In chapter 4 I describe
in more detail how this Hamiltonian can be engineered with ultracold atoms, but for

the purposes of this section I would like to focus on the properties of this Hamiltonian.
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2.5.1 Electromagnetism, Gauge Fields, and Wavefunctions

The phase that the wavefunction acquires upon tunneling is directly related to

another important concept in physics, namely that of gauges [86, 44, 109].

In electromagnetism, the electric field E and magnetic field B can be written in

terms of the scalar potential ¢ and vector potential A as

E:—v¢f%:am B=VxA. (2.68)

Quantum mechanically, the Hamiltonian can be written in the following way to in-
corporate the scalar and vector potentials
2
(p—qA)

Now, it is possible to rewrite ¢ and A in a way such that it leaves the electric and

magnetic fields unchanged. Namely,

¢ =¢— aa—/t\ and A'= A+ VA, (2.70)

where A is in general any function of space and time. Thus the particular form of the
scalar and vector potentials that give rise to specific electric and magnetic fields are
not unique, but is defined up to a gauge given by the function A [57]. One speaks
of ‘choosing a gauge’ in solving specific problems. For example, one could choose the
gauge V - A = 0.

Here let us consider the situation of time-independent fields and potentials. If you
have a particle moving in the presence of some vector potential A, the wavefunction

of the particle evolves as [2]

¥ = g exp [%/A : dx.] (2.71)

Now we will consider a specific example where this phase of the wavefunction can

manifest itself in an observable.
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Figure 2-8: Setup for the Aharonov-Bohm effect. Electrons emerge from the electron
source to the left, traverse through two slits, and then impinge on a screen to the
right. In between is an infinitely long solenoid which has a non-zero magnetic field
inside, but zero magnetic field outside. Even though the magnetic field is zero where
the electrons are, they feel the effect of the magnetic field inside the solenoid.

Consider the following set up, shown in Fig. 2-8. We have a source of electrons
to the left, which pass through two slits. Beyond the slits, there is an infinitely long
solenoid pointing out of the page which is also impenetrable to the electrons. Thus
we can consider this solenoid to have zero magnetic field anywhere outside of the
solenoid. Note however that the vector potential can still be non-zero in the outer

region. After passing through the slits the electrons impinge on a screen.

Now if we consider the wavefunction of an electron which traveled around path 1
and path 2 to the same point on the screen, the probability to observe the electron

will be determined by the sum of the two wavefunctions. This can be written

iq [ XA iq [ 0% A
Yiot = V1 €xp ( path! ) + 19 exp ( path? (2-72)

h h
' dx - A ; .
exp <Zq fpathg X > {wl exp (W—XA) + wQ} (2.73)

h h

' dx - A '
~ exp <Zq fpath;b X > |:¢1 exp (%) +’l/}2:| s (274)

where we used the fact that the integral ¢ dx-A is exactly the magnetic flux ® through

the solenoid. The observable is the wavefunction squared, and due to the complex
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phase, the resulting probability of observing an electron on the screen will oscillate
as a function of the magnetic flux. It is very curious that even though the electron
never enters the region with non-zero magnetic field, the probability to observe an
electron depends on the magnetic field in the forbidden region. This is the celebrated
Aharonov-Bohm effect [2], also sometimes called the Ehrenberg-Siday effect [30]. This
effect beautifully illustrates the fact that two different paths can imprint non-trivial

topological phases on wavefunctions just by enclosing a region with magnetic flux.

2.5.2 Flux Density per Plaquette «

Now that we have an appreciation of the connection of topological properties to
the phase of the wavefunction, which in turn can be understood as a particular gauge
chosen for the system, let us return to the Harper Hamiltonian written as Eq. 2.67 and
understand how the phase relates to an effective magnetic field. As we saw previously,
we can write the phase as ¢, , = m¢, + n¢, where m and n are integers describing
the position in the two-dimensional lattice and ¢, , are constants. Then a phase will
be accumulated upon tunneling in the x direction. In this case the phase accumulated
can be shown as in the left of Fig. 2-9. We see that the total phase accumulated if
one atom tunnels around one full square, called a plaquette or a unit cell, is & = ¢,.
Note that the total accumulated phase only depends on the y dependence of the phase
accumulated upon tunneling in the x direction.

The flux density per plaquette is defined as & = ®/(2x). This parameter has a
strong connection to electrons with charge e in a square two-dimensional lattice of
side a in a magnetic field B [52]. Hofstadter defines this parameter as (in SI units)

a’B

= 7o (2.75)

This is precisely the magnetic flux enclosed by a square of side a divided by the
magnetic flux quantum of an electron. This shows that for a typical crystal with lattice
spacing of a few angstroms, magnetic fields on the order of a billion gauss is necessary

to achieve a of order unity. However, very recently researchers have devised a clever
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Figure 2-9: Phase accumulated upon tunneling and enclosed flux. (a) shows the phase
accumulated upon tunneling from site (m,n) to (m+1,n). (b) shows the total phase
accumulated after tunneling as (m,n) - (m,n+1) - (m+1,n+1) - (m+1,n) —
(m,n), which is ¢, for each such plaquette.

scheme by using boron nitride and a layer of graphene on top and slightly rotated
from each other to create an effectively much more widely spaced superlattice on the
order of tens of nanometers. This allowed the researchers to observe the signatures
of the Hofstadter butterfly through conductivity measurements in magnetic fields of
tens of tesla [26, 54]. Our proposal with ultracold atoms in optical lattices allow us
to achieve effectively high magnetic fields by making use of Raman transitions which

impart phases upon tunneling, which will be discussed in more detail in chapter 4.

2.5.3 Band Structure for a =1/2

As an example, here we we consider the specific case ¢, = —7 and ¢, = m which
leads to ¢ = m(—m + n) and therefore @ = 1/2. This is the particular type of phase
we initially study experimentally, but any other phase dependence and consequently
any other « is also realizable. Schematically the Hamiltonian can be represented as
the left part of Fig. 2-10.

The 2D square lattice can be divided into two sub-lattices, where an atom on one
sub-lattice accumulates a phase of 0 when it tunnels one site in the +x direction, and
an atom in the other sub-lattice accumulates a phase of m when it tunnels one site in

the +x direction. These two sub-lattices are represented by filled and unfilled circles
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Figure 2-10: Schematic of a two-dimensional lattice with phases. The left figure
is in real space, where the phase accumulated upon tunneling is represented. The
right figure is the reciprocal space representation, along with the first Brillouin zone
highlighted.

in the left of Fig. 2-10. With these two sub-lattices, we can define primitive vectors

and basis vectors [9].

We see that the primitive vectors are a; = a(x —y) and a; = a(X +y) where a is
the lattice spacing. The basis vectors are b; = 0 and by = ax. The reciprocal lattice
vectors are ¢; = (X —y) and ¢ = (X +y). The Brillouin zone is then a tilted
square at 8 = 45° and is shown in the right of Fig. 2-10. With this information, we

can calculate the band structure for this system.

The Hamiltonian in matrix form is,

i 0 J (eikya 4 e—ikya) 4 K (eikxa - e—ikwa)
J (efikya 4 eikya) + K (efikza . eikma> 0
(2.76)
0 2J cos(k,a) + 2i K sin(k,a
) (kya) (a) ) -
2J cos(kya) — 2i K sin(k,a) 0

The band structure then is

B (ke ky) = £2,/ 2 cos? (k,a) + K2 sin®(k,a). (2.78)
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Figure 2-11: Band structure of the o = 1/2 Harper Hamiltonian. It is a contour plot
of the lowest band structure, where we have two minima and two Dirac cones in the
Brilloin zone, the boundary which is given in red bold lines.

The lower branch is plotted in Fig. 2-11. We see that the band minima are at
(ky,ky) = (£7/(2a),0). Furthermore, the band has Dirac points at (k;, k,) =
(0, £7/(2a)) where the band gap between the two bands is zero.

Another approach to solving the same problem is to use the concept of magnetic
unit cells [121, 122, 78, 83]. This approach is well-suited to lattice systems which have
such non-trivial phases associated with tunneling between neighboring lattice sites.

Different phase dependencies corresponding to different a will give rise to different
band structures. For non-rational «, the system will not have any periodicity and
so a band description will not be appropriate, but practically any « realized will
have some spread and will include rational o and so a band description should be
adepquate even if one does not precisely achieve rational « [52]. Furthermore, if
interactions are added to the Harper Hamiltonian, even more fascinating states such
as fractional quantum Hall states are expected to arise [94, 48|. Therefore the Harper
Hamiltonian provides an exciting new frontier in the study of topological states of

matter, both with and without interactions.
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Chapter 3

Bragg Scattering as a Probe of

Ordering and Quantum Dynamics

This chapter elaborates on the work published as Bragg Scattering as a Probe of
Atomic Wave Functions and Quantum Phase Transitions in Optical Lattices, Phys.
Rev. Lett. 107, 175302 (2011) [77].

As discussed in the introduction, ultracold atomic gases are an ideal system in
which to study many-body phenomena because of the relative ease with which pa-
rameters in the model Hamiltonian can be tuned across a wide range [70, 13]. Such
studies have resulted in a better understanding of various phase transitions such as
the Berezinskii-Kosterlitz-Thouless transition in two dimensional systems [47], the
BEC-BCS crossover of interacting fermions [123] and the superfluid to Mott insulator
transition in a three-dimensional lattice [42]. One major goal of this field is to realize
spin phases such as antiferromagnetic states to explore quantum magnetism and its
interplay with high-temperature superconductivity [69].

Concurrently, there are numerous efforts to develop techniques to probe and un-
derstand the atomic ensemble once a new type of ordering is achieved. One recent
development is the realization of single-site resolution of atoms in two-dimensional
optical lattices [11, 90]. An alternative method to measure in situ spatial ordering
is the technique of Bragg scattering, often used in a condensed matter context to

determine crystal structure [9]. In particular, Bragg scattering with neutrons led to

49



the discovery of antiferromagnetism in the solid state [91] and with x-rays led to the
discovery of the double helix structure of DNA [111].

Bragg scattering relies on the interference of waves scattered coherently from an
ensemble of particles. In particular when atoms are arranged in a periodic pattern
in three spatial dimensions, there are certain angles of the incoming and reflected
beams where scattering is dramatically enhanced compared to other angles. This has
allowed crystallographers to use x-rays to determine the properties of crystals such as
lattice geometry at the angstrom scale. We have applied this technique to ultracold
atoms in a three-dimensional optical lattice by scattering near-infrared light where
the atoms are spaced almost 10* times farther apart than those in typical condensed
matter samples.

Pioneering works on Bragg scattering from cold atoms in optical lattices were
done by the Héansch and Phillips groups using laser cooled atoms [113, 12, 84, 112].
These lattices were sparsely populated and the atoms occupied several bands. In
this Letter, we have used Bragg scattering to study bosonic atoms cooled to quantum
degeneracy and placed in a three dimensional cubic lattice where the atoms occupy the
lowest band. In particular, we have measured directly the Heisenberg-limited width
of both position and momentum of the single ground state atomic wavefunction in an
optical lattice. Furthermore, there is a revival of Bragg scattered light some time after
releasing the atoms from the optical lattice, analogous to the optical Talbot effect.
This signal gives a direct measure of the coherence of the superfluid component in

the lattice.

3.1 Experimental Setup for Bragg Scattering

Laser cooling and evaporative cooling are used to achieve quantum degeneracy
of 8"Rb atoms in the |F = 2, mp = —2) state [100] which are loaded into a crossed
dipole trap whose trap frequencies range between 30 and 160 Hz. Once quantum
degeneracy is achieved, the optical lattices generated by a single 1064 nm fiber laser

are adiabatically ramped on. The lattices are calibrated by applying a 12.5 us pulse
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Figure 3-1: Bragg scattering schematic setup. The atoms are arranged in a cubic
lattice structure with spacing of 532 nm, and the probe beam is a laser at a wavelength
of 780 nm, close to one of the rubidium transition lines. The thin red lines indicate
the [1 0 0] planes of the lattice.

and measuring the Kapitza-Dirac diffraction of the atoms and comparing this to
theory. The system typically contains about 10° atoms, which leads to up to 5 atoms
per lattice site. The Bragg reflected light is detected on a CCD camera which images

along a direction which satisifies the Bragg condition.

The Bragg scattering condition for a three-dimensional cubic lattice is given by
2dsinf = n\, (3.1)

where d is the spacing between lattice planes, 6 is the angle between the incoming
beam and the lattice planes, n is any positive integer and A, is the wavelength of the
probe beam. For our experiment A, is 780 nm and d is 532 nm. With these conditions
the only allowed angle # is 47° where n is one and corresponds to Bragg reflection off
the [1 0 0] plane or any equivalent plane. A schematic of the probe beam with respect
to the atoms in the lattice is shown in Fig. 3-1. Since the full angular width of the
Bragg scattered light is small (measured to be 4.1 £ 0.4°), a precise alignment of the
incident beam had to be performed at the 1/min repetition rate of the experiment. In
contrast, in one and two dimensions, diffractive light scattering occurs at any angle

of incidence, as recently shown with atoms in a two-dimensional optical lattice [114].
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The probe beam at the Bragg angle had a typical power of 0.3 mW and beam
diameter of 300 pm, large enough to illuminate the entire atomic cloud, and was
detuned from the 5259, F = 2 — 52P; 5, I = 3 cycling transition of *'Rb by a few
natural linewidths, where the natural linewidth I' is 6 MHz. The detuning needs to
be sufficient so that the light traverses the entire atom cloud. Although the absolute
signal varies with the detuning, the conclusions reached in this Letter appear not
to depend strongly on the amplitude or sign of the detuning. The probe beam was
applied for a few microseconds, enough to obtain a signal but short enough to avoid
heating effects.

In the following subsection I describe how we characterized and determined the

optimum parameters for the Bragg beam.

3.1.1 Characterization of Bragg Scattering

In this subsection I elaborate on how we characterized our Bragg scattered light
so that we obtained the optimum signal to study atomic dynamics and many-body
effects.

A schematic of the optics setup for the Bragg beam is shown in the top of Fig. 3-2.
We use a guide mirror at the focal point of our telescope system, which adjusts the
incident angle of the Bragg probe upon our atom cloud while keeping the beam aligned
on the atoms at all angles. The exact angle required to achieve Bragg scattering
between the incident probe beam and the atoms in the lattice is determined by the
Bragg condition, but in reality due to the finite size of the sample, there is a range
of angles that will still lead to Bragg scattering. Thus we characterized the range of
angles that will give Bragg scattering and optimized our alignment to maximize our
signal. We accomplished this by scanning the guide mirror angles.

The Bragg scattered light as a function of the vertical and horizontal alignment of
the guide mirror are given in the bottom of Fig. 3-2. The mirror mount is a Thorlabs
KM200, which has 1/4”-80 adjuster screws with a resolution of 5 mrad (0.3°) per
revolution. If we use the full width half maximum (FWHM) of our signal with —500
counts being the background, the vertical FWHM is 1150° and the horizontal FWHM
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Figure 3-2: Bragg reflection as a function of the guiding mirror screw angle. Top:
schematic for the optics setup for our Bragg beam. Bottom: plots of Bragg scattered
light vs. the vertical (left) and horizontal (right) alignment of the guide mirror.
With the known screw specifications, these correspond to a FWHM angular extent
of 0.9° and 0.3° respectively. This agrees well with simple estimates of these values
as described in the text.

is 400° in adjuster screw angles, which correspond to 0.9° and 0.3° respectively in
true beam angles. Note the relationship 6 ~ \/2d, where 6 is the angular extent of
the cloud, A is the laser wavelength, and d is the spatial extent of the cloud [113].
From this we have 6y /0y = dy/dy, where 8y and 0y are the angular extent in the
horizontal and vertical directions respectively and dy and dy are the spatial extent in
the horizontal and vertical directions respectively. From our trap geometry, we expect
this to be dy/dy = 1/3, and experimentally we find that 65/6y, = 0.3°/0.9° = 1/3,
giving good agreement.

The detuning of the Bragg beam from the atomic resonance is an important
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parameter. If the beam is too close to resonance, then the atom cloud will be opaque
to the beam, and the entire cloud cannot coherently scatter at the same time and
simply lead to fluorescence as well as re-absorption by other atoms. On the other
hand, if the beam is detuned too far, the atoms will not interact sufficiently strongly
and will not lead to any scattering, coherent or incoherent. Thus the detuning must be
chosen far enough so that the Bragg beam penetrates the entire cloud, but not so far
that the atoms do not scatter much of the Bragg beam. We determined experimentally
that we see no Bragg scattering lower than 41" detuning, where I' = 6 MHz is the
natural linewidth of the rubidium D2 line. At 8I", we see Bragg reflection but little
fluorescence. Therefore the optimum initial setting for searching for Bragg reflection
is 61" detuning, so that we have fluorescence to guide the eye, but the Bragg signal is

observable if the Bragg condition is satisfied.

The optical power in the Bragg beam is another important parameter for much
the same reason as how the detuning is important if we are to obtain the strongest
signal in the shortest amount of time possible. For example, if the power is too low,
not enough photons are scattered. Thus we measured the Bragg reflection by varying
the power in the Bragg beam, and a representative response is shown in Fig. 3-3,
where the probe was on for 3 us and the detuning was 8I'. We see that the optimum

power for observing the maximum Bragg reflection in this case is at around 0.8 mW.

The duration that the Bragg probe is turned on is also a relevant parameter to
obtain the best signal. The longer the beam is on, the more Bragg scattering will
happen, until the atoms have scattered enough photons to be ejected from the ground
state of the lattice at which point all of the Bragg scattered light obtainable has been
obtained. This plateau behavior is shown in Fig. 3-4. We see that the optimum probe

time is at about 5 us where the Bragg signal reaches a limit.

We also determined the spatial extent of the Bragg scattered beam. This was done
by positioning a razor blade perpendicular to the beam path and partially blocking
the beam. This works because the Bragg reflection is expected to produce a fairly
well collimated beam. The schematic of the setup and data are shown in Fig. 3-5.

From the spatial extent of the beam, we can deduce the angular width of the beam
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Figure 3-3: Bragg scattering as a function of Bragg probe power. For this case of 8’
detuning, the maximum Bragg reflection is at about 0.8 mW.
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Figure 3-4: Bragg scattering as a function of Bragg probe time. For this case of 8I"
detuning, we see that the Bragg signal reaches a plateau at about 5 us.
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coming from the atom cloud. A fit of the data to an error function gives the width
to be 4.5 mm and using the fact that the imaging lens has f = 125 mm, the half
angular size of the beam is 2.0°. This is in rough agreement with our estimate given
by 6 ~ \/2d where X is the wavelength of the Bragg probe and d is the spatial extent
of the cloud [113]. If we take the cloud size to be 10 pym and the A = 780 nm, we
have 6 ~ 0.039 radians, or 2.2°, which is in rough agreement with our measurement.

With the optimum parameters that maximize our signal from the Bragg beam,

we have studied properties of atoms in a three-dimensional optical lattice.

3.2 Debye-Waller Factor and Bragg Scattering

As the lattice is increased the Bragg reflected signal increases as expected from
the crystal ordering and tighter localization of the atoms (Fig. 3-6). For this data,
the lattice in the z direction, which is also the direction of gravity, was ramped to
15ER, where Er = h?/(2mA?%) is the recoil energy, h is the Planck constant, m is the
mass of Rb and Az = 1064 nm is the lattice laser wavelength. Simultaneously the
lattices in the horizontal directions were ramped to various lattice depths. Note that
for our geometry the Bragg reflected intensity is insensitive to the lattice depth in
the z direction because Bragg scattering occurs only in the horizontal xy plane, as
we discuss later.

The scattering of light by a collection of atoms can be modeled in the following
way. In the limit of low probe intensity and low optical density of the cloud, the Born
approximation can be used. Then the scattering cross-section do/dS) can be written

as a product of one-dimensional Debye-Waller factors where

;l—g x Hexp {—(AT—;K? : (3.2)

where ¢ = x,y, z is the index for the three dimensions, K; is the magnitude of the
i-th component of K where K = k;, — ko is the difference between the incoming

probe beam and Bragg scattered wavevectors, and Ar; = /h/(mw;) is the harmonic
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Figure 3-5: Bragg reflection as a function of razor position. Top is the experimental
setup. Bottom is the Bragg scattered signal as a function of razor position at 8T
detuning. From the error function fit, the width is about 4.5 mm. With an imaging
lens of f = 125 mm, this corresponds to an angular extent of 2.0°. This is in rough
agreement with an estimate of 2.2°.
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Figure 3-6: Bragg scattering as a probe of the spatial wavefunction width. The
plot shows Bragg scattered intensity vs. lattice depth in units of the recoil energy.
The right axis gives the corresponding root-mean-square width of the wavefunction
squared. The solid line is a no-free-parameter curve given by the Debye-Waller factor.
Error bars are statistical.
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oscillator width where A is the reduced Planck constant and w; is the trap frequency
in the ¢-th direction, which depends on the optical lattice depth. The atoms are ap-
proximated as gaussian wavefunctions, which is a good approximation for sufficiently
large lattice depths. However, we find that even for low lattice depths where sig-
nificant superfluid components are expected, this approximation describes the Bragg

scattered signal well.

For our experimental conditions, K, = 0 because Bragg scattering occurs in the
horizontal xy plane. The lattice depths are controlled in a way such that they are the
same in both the z and y directions which leads to Ax = Ar, = Ar,. This simplifies

the scattering cross-section to

j—g x exp {—(M—W} | (3.3)

Thus Bragg scattering allows the study of the spatial extent of the atomic wavefunc-

tion.

The data can be compared to a no-free-parameter theoretical line, assuming non-
interacting atoms. The Bragg scattered intensity B(/NV) as a function of lattice depth

Np, can be written as

(3.4)

A2 K?
B(Np) o exp [— L } .

8m2V/N,
Both the harmonic oscillator width Az, which depends on the mass of the rubidium
atom and trap frequency, and change in wavevector K are known. This theoretical
line and the data is shown in Fig. 3-6 and we see good agreement. Thus the Bragg
scattered light as a function of lattice depth can be well-described by a model where
the atoms are assumed to be non-interacting gaussian atomic wavefunctions whose

spatial width is determined by the lattice depth.
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Figure 3-7: Bragg scattering as a probe of the momentum wavefunction width. The
plot shows Bragg scattered intensity vs. the free-expansion time of the atoms after
rapidly turning off the lattices from 15Fg. The decay in signal indicates a melting
of the crystal structure, or in other words spreading of the atomic wavepacket with a
given momentum uncertainty. The gray area is a no-free-parameter curve using the
Debye-Waller factor taking into account the probe pulse duration of 5 us. Error bars
are statistical.

3.3 Heisenberg-Limited Wavefunction Dynamics

Bragg scattering can also be used to probe the momentum width of the atomic
wavefunctions. This is done by measuring Bragg reflection as a function of the expan-
sion time of the atoms between a rapid lattice turn off and Bragg probe. In particular,
the two horizontal lattices were turned off from 15FR to OFER in less than 1 us and the
lattice in the z direction was kept at 15ER. Turning off the lattices allows the atomic
wavepackets in each individual lattice well to expand freely in those directions. The
data in Fig. 3-7 shows that the signal has decayed in 30 ps. The time it takes to
lose crystal structure is roughly the time it takes for the atoms to move over half of
a lattice distance.

The Debye-Waller factor can be used to determine more precisely how the Bragg
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reflection should behave as a function of the expansion time with no free parameters,
assuming gaussian atomic wavepackets. This makes use of the well-known time-
dependent behavior of a Heisenberg-limited gaussian wavepacket in free space which
can be written as

(Ap)°t?

m2

(Az(t))? = (Az)? + (3.5)

where Az and Ap are the uncertainty of position and momentum respectively at the
initial time and ¢ is the expansion time [87]. In a previous paper where the atoms were
not quantum degenerate, the momentum distribution was assumed to be determined
by temperature [113]. The results of our work show that the momentum uncertainty
is Heisenberg-limited, meaning (Ax)?(Ap)? = h?/4, so the Bragg scattered light B(t)

as a function of expansion time can be written as

B(t) o exp {_M} .

— (3.6)

This curve is shown in Fig. 3-7. The curve is broadened by taking into account the
probe beam duration which was 5 us and shows good agreement with data. This
analysis shows that by releasing the atoms from a lattice, we can directly probe the
in situ time evolution of the ground state atomic wavefunctions with spatial extent
of tens of nanometers. Furthermore, the atomic spatial and momentum widths are

seen to be Heisenberg-limited.

3.4 Superfluid Revivals of Bragg Scattering

Coherent many-body non-equilibrium dynamics can also be studied with Bragg
scattering after a sudden release of the atoms from the optical lattice in three dimen-
sions. At low lattice depths the Bragg scattered signal shows revivals as a function of
expansion time because of the rephasing of the superfluid atomic wavefunctions that
were originally confined in the lattices. Therefore, these revival signals should give a

measure of the superfluid order parameter. Furthermore, the revivals are analogous
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to the optical Talbot effect, whose atomic version was observed previously for a ther-
mal beam [16] and for a quantum degenerate gas in the temporal domain [28]. Here
we observe the atomic Talbot effect for an interacting quantum degenerate gas in a
three-dimensional optical lattice. Revivals can be seen in Fig. 3-8 and become less
pronounced as the lattice depth increases.

In particular, the characteristic revival time is determined by

h

~ R2(2k)2

2m

(3.7)

and is 123 ps for our parameters, where 2k corresponds to the wavevector of the
matter wave. However, with Bragg scattering we expect the first revival at half
that time of 61 us, which is what we observe in Fig. 3-8. This can be understood
by realizing that the atomic wavepackets need only travel half the lattice spacing to
constructively interfere with the wavepackets traveling in the opposite directions from

the nearest neighbor sites.

3.5 Superfluid to Mott Insulator Through Bragg

Scattering

The superfluid coherence as a function of lattice depth can be studied by com-
paring the Bragg reflected signal when the atoms are in the optical lattice to the
signal at the first revival. The revival signal as a function of lattice depth is shown
in Fig. 3-9, where the superfluid to Mott insulator transition is expected to occur
around 13Eg [42]. In a non-interacting system without any dissipation, one would
expect complete revivals. On the other hand, in the Mott insulating phase where
phase coherence has been lost, revivals should completely disappear, except for a
very weak signal at intermediate lattice depths due to particle-hole correlations [38].

To understand the measured revival decay, we have numerically studied the one-
dimensional Gross-Pitaevskii equation that assumes interacting matter waves at zero

temperature. The simulations show that interactions and finite size effects have neg-
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Figure 3-8: Revivals of Bragg scattered light. The plot shows the Bragg scattered
intensity vs. the expansion time in three dimensions for three different initial lattice
depths: 5FER (circles), 8FR (triangles), and 15FR (squares). Each data set is normal-
ized to the Bragg intensity at the initial time. Revivals at lower lattice depths indicate
coherence of the atoms across multiple lattice sites. The lines are phenomenological
fits to exponentially decaying sine waves. Different lattice depth data are offset for
clarity and the error bar is represenative. Inset is a solution to the one-dimensional
Gross-Pitaevskii equation with experimental parameters and an initial state of a chain
of gaussian wavefunctions, showing the revivals of the density distribution as a func-
tion of time. The white dotted line represents the revival time.
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Figure 3-9: Bragg scattering revival as a probe of superfluid coherence. Top: Bragg
scattered revival signal at 60 us vs. lattice depth. Bottom: The top plot normal-
ized to the Bragg scattered signal without expansion. We see a decrease in revival,
and consequently superfluid coherence, as the lattice is increased. Error bars are
statistical.

ligible effect on the decay of revivals. Empirically, randomizing the phase between
neighboring sites reduces the revival fraction. The loss of phase coherence across
lattice sites could be due to factors such as temperature, beyond Gross-Pitaevskii
equation effects, or technical factors. We have considered quantum depletion [118],
but the calculated depletion fraction at 5Eg is 2%, too low to account for the observed
decay. Future work should provide a more complete picture of the decay of revivals.

Note that Bragg scattered revivals are complementary to the observation of diffrac-
tion peaks in time-of-flight absorption images [42]. Both are based on matter-wave

interference due to superfluid coherence: revivals at short expansion times and diffrac-
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tion at long expansion times. Diffraction is a far-field effect only possible for finite
size samples, whereas revivals are a near-field bulk effect. The order of the revival
or the angular resolution of the diffraction peaks determine whether these techniques
probe short-range or long-range spatial coherence. Further studies are needed to de-
termine which technique is more sensitive to certain aspects of the superfluid to Mott
insulator transition.

In this work we have not focused on the effects of occupation number on Bragg
scattering. In principle the atomic wavefunctions are more extended for higher occu-
pation numbers, but this effect is small for our parameters. However, light scattering
at higher occupation numbers will have an inelastic component due to colliding atoms
or photoassociation [34]. The dependence of Bragg scattering on lattice depth sug-
gests that these effects are not dominant.

To examine this, we measured the Bragg reflection by varying the lattice ramp
up time, where the ramp up was up to 15F. The Bragg reflection was essentially
unaffected by the ramp up time down to 1 ms, where we do not necessarily expect the
lattice ramp up to be adiabatic and therefore could expect the occupation number of
the atoms to be randomly distributed. This shows that the Bragg reflection is simply
a manifestation of the underlying crystal ordering, and does not depend strongly on

the exact filling of the atoms in the optical lattice.

3.6 Conclusions

After Bragg scattering has been established as a probe for Mott insulators, it can
now be applied to study other types of quantum phases such as antiferromagnetic
ordering in both the occupation number and spin sectors [21, 93]. Although tem-
peratures required to realize spin ordering are on the order of tens to hundreds of
picokelvins, recent experimental results suggest a way forward to lower the tempera-
ture of a two-component Mott insulator [76].

To detect spin ordering such as the antiferromagnetic state, we need spin-dependent

Bragg scattering. Since spins in an ultracold atom context will be different hyperfine
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states, by choosing an appropriate wavelength of the Bragg beam one can scatter
selectively from a chosen state as well as scatter in a spin independent way [21]. Thus
Bragg scattering will allow experimentalists to probe both density and spin ordering
by varying the Bragg beam wavelength.

In conclusion, we have observed Bragg scattering of near-resonant photons from a
quantum degenerate Bose gas in a three-dimensional optical lattice. We have shown
that this technique probes not only the periodic structure of the atoms, but also the
spatial and momentum width of the localized atomic wavefunctions and the superfluid

coherence.
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Chapter 4

Raman-Assisted Tunneling and the

Harper Hamiltonian

Ultracold atoms in optical lattices have ushered in an era of unprecedented con-
trollability, tunability, and flexibility in the study of strongly-correlated many body
physics, both experimentally and theoretically [13, 70, 42]. Here we propose and ex-
perimentally study a scheme where one can experimentally realize the Harper Hamil-
tonian with ultracold atoms in optical lattices. The Harper Hamiltonian was de-
scribed in section 2.5, and is expected to give rise to a fractal band structure called
the Hofstadter butterfly [52], shown in Fig. 2-7, mimicing solids in extremely high
magnetic fields of order one billion gauss. Once interactions are included, the Harper
Hamiltonian is believed to give rise to fractional quantum Hall states, which would
allow the experimental study of fascinating topological phases of matter [94, 48].

We have emphasized how ultracold atomic systems can simulate the behavior of
electrons in solid state materials. However many interesting effects, such as the inte-
ger and fractional quantum Hall effects [107, 68], occur when a solid is placed in an
external magnetic field. Due to the charge neutrality of ultracold atoms, one cannot
directly apply a magnetic field to a cold atom system and expect a similar response
as an electron in a solid. Despite this seeming limitation, there are ways to create
effective magnetic fields which lead to Hamiltonians as if the atoms were moving in

a magnetic field with an effective charge. The method initially realized by experi-
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mentalists was to physically rotate the atomic cloud to genereate rotational velocity,
which then acted as an effective magnetic field giving rise to quantized vortices in bulk
Bose-Einstein condensates [74, 1]. The seminal work by Ian Spielman’s group [72]
realized effective magnetic fields by taking advantage of Raman transitions between
different hyperfine states, thus paving the way for optical realizations of effective

magnetic fields.

Other methods to generate artificial gauge fields have been proposed by Jaksch and
Zoller [59] and Gerbier and Dalibard [37], which involve Raman transitions but now
in an optical lattice geometry. Both schemes envision a two-component system, where
the lattices of the two components are offset by half a lattice spacing. The Raman
transitions induce tunneling between the two sub-lattices, in the process imprinting

a position-dependent phase.

Furthermore, there have been experimental realizations of a spatially-independent
phase by the Sengstock [101] and Spielman groups [60], as well as a staggered flux
arrangement by the Bloch group [3]. The Sengstock group realizes their phase by a
particular type of lattice phase modulation, the Spielman group uses Raman transi-
tions and radiofrequency magnetic fields, and the Bloch group uses a superlattice in
conjunction with Raman beams. Although all three results have led to new insights
into the nature of phases in ultracold atomic systems, they have limitations if one is
hoping to reach high enclosed fluxes per unit cell. In particular, the Sengstock and
Spielman approaches as it is only create a spatially-independent phase, which does
not give rise to any enclosed flux. In the Bloch approach, because the superlattice
can only create a staggered flux arrangement, no globally macroscopic enclosed flux
is possible. In all three of these cases, rectification of the fluxes to create a spatially
varying flux seem to be in principle possible, but the proposed schemes involve many
more laser beams and requires further complexity in the experimental arrangement.
In contrast, our proposed technique involves only two lattice laser beams and two
running wave Raman beams and a single spin state of bosonic 8 Rb, which is signifi-
cantly more simple than the other proposed schemes and should allow access to any

desired enclosed flux with simple modifications to the experimental geometry.
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Figure 4-1: Schematic of a tilted lattice and Raman beams to create artificial gauge
fields. The tilt induces an energy offset A between neighborin sites. Then Raman
beams that are frequency detuned by exactly A can cause transitions between local-
ized states in nearest neighbors. Furthermore, this tunneling can have a position-
dependent phase which gives rise to topologically non-trivial ground states.

Our proposal involves realizing the topologically non-trivial Harper Hamiltonian
by creating a two-dimensional optical lattice with a linear potential gradient along
one of the lattice directions. As it is, this tilted potential causes a suppression of
resonant tunneling along the tilt direction and only allows resonant tunneling along
the direction perpendicular to the tilt. Then on top of that two laser beams are
applied which are frequency detuned to precisely match the energy offset caused by
the linear potential. Then these two laser beams are able to induce a Raman transition
between a localized state in one lattice site to a nearest neighbor lattice site in the tilt
direction, effectively flattening out the tilt. Thus we call these two beams our Raman
beams. Crucially, in addition to restoring tunneling, these running wave Raman
beams can imprint a position-dependent phase on the atoms, which then results in
the Harper Hamiltonian. A schematic of this setup is shown in Fig. 4-1. Note that
the tilt can be created by any physical mechanism which creates a linear potential

gradient, including gravity and magnetic field gradients.
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In the rest of this chapter, I will describe in more detail the theoretical underpin-
nings of the scheme, as well as present experimental results which give indications
that we have successfully created the Harper Hamiltonian. However, thus far we have
been unable to observe direct signatures of the ground state of the Harper Hamilto-
nian, namely superfluid interference peaks corresponding to the band structure of the

Harper Hamiltonian.

4.1 Raman-Assisted Tunneling in the Perturba-
tive Limit

Modification of tunneling in an optical lattice system by dynamical modulation
of the lattice have been explored by other groups, notably the Arimondo and Tino
groups in Italy [71, 92, 56, 6, 5, 103]. Our proposed Raman beams are in the same
spirit, since two laser beams which induce a Raman transition can be thought of as

a travelling wave optical lattice.

In particular, two Raman lasers with wavevectors k; and k, and lattice depth Vi

can induce tunneling through a time-dependent potential

Vi (r,t) = Vg cos’(q - r — wt/2) (4.1)
1 2q-r —wt
_ y oot ‘21 r —wh) (4.2)
Vk i(2q-r—wt) —i(2q-r—wt)
:T(He q + e HPar=el)) (4.3)
V , ,
_ TK (1 + ez(ék-r—wt) + e—z(5k~r—wt)) : (44)

where w is the frequency detuning between the two Raman beams, 2q = 0k, dk =
k; — ky, and q = (k; — ks)/2.

Let us assume that the linear tilt exists in the x direction with an energy offset
between nearest neighbor lattice sites of A and that the detuning of the Raman beams

is exactly A. Then in the perturbative limit of Vx < A and in the rotating wave
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approximation, the laser-assisted tunneling term can be written

K = % / d*rw*(r — R)w(r — R — d,)e k" (4.5)
= % / d*rw* (r)w(r — d,)e Ok +R) (4.6)

= eiék'R% /erw*(r)w(r —d,)e kT (4.7)

= e_wk'R% /dmw*(x)w(x — d,)e k" (4.8)

X /da:w*(y)w(y)e_wkyy (4.9)

— Kje kR, (4.10)

where Ko = Vi /4 [ d*rw*(r)w(r—d,)e %" and w(r) = w(z)w(y) where w(z) is the
Wannier-Stark state due to the linear tilt in the x direction and w(y) is the Wannier
function. The position-dependent phase which gives rise to the Harper Hamiltonian is
embodied in the factor 0k-R. I plot the absolute value of the relevant overlap integrals
present in the Raman-assisted tunneling expression in Fig. 4-2. The overlap integrals
teach us something interesting about the requirements to achieve position-dependent

phases under realistic conditions.

We see that the overlap integral involving the Wannier-Stark states in the tilt
direction exhibits oscillatory behavior. In particular, we learn that there must be a
non-zero momentum transfer in the tilt direction for the Raman-assisted tunneling to
be strong enough to induce tunneling. This is an important point, since from phase
accumulation considerations, all one needs is momentum transfer in the direction
orthogonal to the tilt. Thus to get position-dependent phase which gives rise to non-
zero enclosed flux and a sizable tunneling amplitude, the Raman beams must transfer

momentum along both the direction of the tilt and orthogonal to it.

Note that Vi can be related to the two-photon Rabi frequency of the two Ra-
man lasers, which is also related to the one-photon Rabi frequency of the individual
lasers. Knowing the precise relationship between the lattice depth and two-photon

Rabi frequency is important when we calibrate the strength of our Raman beams by
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Figure 4-2: Overlap integrals for perturbative Raman coupling. The integral in the
x direction is done with Wannier-Stark states and the integral in the y direction is
done with Wannier states.

measuring the two-photon Rabi oscillation frequency between states with momentum

0 and k1 — k2.

The two-photon Rabi frequency Qg is given as [59]

QRgQRe

Q pu—
R2 25

(4.11)

where g, . are the one-photon Rabi frequency of each of the Raman beams and 9 is
the detuning between the Raman laser and the D1 and/or D2 lines. The one-photon
Rabi frequency is given by AQ) = eE/(e|z|g) where e is the electron charge, F is the
electric field, and e(e|z|g) = D is the electric dipole moment [35]. The two-photon
Rabi oscillation from the ground state |g) to an excited state |e), starting in |g) is
given by P,(t) = sin?(Qpgot/2). This means that the population transfer oscillates at

frequency Qgs.

Now, the moving lattice depth Vi is given by Vx = hQ2g,Qr./6 [80]. This can
be understood by recalling that the single traveling wave AC Stark shift is given as
hQ%g /(46). Interference of two laser beams leads to a multiplicative factor of 4. So,

combining all that, the two-photon Rabi oscillation frequency g, is related to the
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Raman lattice depth Vi as

Vi = 20po. (4.12)

Note that in general K is complex and so can have some non-zero phase in
addition to the spatially-dependent phase give by dk-R. But for a given configuration,

the phase is not spatially dependent so is effectively a global, constant phase.

4.1.1 Energy Hierarchy to Realize the Harper Hamiltonian

Certain inequalities must be satisfied in order to realize the Harper Hamiltonian.
First, the band gap w must be larger than any other energy scale so that the atoms
do not occupy higher orbital states. In particular, if the potential tilt A is equal
to the band gap, Wannier-Stark transitions, where states in the lowest band in one
lattice site become resonant with states in the first excited band in a neighboring site,
will be allowed to happen, therefore destroying the requirement to be in the lowest
band [45, 40]. Therefore the potential tilt A must be smaller than w.

A second requirement is for the bare tunneling energy J to be smaller than the
potential tilt A. If this condition is not satisfied, then resonant tunneling can be
stronger than the light-assisted tunneling and consequently position-dependent phase
upon tunneling will not manifest itself.

These two conditions lead to the following energy hierarchy,

J <AL w. (4.13)

For 8 Rb, the mass is 1.443 x 1072° kg [97], and for a lattice spaced apart 532
nm, the potential tilt due to gravity is 1137 Hz. Similar tilts can also be achieved
for atoms in the hyperfine state |F' = 2, mp = —2) with a magnetic field gradient of
around 15 G/cm, which is experimentally accessible. For lattice depths of 10ER, the
tunneling energy J is around 45 Hz and the band gap is around 10 kHz. Thus these

experimentally accessible parameters will satisfy the inequalities necessary to realize
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the Harper Hamiltonian.

4.2 Experimental Geometries to Realize Specific o

As shown in section 4.1, the factor dk - R gives rise to the non-trivial topologi-
cal phase in the Harper Hamiltonian. Therefore, controlling the angle between the
Raman beams and the two-dimensional lattice axes are crucial to realize the Harper
Hamiltonian with a particular a. First I explore the possible « for an arbitrary Ra-
man geometry in a square lattice, and then focus on a specific geometry which we

have implemented which should give rise to a = 1/2.

Let us consider a 2D geometry where the lattice and Raman beams are propagating
in a 2D plane as in Fig. 4-3. Let the lattice be square along the x and y axes and
have spacing a, so that the position vector is R = a(mZ +ng). Also, let the difference
in k vectors of the two Raman beams k; and ks be k = k; — ky so that if the angle
between ky and ks is 6 and ky = ko = 27/, then |k| =k = 47 /)| sin(6/2)|. Also, in
this lattice coordinates write k = k(cos ¢z + sin ¢3). The phase is

k-R=2r

sin <g> ' (m cos ¢ + nsin ) (4.14)

= mo, + ngby, (415)

where we defined ¢, = 27|sin(6/2)|cos ¢ and ¢, = 27|sin(f/2)|sin¢. Now assume
the tilt is in the x direction. Then the phase accumulated is as given in the left of
Fig. 4-3. We see that the flux accumulated along one unit cell is & = ¢,, which
corresponds to a magnetic flux per plaquette of a = ¢, /27. If the tilt is in the y
direction, then the phase accumulated is as given in the right of Fig. 4-3. We see that
the flux accumulated along one unit cell is ® = ¢, which corresponds to a magnetic
flux per plaquette of & = ¢,/2m. Thus we see that if the linear tilt is along a given
direction, the total phase accumulated after one full rotation around a plaquette is

given by the phase that depends on the perpendicular direction.
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Figure 4-3: Tilt and phase accumulated for general Raman geometry. Left figure is
tilt along the x direction, the right figure is tilt along the y direction. Note ¢, =
27| sin(#/2)| cos ¢ and ¢, = 27| sin(6/2)|sin ¢.

4.2.1 Experimental Geometry for o =1/2

Now consider the specific case where the Raman beams are copropagating along
the lattice beam directions so that k; = 27/Ax and ky = 27/\y. A schematic is

shown in Fig. 4-4. In this case, we have § = 90° and ¢ = —45°, so we get that
k-R=mn(m—n). (4.16)

With a linear tilt along the z direction, the total phase accumulated around one
plaquette is given by & = w. This phase then corresponds to a flux density per
plaquette of @ = 1/2 and will be the geometry I will be focusing on for most of the
rest of this chapter.

4.3 Raman-Assisted Tunneling in the Rotating Frame

In section 4.1 we showed the effective Raman-assisted tunneling and accompanying
position-dependent phase factor which gives rise to effective magnetic fields in the
perturbative regime. Here I derive a more general expression for the Raman-assisted
tunneling which include both the position-dependent phase and saturation of the

tunneling amplitude. The effective tunneling can be solved for more general cases by
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Figure 4-4: Experimental geometry for a = 1/2. The phase accumulated along the
tilt alternates between 0 and 7.

rewriting the original Hamiltonian into a time-independent Hamiltonian with effective

tunneling by using the rotating-wave approxiation [103].

If you have a two-dimensional system with a square 2D lattice Vy (z, y) with lattice
spacing a and a linear tilt with energy per lattice site of A in the = direction and an

additional term &£(z,y,t), we can write the Hamiltonian as

2

H—p”2”+py+V( )+A +E(a,y.t) (4.17)
72777/ 2m vay aaj xaya . .

This can be rewritten into a second quantized, time-dependent Hamiltonian of the

form [103]

H= ZAm|m,n)<m,n| - Jyz (|m,n+1)(m,n|+ c.c.)

m,n m,n

+ > mon)(m,n|E(, )| ) (m/ n], (4.18)

m,m/ n,n’
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Figure 4-5: Tilt and Wannier-Stark states. Sines and cosines are also depicted to get
a better sense for how the overlap integrals should behave.

where |m,n) = |m), ® |n),, |m), is the Wannier-Stark state centered at site m
in the = direction [45, 40], |n), is the Wannier state centered at site n in the y
direction, and J, is the bare tunneling in the y direction just as in the Bose-Hubbard
Hamiltonian. The Wannier-Stark states are shown in Fig. 4-5. From this Hamiltonian,
a unitary transformation can be performed which eliminates the time-dependence in

the rotating wave approximation.

The following identities are necessary to proceed and can be derived from the

definition of exponentiated operators and the properties of bra and ket operators.

(m|n) = 6mn

(
(Im){m[)" = |m){m| (4.

(

(

—ix|m)(m| jiz|m)(m| _

[J;).b

N DN

= o
~—" N N~

e [m) {m|

e S amnl _ 5 giatmonl _ ™ =iy (.
Our Raman beams create a potential of the form
E(x,y,t) = Qsin(2q - r — wt). (4.23)

Recall that 2q = k; — ks and for the specific case under consdieration k; = kx,

7



ko = ky and k = 27/\. The relevant matrix elements are then (m,n|sin(2q-r —
wt)|m + I,n + p). With a change of variables using the symmetry of the system, we

can write

(m,n|sin(2q - r —wt)|m +1,n+p) = (0,0|sin(2q - (r + Ry) —wit)|l,p), (4.24)

where R,,,, = max + nay. In general, we can write 2q - r = ko + kyy. We let
Omn =wt —2q - R, and ¢y, = 2q - Ry, .. Then we get the matrix element in the

x direction to be

(0,0]sin(2q - (r + Ry,) — wt)|l,0) = (0,0] sin(kyz + kyy — 1mn)|l, 0) (4.25)
= (0, 0| sin k,x cos kyy cos O, », (4.26)

+ sin k,x sin k,y sin 6,,, ,, (4.27)

+ cos kg sin kyy cos O, (4.28)

— cos kyx cos kyysinb,, ,|1,0)  (4.29)

= —sinb,,, (0] cos k,z|l). (4.30)

Note that we have used the approximations (0| sin k,z|l) = (0|sin k,y|0) = 0, due to
the asymmetry in the Wannier-Stark state and (0| cos k,y|0) = 1. We are primarily
interested in nearest neighbor tunneling, so we need only consider [ = 0,1. Then
we can approximate (0| cosk,x|0) = 1 and (0|cosk,z|1) = —2J,/A. A numerical

evaluation of these integrals shown in Fig. 4-6 support these approximations.

Similar analysis shows that the matrix element in the y direction becomes

(0,0]sin(2q - (r + Ry, ) — wt)]0, 1) = cos b, ,(0] sin k,y|1), (4.31)

where we used the approximations (0| sin k,2|0) = (0| cos k,y|1) = 0, and (0| cos k,x|0)
= 1. Now numerically for typical experimental parameters of lattice depth 10 g and
tilt per lattice site of 1 kHz, we find that (0| sin k,y|1) ~ 0.01. The off-diagonal term

in the y direction then will have a component with strength J, and 0.01€2cos 0,, ,,.
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Figure 4-6: Overlap integrals to calculate Raman-assisted tunneling. The integrals
involving = are done with Wannier-Stark states and the integrals involving y are done
with Wannier states. The calculations were done assuming a lattice depth of 10ER

in both x and y directions the linear tilt along = was assumed to be 1 kHz per lattice
site.

To be able to neglect this time-dependent term, we need J, > 0.01Q2. For lattice
depth 10ER, we have J, = 45 Hz and typically 2 ~ 1 kHz, so we marginally have
Jy > 0.01€2. In any case, in the perturbative regime of /A < 1, this time-dependent

term will be even less important.

So the relevant terms in the Hamiltonian become

(m,n|sin(2q - r — wt)|m,n) = —sin(wt — 2q - R,,,) (4.32)

2J,
(m,n|sin(2q - r — wt)lm+ 1,n) = N sin(wt —2q - Ry,0) (4.33)
(m,n|sin(2q - r — wt)|m,n + 1) = 0. (4.34)

So our Hamiltonian becomes

2Q)
H = Z(Am — Qsin b, ,)|m, n)(m, n| + Z { Afc sin O, n|m + 1, n)(m, n| + h.c.

=Y [Jylm,n+ 1)(m,n| +he]. (4.35)

m,n
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To get rid of our time-dependence, we can define a unitary transformation

U=exp|—i) {mwt + % cos em,n} lm, n) (m, n|] (4.36)

m,n

=exp |—1 Z Apyn|m,m) (m, n|] (4.37)

m,n

=" exp [~ il ] [m,n)(m, n] (4.38)

m,n

where A, ,, = mwt + % €08 U, Then in the rotating frame, the Hamiltonian trans-

forms as

aUu
H/ZUHU,—Z'FLUE. (4.39)
The time derivative term in the transformed Hamiltonian gets rid of the time depen-
dence in the diagonal term and replaces A with § ~ A —w, which becomes zero if you
drive the system on resonance, which is the situation we are considering. Since U is

diagonal, it has no effect on the diagonal terms of H. So we can focus our attention

on the off-diagonal terms of the transformation.

First we consider how the off-diagonal coupling in the x direction transform.

i , 207, .
U off—diagU, = { Z exXp [_ZAm’,n’] |m/7 n/><m/> n/|} A Sm 9m,n|m + 17 n> <mv n‘

| (4.40)

X { > exp [iA ] |m”,n”)(m",n”|} (4.41)

= exp [—iAmi1a) M+ 1, n)% Sin Oy, €XP [iA 0] (2, 1 (4.42)
= 2QAJQE $in O, e Amn=Amein) |y 41 n) (m, ., (4.43)

Keep in mind the complex conjugate term exists but behaves almost identically. The
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exponential term can be simplified as

. Q
¢ Amn=Ami1n) — oxpi | mwt + 7 €08 Omn — (m+ 1wt — 7 €08 9m+17n]
ot + 2 (coso Opriin)
=expi |—wt + —(co8 Oy — €08 Opi1 0
p i Fioo ; +1,
a o Q . [(kya\ . p kra
=expi |—wt —2—sin sin { O, —
P heo 2 Ty
_ efiwteiFsin(Hm,nsza/%
_ e—iwt Z Jp(r)eip(emyn—kma/Z)‘
P
where I' = —2{ sin (%%) and with the relationship ™" = 7 J, ()™’

this, the off-diagonal term in the x direction can be written

2QJ, 20T, eiwt—ibmn _ o=iwttidmn

A 21
« efiwt Z Jp(l-\)eip(wtftbm,nsza/m
p

(Am,n _Am+1,n) —

sin gzﬁm,nei

_ ilix (e7i0mn Jo(T') — e~ "omn=ikea Jo(T'))
_ %e—wm (Jo(T) + Jo(T))

= %e—i‘f’m’"%h@)

_ _mZJx - (%)

(4.44)
(4.45)

(4.46)

(4.47)

(4.48)

With

(4.49)

(4.50)

(4.51)
(4.52)
(4.53)

(4.54)

where we used k,a = 7, the identity Jo(z) + Jo(z) = 2/2Ji(z), and I’ = —2: and

neglected all terms which have time dependence.

Now let us consider the off-diagonal term corresponding to tunneling along the y
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direction which is the direction perpendicular to the tilt.
UHYs—iagU' = {Z exp [~ ] [, 1) (0, n'|} Jylm,n+1)(m.n|  (4.55)

X { Z exp [iNyr ] [m” ;0" ) (m" 0" } (4.56)

= —exp [~ Ay nt1] M, n + 1) J, exp [iA,, ] (M, | (4.57)
= —Jyei(Am’"_Am’"“)|m, n+ 1)(m,n|. (4.58)

The exponential term in this case becomes

¢Amn=Amni1) — expi [mwt + " €08 Uy, — Mmwt — — cos 0m7n+1] (4.59)
Ta

=expi %(COS O — COS Qm,nﬂ)} (4.60)

= expi —2% sin (%) sin (Hm,n - %)] (4.61)

_ oiTsin(Om,n—kya/2) (4.62)

_ Z J, (D) P Omn=hya/2), (4.63)

where we used the relationship e si¢ =>_, Jp(D)e 7 and I' = —2 sin (%J)

Then keeping only time independent terms, we have

— Jyeihmn=hmnt1) = _ Z ()P Omn=hya/2) (4.64)
= —J,Jo(I) (4.65)

Q . [k
=—Jy,Jo <—Za sin (%)) (4.66)

=—J,Jo <%> , (4.67)

where we used the fact kyja = 7 and Jy(z) = Jo(—z).

82



In the case of resonant driving, iw = A so ultimately we obtain

H = Z [—z’ewmvn,]x,]l (%) |m + 1,n)(m,n|+ h.c.]

m,n

- Z {JyJO (%) |m,n+ 1){(m,n|+ h.c.| . (4.68)

4.3.1 Perturbative and Exact Raman-Assisted Tunneling

So far we have considered two approaches to determining the laser-assisted tun-
neling. One was perturbative, giving rise to a Raman-assisted tunneling term which
depended linearly on the Raman lattice depth, and the second involved a more explicit

treatment of the time-dependent term which showed saturation in the magnitude.

Both approaches give rise to the position-dependent phase which is crucial in
realizing artificial gauge fields. However, the dependence of the magnitude of Raman-
assisted tunneling on the Raman lattice depth is different for the two approaches. The

two expressions are

Kpert = % /dxw*(x)w(x — d,)e ks (4.69)
X /dxw*(y)w(y)e_wkyy (4.70)

Vi
|Kexact‘ =J Jl (f) ‘ . (471)

We can numerically check how close the two magnitudes are. This is shown in Fig. 4-
7, where we had a lattice depth of 10ER and an energy tilt between adjacent sites of

1 kHz. We see good agreement between the two results for Vi /A < 2.

4.4 Amplitude and Phase Modulation Tunneling

It is possible to relate the mechanism of Raman-assisted tunneling to amplitude

and phase modulation of the underlying lattice.
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Figure 4-7: Perturbative and exact treatment of Raman-assisted tunneling. We as-
sumed a lattice depth of 10Eg and an energy tilt between adjacent sites of 1 kHz.
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In the case of amplitude modulation, in 1D the Hamiltonian can be written [103]

2 A
Hay = 5—;1 + Vi (z)(1 + asinwt) + et (4.72)

where « is the modulation fraction and is such that 0 < a < 1 and we write Vi (x) =
—Up/2cos(2kx) where k = 2w /a. In second quantized form in the Wannier-Stark

basis this Hamiltonian becomes

Hay = — Z An|n){n|+ Z [%wl(n + 1| cos 2kz|n) sinwt|n 4+ 1)(n| + h.c.
(4.73)

Then a unitary transformation similar to what I performed in the previous section

gives, on resonance at hw = A,

U,
Hiyy = Z [ 1 % (n + 1| cos 2kz|n)|n + 1)(n| + h.c.| . (4.74)
Thus we see that the bare Hamiltonian in the Wannier-Stark basis has time-dependent
off-diagonal terms but time-independent diagonal terms, which in the rotating wave
can be written as a Hamiltonian with effective time-independent tunneling. In partic-
ular, the result permits a unlimited increase in the effective tunneling amplitude if one

drives the modulation harder and harder in the frame where the lattice is stationary.

In the case of phase modulation, the lattice in the laboratory frame can be written
as V = —Uy/2cos[2k(x — xgsinwt)] where zy and w are the modulation amplitude
and frequency [75]. In a frame accelerating at exactly the phase modulation, the

Hamiltonian can be written [71, 92, 56, 103]

2

A
Hpy = Po Vi(x) + Brsinwt + —x, (4.75)
2m a

where we have the atomic mass m and 3 = maxow?. With this, in the Wannier-Stark

85



basis the Hamiltonian becomes

Hpy = — Zn(A + Basinwt)|n)(n| — Z [B{n + 1|z|n) sinwt|n + 1)(n] + h.c.].

n

(4.76)
Then in the appropriate rotating frame the Hamiltonian becomes
1A{n + 1|x|n a
Hing = {%h (%) n+1){(n| + h.c.| . (4.77)

n

Note that in this case the effective tunneling amplitude has a maximum possible value

limited by the maximum of the Bessel function as in Raman-assisted tunneling [92].

4.5 Experimental Studies of Amplitude Modula-
tion (AM) Tunneling

Due to the fundamentally related phenomenon of ampltidue modulation (AM)
tunneling and Raman-assisted tunneling, we have used amplitude modulation as a
testing ground to understand under what parameter regimes we observe Raman-
assisted tunneling. Experimentally, AM is much easier to implement since it can
be implemented in 1D and does not require any other laser beams aside from that
which is creating the lattice. AM tunneling has been experimentally explored by

other groups, most notably the group of Guglielmo Tino [6, 5, 103].

4.5.1 Experimental Sequence for AM Tunneling

For our initial experiments, we have used gravity as our linear potential tilt, which
should create an energy offset per lattice site with 532 nm spacing of 1137 Hz. Our
experimental sequence is as follows. Using standard optical and evaporative cooling
techniques [100] to achieve a Bose-Einstein condensate of a few hundred thousand
atoms, we transfer the atoms which are in the |F' = 1,mp = —1) hyperfine state into

a crossed optical dipole trap with trap frequencies in the range of 30 to 160 Hz. At
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that point, we adiabatically ramp up a 1D optical lattice in the direction of gravity
which is created by retroreflecting a single laser beam in about 200 ms. Then we
extinguished our crossed dipole traps in 200 ms (we also attempted to extinguish
even faster, but aside from center-of-mass motion perpendicular to the lattice, this
had no discernable effect on the results presented here). At this point, the atoms
are held only by an optical lattice pointing in the vertical direction. Confinement
in the vertical direction is provided by the optical lattice, and confinement in the
perpendicular direction is provided by the gaussian envelope of the lattice beam.
Furthermore, by extinguishing the crossed optical dipole traps, that automatically
creates a linear gradient with exactly the strength of gravity. The lowering of the
confinement in the perpendicular direction appears to help to reduce density and
inhomogeneous tilts due to curvature. At this point, we begin to modulate the lattice

depth and perform measurements.

4.5.2 In Situ Measurements of AM Tunneling

Our initial measurements were performed in situ, by taking absorption images of
the atoms in the optical lattice. When the potential gradient is present, the atoms are
unable to tunnel because they are off-resonant. Modulation of the lattice amplitude
reestablishes tunneling as described in a previous section. This AM tunneling then
allows the atom cloud to expand symmetrically in the vertical direction due to the
lack of confinement in addition to the lattice. Thus measuring the spatial width of
the atomic cloud after modulation gives an indication of the strength of tunneling.

The way we determined the resonance frequency of AM tunneling was to modulate
an originally static lattice with a depth of 10Eg for 501 cycles of modulation with
an amplitude of 2FER and repeat the experiment for various modulation frequencies.
This result is shown in the top left of Fig. 4-8. Fitting the data to a lorentzian,
we determine the resonance to be at 1133.5 & 0.5 Hz and the width to be 2.2 + 0.2
where the uncertainties indicate 95% confidence intervals (note this is equivalent to
two standard deviations). From the fact that g = 9.81 m/s?, we expect the resonance

at 1137 Hz. The discrepancy is primarily expected to be due to slight misalignment
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Figure 4-8: In situ amplitude modulation tunneling measurements. Top left: In situ
width of the atomic cloud as a function of AM frequency. Inset is a representative
atom distribution on and off resonance observed by absorption imaging. Top right:
Atom width as a function of lattice depth for modulation on resonance at 1133.5 Hz.
Curve is a plot of the square of the analytical expression for the tunneling matrix
element, whose close agreement with data suggests that the width increases as the
square of the tunneling matrix element. Bottom left: Atom width as a function of the
number of modulation cycles. The curve is a fit of the data to a parabola. Bottom
right: Atom width as a function of modulation amplitude. The curve is a fit of the
data to a parabola. Both bottom curves suggest the width increases as the square of
the tunneling matrix element, (a.Jt)2.
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of the laser beams.

We also studied the dependence of the in situ width on the lattice depth. Our
static lattice was at a depth of 10FR, on resonance at 1133.5 Hz and modulated for
501 cycles at an amplitude of 2FRr. This is shown in the top right of Fig. 4-8. 1
also plot the analytic expression for the square of resonant tunneling with only one
fitting parameter which determines the overall proportionality factor. The analytic
expression for resonant tunneling in a flat lattice with lattice depth V, is given as [29]

VL

4 _
BV R (4.78)

7

J:

We can write V;, = NpER, so in the figure I plot the square of this up to some

proportionality factor C', as
o(Vy) = CVE/26_4m. (4.79)

It is reasonable to expect the width to increase as a function of the value aJt where
t is the modulation time and a is the lattice spacing. The close agreement between
data and the analytic expression suggests that the width increases as the square of
the tunneling, o o< (aJt)?. The following two data sets are consistent with tunneling

increasing the size as (a.Jt)2.

We further studied the in situ width as a function of the number of modulation
cycles and modulation amplitude. These are plotted in the left bottom and right
bottom of Fig. 4-8, respectively. The data are well-fitted by parabolic curves, again

indicating that the width increases as the square of tunneling, or (aJt)?.

Note that in general, ballistic expansion goes linearly in time, and diffusive ex-
pansion goes as the square root of time. Thus the expansion behavior observed in
our measurements is not compatible with either, and could be due to heating effects.
Further study is needed to fully understand the expansion behavior of the atomic

cloud.
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Figure 4-9: Evolution of superfluid peaks under lattice amplitude modulation. These
data were taken at a lattice depth of 10ER and modulation amplitude of 2ER. Note
that the particular interference pattern depends on the particular phase of the mod-
ulation when the atoms are released from the lattice.

4.5.3 Time-of-Flight Measurements of AM Tunneling

We have further studied the effects of AM tunneling on the coherence properties
of the atomic cloud by the method of time-of-flight absorption imaging. In particular,
initially after the tilt is turned on, the atomic cloud does not exhibit sharp interference
peaks, but after typically about 100 ms of amplitude modulation on resonance, we
are able to restore superfluid peaks. The speed of restoring superfluid peaks depend
on the AM strength as well as the initial lattice depth. One particular sequence of
pictures is shown in Fig. 4-9. These data were taken at a lattice depth of 10ER and
modulation amplitude of 2FEg. Note that the particular interference pattern depends
on the particular phase of the modulation when the atoms are released from the
lattice, in agreement with the qualitative behavior seen by the Sengstock group in
their phase modulated phase imprinting scheme [101]. This indicates that when we
are able to establish superfluid coherence with Raman beams, the particular time-of-
flight interference pattern will depend on the exact phase relationship between the

two Raman beams, which could change from shot-to-shot.
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4.6 Experimental Observation of Raman-Assisted

Tunneling

After having determined the experimental parameter space where we can ob-
serve amplitude modulation tunneling, we implemented the Raman-assisted tunneling
scheme to create position-dependent phases. We analyzed in situ atomic dynamics,
whose expansion we found to become saturated and subsequently decreased in the
tunneling amplitude upon increasing our Raman laser intensities, just as predicted
from our theory of Raman-assisted tunneling. Although this gives an indication that
we have successfully created the Harper Hamiltonian, we have been unable to observe
the signature of the ground state of this Hamiltonian which should manifest itself in

a time-of-flight picture.

4.6.1 Experimental Sequence for Raman-Assisted Tunneling

Our experimental sequence is identical to the case of AM tunneling described
in subsection 4.5.1 up until we create the linear potential tilt by extinguishing the
crossed optical dipole trap, except for the fact that instead of a 1D lattice, now a
2D lattice is adiabatically ramped up in the same amount of time to 10Eg in both
directions (unless otherwise noted). Then the two Raman beams are turned on to a
value when combined yield an effective travelling Raman lattice depth of V. The
experimental schematic is shown on the left of Fig. 4-10.

The Raman lattice strengths were calibrated by performing two-photon Rabi os-
cillations between momentum states of k = 0 and k = k; — ky, where k; = 27/Ax
ko = 27/\y are the wavevectors of the two Raman beams. This oscillation can be
induced by detuning the two Raman beams by 2Fgr/h = 4056 Hz. This can be
understood from the fact that Raman beams impart a momentum on the atoms of
magnitude |k| = v/227/\. The corresponding kinetic energy of the recoiling atom is
given by h*k?/(2m) = 2Eg. The oscillation frequency € can be related to the Raman
lattice depth as Vg = 2€).

91



©
o

Gravit 9o

A. ® O Y ,E\8.5

< 8r

D e o o 1

£ i 7t
[ @
@ ® o .a=532nm T 65
AV AVAV, i

g 5.5}

o

)
Q
3
Q
=
o
o
o
3

5 L L L L
1000 1100 1200 1300 1400
Raman Detuning (Hz)

Figure 4-10: Raman-assisted tunneling setup and spectrum. Left: Schematic of our
experimental setup. The energy offset per lattice site A from gravity is 1137 Hz. The
lattice and Raman beams are all derived from a 1064 nm laser. Right: In situ atomic
cloud width as a function of detuning of the two Raman beams. The 2D lattices were
set at 10ER = 20.3 kHz and Vix = 2.3 kHz. The solid line is a fit to a lorentzian
curve.

4.6.2 In Situ Measurements of Raman-Assisted Tunneling

We performed in situ measurements just as in the amplitude modulation tunneling
experiment, but now with Raman beams to induce Raman-assisted tunneling. We
acquired data by taking absorption images along the direction perpendiclar to the
2D lattice. First we scanned the detuning between the two Raman beams and looked
for expansion of the atom cloud. The two-dimensional lattices were both 10Eg =
20.3 kHz with intensities in the Raman beams corresponding to Vi = 2.3 kHz and
held for 400 ms. This is shown in the right of Fig. 4-10. A lorentzian fit gives
the resonance to be at 1214 + 6 Hz and the width to be 54.6 £+ 15.9 Hz where the
uncertainties are again 95% confidence levels, equivalent to two standard deviations.
Recall gravity should give a resonance at 1137 Hz. The discrepancy can be attributed
to slight misalignment of the laser beams and could be larger than in the amplitude
modulation case because we have one additional lattice beam, as well as two Raman

beams.

Once the resonance was found, we fixed the detuning of the Raman beams at

1214 Hz and looked at the atomic cloud width for different modulation times at

92



14 7
w
— o 5f
€ ©
= v 4+
51 A 5
= g 3
g 8’ E. 2,
= wl
< g 1
R - - - 1 ’ll—' a
T' vy v Vv £
4 ‘ ‘ 1
0 200

400 600 800 1000 0 04 08 1.2 1.\6/ /A2 24 28 32 36
Modulation Time (ms)

Figure 4-11: Raman-assisted tunneling leads to linear expansion in time. The atomic
cloud expansion as a function of time is plotted on the left for different Raman
intensities. On the right, the slope of the lines on the left plot are shown as a function
of Raman strength, and is fit to the square of J;(Vx/A). The Raman detuning was
fixed to the resonance value of 1214 Hz.

different Raman intensities. From our theoretical discussions, we should expect to
see a saturation in the tunneling as the Raman depth increases and even turn over
so that beyond a certain point, stronger drives lead to less tunneling per time. The
data are plotted in Fig. 4-11. We see a linear expansion in the width as a function
of time for all Raman intensities. We would expect the slope of this expansion to be
proportional to the tunneling amplitude. On the right of the figure I plot the slopes
as a function of Raman lattice strength. The line is a fit to the square of the Bessel
function, J;(Vx/A). Recall that for amplitude modulation, we saw an expansion of
the atomic cloud going as the square of time, whereas now the expansion goes linearly

with time.

We further explored this Bessel function behavior by looking at the atomic cloud
width as a function of Raman strength for fixed modulation time to observe the
high Raman beam intensity regime. This is shown in Fig. 4-12, where we plot the
obtained data, along with a fit to the square of J;(Vx/A) for data up to Vi /A = 3.2
which is the value we had in Fig. 4-11. The fit agrees well with data up to the value
Vi /A = 3.2, but does not fit the data well for higher Raman strengths. This could be

due to inhomogeneities in the tilt A which gives rise to different resonance conditions
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Figure 4-12: Raman-assisted tunneling for high Raman beam intensities. The Raman
detuning was fixed to the resonance value of 1214 Hz, and the Raman laser strength
was varied. The tunneling restored by the running wave Raman beams qualitatively
behaves as a Bessel function as a function of the Raman strength. The line is a fit to
the square of J; (Vi /A) up to Vi /A = 3.2 where the data in Fig. 4-11.

at different parts of the atom cloud or high intensity effects not captured in our model.

Further studies are needed to understand the discrepancy at high Raman intensities.

Also, the expansion behavior as the square of the Bessel function is not quite well
understood, although similar behavior has been observed by the Arimondo group
using phase modulation [92]. They attribute this behavior partly to interaction effects,
where by varying the atom number they can change the expansion behavior. Although
we also varied our atom number by more than a factor of 5, we were unable to observe

any difference in the expansion dynamics.

We also examined the cloud width for a given Raman strength and duration as
a function of lattice depth in the direction of the tilt. This is shown in Fig. 4-13.
The Raman detuning was fixed on resonance at 1214 Hz, the Raman strengths were

such that Vi = 2.6 kHz and modulated for 400 ms. The curve is a fit of the analytic
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Figure 4-13: Raman-assisted tunneling as a function of the lattice depth. The curve
is proportional to the analytic expression for the bare tunneling [29]. Contrast this
with what we saw in the top right of Fig.4-8, where the width was proportional to
the square of the tunneling.
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expression for tunneling up to a proportionality constant, and is of the form [29]
o(Vp) = C’VL:Me_Q‘/m. (4.80)

This curve agrees well with the data. Compare this with the situation we saw with
amplitude modulation, where the width was increasing as the square of the bare
tunneling. Further studies will be needed to understand the cause of these different

expansion behaviors.

By scanning the detuning even further from the resonance at A, we have been
able to observe higher order tunneling processes. In particular we observed tunneling
at A/2 and possibly even lower fractions of A in the left of Fig. 4-14. This data was
taken with the lattice in the tilt direction at 7Eg, the perpendicular lattice at 10FER,
and the Raman intensity at 1.1 kHz for 400 ms. The A/2 resonance is clearly visible,
but the lower frequency resonances are not as sharp, possibly due to the fact that the
resonances are overlapping each other. A fit to three gaussians tells us that the left
most peak is centered at 348 + 37 Hz with a width of 62 4+ 41 Hz, the A/2 resonance
is centered at 560 £ 5 Hz with a width of 29 &5 Hz, and the A resonance is centered
at 1122 + 18 Hz with a width of 91 4+ 24 Hz. The uncertainties are 95% confidence

levels, equivalent to two standard deviations.

We also observed tunneling at a Raman detuning of 2A, which corresponds to
a two-photon Raman-assisted tunneling to next-nearest-neighbors. This is shown in
the right of Fig. 4-14, where the Raman beams were applied for 2 s but otherwise the
same experimental parameters as above. A fit to two gaussians tells us that the A
resonance is centered at 1137431 Hz with a width of 107431 Hz and the 2A resonance
is centered at 2262 + 46 Hz with a width of 171 £ 87 Hz. Such higher order tunneling
processes, especially the ability to engineer a system where the next-nearest-neighbor
tunneing dominates the nearest-neighbor tunneling may be particularly attractive to

study systems with long range interactions.
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Figure 4-14: Higher-order and Next-nearest-neighbor tunneling with Raman beams.
The left figure shows resonances at Raman detunings corresponding to A/2, which
are 4-photon processes to nearest neighbor sites, and even lower detunings. The
right figure shows a resonance at 2A which corresponds to 2-photon tunneling to
next-nearest-neighbor sites.

4.6.3 Time-of-Flight Measurements of Raman-Assisted Tun-

neling

Our successful observation of in situ Raman-assisted tunneling and the confirma-
tion of its Bessel function-like properties gives a strong indication that we have been
able to realize the Harper Hamiltonian. However, in order to confirm the creation
of the ground state of the Harper Hamiltonian, we need to be able to observe the
restored superfluid peaks whose spatial pattern should give an indication of the un-
derlying band structure which have been modified from the simple square lattice by

the position-dependent phase imprinted on the ground state wavefunction [82].

Unfortunately, we have so far been unable to observe the restoration of superfluid
peaks and the consequent novel band structure. Empirically, it appears that the cur-
vature of our laser beams may be preventing us from making the crucial observation.
Immediate future efforts will focus on understanding how we can establish superfluid
peaks in time-of-flight imaging. This should give the smoking-gun signature of the

ground state of the Harper Hamiltonian.
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4.7 Conclusions

The technique of Raman-assisted tunneling allows one to study the Harper Hamil-
tonian with arbitrary flux. In addition, by including a third optical lattice, we can
significantly increase the interaction energy between the atoms such that we are in
the highly non-trivial regime of strongly correlated matter with artificial magnetic
fields, which can give rise to the celebrated Laughlin states of fractional quantum
Hall state fame [68]. Another direction is to add more spin states so that one can
study spin Hall effects which is a part of the burgeoning field of spintronics. Thus
there is significant promise in terms of the types of physics one can explore if one is
able to successfully create the Harper Hamiltonian and its ground state.

We have strong indications that the Harper Hamiltonian has been created with
Raman-assisted tunneling, as indicated by our in situ data which shows that our
tunneling behaves as a Bessel function. Thus we can say that we have confirmed the
absolute value of the Raman-assisted tunneling in the Harper Hamiltonian. However,
so far we have been unable to prove that we have created the ground state of this
Hamiltonian in time-of-flight images. There are indications that curvature of our laser
beams prevents us from achieving the ground state. We are able to restore coherence
in amplitude modulation, and the in situ dynamics of the atomic cloud is different
from that with Raman-assisted tunneling. Thus understanding the in situ dynamics
in further detail may give us a better understanding of the requirements to obtain
the ground state of the Harper Hamiltonian. Once this hurdle is over come and we
are able to observe the ground state of the Harper Hamiltonian, a whole new field of
exploring topological phases of matter with ultracold atoms in optical lattices will be

realized.
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Chapter 5

Future Prospects

I have described in this thesis two different types of work. The Bragg scattering
work was geared toward the development of new measurement techniques to probe
new states of matter. On the other hand, the work on realizing the Harper Hamil-
tonian by employing Raman-assisted tunneling was geared toward directly creating
a new state of matter. Progress in the field of ultracold atoms will require both
development of probing techniques and creation of new matter, with both providing

inspiration to the other.

5.1 Prospects for Spin Hamiltonians

The Bragg scattering work was particularly geared towards its eventual use as a
probe of spin ordering, such as the antiferromagnetic state. The Heisenberg Hamil-
tonian which gives rise to magnetic states have an energy scale of J2/U, which is
on the order of 100 pK [15]. This is a very low energy scale, which at present only
adiabatic cooling techniques have any hope of directly reaching such low entropy
states [116, 76].

Spin gradient demagnetization cooling in its original form may very well take the
field down to the superexchange energy scale to realize spin Hamiltonians, but people,
including our group, have been thinking of other ways to access spin physics. One

notable success achieved by the group of Markus Greiner has been to use occupation
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number of atoms on lattice sites as pseudo-spins to realize antiferromagnetic order-
ing [93]. Another approach, developed by our group, has been to use spin-dependent
lattices. In particular, one can create a low entropy effectively single component Mott
insulator where the spin-dependent lattice creates a 3D lattice for two spin species
interweaved between each other, and then adiabatically merge the two lattices. Be-
cause the initial ‘dual Mott’ system can have very low entropy, as long as the merging
is adiabatic, one should be able to achieve very low entropy spin-mixed states in a
3D lattice, which should be able to exhibit magnetic phases of matter as dictated by
the Heisenberg Hamiltonian.

Thus the future of spin Hamiltonians in ultracold atomic systems will most likely
involve some combination of brute force cooling techniques to reach picoKelvin tem-
peratures and ingeneous schemes which allow the manifestation of spin physics at

higher energy scales.

5.2 Prospects for Topological Phases of Matter

Topological phases of matter are usually related to magnetic fields. In neutral
cold atom systems, various techniques have already allowed the creation of effec-
tive magnetic fields. These include mechanical rotation of bulk quantum degenerate
gases [74, 1] and Raman processes in bulk quantum degenerate gases [72, 110, 17].
These techniques have the limitation that high effective magnetic fields, or more
specifically high effective magnetic flux per relevant spatial scale, are not easily re-
alizable. Lattice systems offer a promising route to realizing such effectively high
fluxes.

In the last few years, the group of Klaus Sengstock has realized the creation and
control of artificial gauge fields in a lattice by lattice modulation [101], the group of
Ian Spielman has achieved similar results by using Raman transitions and radiofre-
quency magnetic fields [60], and the group of Immanuel Bloch has realized staggered
fluxes by using a superlattice and Raman-assisted tunneling. The first two techniques

are only able to create position-independent phases, and the last is only able to cre-
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ate staggered fluxes. It seems possible to extend all of these techniques to achieve
position-dependent, homogeneous fluxes, but the schemes are somewhat involved,
requiring more laser beams to address more transitions. If we are able to prove ex-
perimentally that we can create the ground state of the Harper Hamiltonian which
has non-trivial topological properties, it will be a much simpler way to realize the
same physics that the other groups are aiming for with a more complicated setup.

Once the Harper Hailtonian is realized, one can add interactions to the system
by using, for example, a third optical lattice, which should allow the study of frac-
tional quantum Hall states [94, 48] which manifest interesting topological properties
of matter.

Thus the general trend in the quest to realize artificial gauge fields and topological
phases of matter has been to add more and more laser beams, but a technique such

as ours which requires a relatively simple set up could hold the key to major progress

in the field.

5.3 Prospects for Quantum Simulation

The prospects for the program of quantum simulation seem bright [18]. Tt seems
that every few months a new type of system is realized in the laboratory, ranging
from graphene-like honeycomb lattice structures exhibiting Dirac points [104], ana-
logues of superconducting weak links with Bose-Einstein condensates in novel trap
geometries [117], and ‘Higgs’ type excitations in the superfluid to Mott insulator tran-
sition [31]. As can be seen in these examples, results from the field of ultracold atoms
is becoming strongly connected to concepts and ideas from condensed matter physics,
and even high energy physics.

Furthermore, different groups are also pushing the boundaries of ‘traditional’
ultracold atoms. By traditional, I mean alkali-metal atoms which have one va-
lence electron. Various groups have successfully created quantum degenerate gases
of two-valence-electron atoms such as calcium [66] strontium [98, 25], and ytter-

bium [102]. Even more exotic atoms have been cooled to quantum degeneracy, such
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as chromium [43], erbium [4] and dysprosium [73], which all have large magnetic
dipole moments and therefore can give rise to anisotropic dipolar interactions. All
these different atomic systems will be able to explore a parameter space that alkali-
metal atoms have not yet been able to access thus far.

Numerous developments on all fronts of quantum simulation will certainly lead
to many new insights and discoveries of nature, most likely with implications be-
yond the field of ultracold atomic physics and further enriching and illuminating our

understanding of condensed matter systems and beyond.
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Appendix A

Optical Lattice Calibration Using
Kapitza-Dirac Scattering

In this appendix, I describe the method we use to calibrate our optical lattice,

namely Kapitza-Dirac scattering [46].

The basic procedure is to pulse the optical lattice beams on for a very short time.
The short pulse then transfers momentum to the atoms, and then in a time-of-flight
absorption picture observe the spatial distribution of atoms. In particular the atoms
are scattered into discrete momentum states with probability given by how intense
the pulse was. Therefore by knowing how much optical power was in the pulses, and
measuring the population distribution of atoms in the different momentum states,

one can determine the resulting lattice depth created by the pulse.

The electric field E produced by two counter-propagating plane waves is given by

E(z,t) = Eof(t)sin(kz — wt)é + Eof(t) sin(kz + wt)é (A.1)

= 2Fy f(t) sin(kz) cos(wt)é, (A.2)

where Fj is the electric field amplitude, k is the wavevector, w is the angular frequency,

¢ is the polarization vector, and f(t¢) is the temporal envelope function.

Such a field will produce an AC Stark shift, leading to a standing wave potential
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U(z,t) given by

2

U(z,t) = %ﬁ(t} sin?(kz), (A.3)

where wg is the single-photon Rabi frequency, given by wr = pFy/h, where p =
(eler|g) - € is the electric dipole matrix element connecting the ground (|g)) and
excited (|e)) states of the atom, and ¢ is the detuning. We may write

her

Up = 5 (A.4)

If the optical lattice is turned on for a very short time (i.e. 7 < 1/w,, where w; is the

recoil energy), the initial atomic wavefunction |¥o) will evolve in a way given by

l

o) :exp{ . / dt’U(z,t’)} 1To) (A.5)
_ G—Q—%wr{reg%w%{frcos(%z”q]o), (AG)
where 7 = [dt'f?(¢') and the integral is over the interaction duration. This short

time condition is called the Raman-Nath regime. For KD, our pulse is a constant

square pulse, so we let f(¢') = 1. We then make use of a Bessel function identity

glocosB — Z i”Jn(&)ei"ﬁ (A.7)
to get
L, > 2 ‘
W) = e meRm S im, (%) e72nk= | ) (A.8)

We may let |¥y) = |g)|0), where the first state represents the internal state of the

atoms and the second state represents the external state of the atoms. Note that we
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can write

2 =" |p + 2nhk) (P,
p/
which can be used to get

(A.9)
> 0y = Y |2nhk). (A.10)
This can be inserted into Eq. A.8 to get
, % 2
|U) = e 3WRT Z i"Jy, (MQ—P:;-) |g)|2nhk). (A.11)

It is now easy to see that the probability that a state with momentum 2/Nhk will be
populated is given by

2
g — “RT

(A.12)
25

Py = J%(0) , N =0,41,42, ..., where

(A.13)

Our KD fit program takes as input the intensity of the KD peaks, which is pro-

portional to the probability Py of atoms being in a particular momentum state, and

the photodiode voltage V' which is monitoring the power given to a particular lattice
beam. Thus we may rewrite Eq. A.12 as
Py = Jy(aV),

(A.14)
where 6 = V. The KD program determines the proportionality constant «, where
la] =rad/V. Then we can write

2
w
pum— _R.

aV X s

BO |

(A.15)
If we assume f(¢) = 1 over the pulse duration (i.e. a square pulse), 7 simply becomes
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the pulse duration and is typically 12.5 us with a rise and decay time of 5 ns.

Now, note that we can rewrite Eq. A.4 to get

2
—_ = —. Al
5 =7 (A.16)
From atomic physics we know that
Up x wi x I oc PV, (A.17)

where [ is the intensity of the laser beam, P is the power incident on the photodiode,

and V' is the voltage induced in the photodiode. From this we can write

where [y] =J/V and is a proportionality constant. We can insert this into Eq. A.16

to get
Wi _ 2V (A.19)
§ h '
Now we can insert this into Eq. A.15 to get
1% 2h.
aVz%X%é’y:—a. (A.20)

Now, we want recoil/V, which we call 3, for calibration purposes. We have [E,] =
J/recoil, where E, = hw;, so
2h 1 2ha 1 2

g, - 2 — ) A.21
b T ><Er T thr TWy ( )

We can write w, in terms of the wavelength A\ of the lattice beam to make it easier
for plug and chug. Recall Aw, = h?k?/2m and k = 27/ where m is the mass of the
atom, so w, = (27 /A)?/2m. We can rewrite Eq. A.21 as
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2
_ 42”” x (%) . (A.22)
T ™
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Appendix B

Code to Construct Wannier

Functions

This appendix provides a copy of a MATLAB® code to construct maximally
localized Wannier functions for any lattice spacing and lattice depth that the user
can specify. In the process the band structure can also be extracted. A sample output

of this code for lattice spaing 532 nm and lattice depth 3ER is provided in Fig. B-1.

% Determine the Wannier function

% Written by Hirokazu Miyake

» Date: 4/21/2013

h

% lambda = lattice laser wavelength

% 1 = number of Fourier components to take

% Er = recoil energy

% V = VO/Er lattice depth in units of recoil energy
% q = 9/k = g*a/pi where a = lattice spacing

clear;

lambda = 1064E-9; hlattice laser wavelength

dxn = 0.01;

x = lambda/2*(-10:dxn:10); %real space coordinates

dx = dxn*lambda/2; hdiscretization of space

x1 = 0; %hcenter position of Wannier function

V= 3; Jlattice depth in units of the recoil energy
1 =25;

wavevec = 2x*pi/lambda; Jwavevector
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dn = 500;
gend = 1;
dq = 2*qgend/dn;

H = zeros(2*x1+1);

q = —gend:dq:qgend;

nq = length(q);

Eeig = zeros(1,dn+1);
%hVeig is c_j’s vs q

Veig = zeros(2x1+1,dn+1);

hconstruct the Hamiltonian and find eigenvalues and eigenvectors
%s is a sum over q
for s = 1:dn;
for n = 1:(2*1 + 1)
for m = 1:(2*1 + 1)
if n ==
H(n,m) = (2x(-1-1+n) + q(s))."2 + V/2;
elseif abs(n - m) ==
H(n,m) = -V/4;
else
H(n,m) = 0;
end
end
end
[(W,D] = eig(H);
Eeig(s) = D(1,1);
for t = 1:(2*1+1)
Veig(t,s) = W(t,1);
end
end

nx = length(x);

wanl = zeros(1,nx); %initialize wannier function
u=zeros(nqg,nx) ; %u is q vs x
phi=zeros(ng,nx) ;

hcreate u_q(x)
% loop over q
for qi = 1:(nqg-1)
for xi = 1:nx
%sum over j’s from -L to L
for k = 1:(2%1 + 1)

u(qi,xi) = Veig(k,qi)*exp(lix2*wavevec*x(xi)*(-1-1+k))...

+ u(qi,xi);
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end
phi(qgi,xi) = exp(li*q(qi)*wavevec* x(xi)).*u(qi,xi);
end
end

hcreate phi_q(x)
Jnote that the phase has to be this specific one to create
Jthe maximally localized Wannier function
for qi = 1:(nqg-1)

phi(qi,:) = exp(-lixangle(phi(qi,x==0)))*phi(qi,:);
end

hcreate Wannier function w(x-x0)
%loop over x
for xi = 1:nx
%sum over q
for qi = 1:(ng-1)
wanl(xi) = phi(qi,xi)*exp(-1i*q(qi)*wavevec*xl) + wanl(xi);
end
end

%normalize Wannier function
wannorml = dx*sum(abs(wanl)."2);
wanl = wanl/sqrt(wannorml) ;

%plot Wannier function

figure(1);

plot(x/(lambda/2) ,real(wanl),’-k’,’linewidth’,3);
title (’Wannier Function’);

xlabel(’x/a’);

ylabel Cw(x)’);
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Figure B-1: Wannier function for lattice spacing 532 nm and lattice depth 3Fg. The
r-axis is in units of the lattice spacing.
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Appendix C

Bragg Scattering as a Probe of
Atomic Wave Functions and
Quantum Phase Transitions in

Optical Lattices

This appendix contains a reprint of Ref. [77]: Hirokazu Miyake, Georgios A.
Siviloglou, Graciana Puentes, David E. Pritchard, Wolfgang Ketterle, and David M.
Weld, Bragg Scattering as a Probe of Atomic Wave Functions and Quantum Phase

Transitions in Optical Lattices, Phys. Rev. Lett. 107, 175302 (2011).
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Bragg Scattering as a Probe of Atomic Wave Functions and Quantum Phase
Transitions in Optical Lattices

Hirokazu Miyake, Georgios A. Siviloglou, Graciana Puentes, David E. Pritchard, Wolfgang Ketterle, and David M. Weld™

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics,
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We have observed Bragg scattering of photons from quantum degenerate ®’Rb atoms in a three-
dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and
atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence
of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The
decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid

coherence.

DOI: 10.1103/PhysRevLett.107.175302

Ultracold atomic gases are an ideal system in which
to study many-body phenomena because of the relative
ease with which parameters in the model Hamiltonian can
be tuned across a wide range [1,2]. Such studies have
resulted in a better understanding of various phase
transitions such as the Berezinskii-Kosterlitz-Thouless
transition in two-dimensional systems [3], the BEC-BCS
crossover of interacting fermions [4], and the superfluid
to Mott insulator transition in a three-dimensional lattice
[5]. One major goal of this field is to realize spin phases
such as antiferromagnetic states to explore quantum
magnetism and its interplay with high-temperature super-
conductivity [6].

Concurrently, there are numerous efforts to develop
techniques to probe and understand the atomic ensemble
once a new type of ordering is achieved. One recent
development is the realization of single-site resolution of
atoms in two-dimensional optical lattices [7,8]. An alter-
native method to measure in sifu spatial ordering is the
technique of Bragg scattering, often used in a condensed
matter context to determine crystal structure [9]. In par-
ticular, Bragg scattering with neutrons led to the discovery
of antiferromagnetism in the solid state [10] and with
x rays led to the discovery of the double helix structure
of DNA [11].

Bragg scattering relies on the interference of waves
scattered coherently from an ensemble of particles. In
particular, when atoms are arranged in a periodic pattern
in three spatial dimensions, there are certain angles of the
incoming and reflected beams where scattering is dra-
matically enhanced compared to other angles. This has
allowed crystallographers to use x rays to determine
the properties of crystals such as lattice geometry at the
angstrom scale. We have applied this technique to ultra-
cold atoms in a three-dimensional optical lattice by scat-
tering near-infrared light where the atoms are spaced
almost 10* times farther apart than those in typical con-
densed matter samples.

0031-9007/11/107(17)/175302(5)
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Pioneering works on Bragg scattering from cold atoms
in optical lattices were done by the Hidnsch and Phillips
groups by using laser cooled atoms [12]. These lattices
were sparsely populated, and the atoms occupied several
bands. In this Letter, we have used Bragg scattering to
study bosonic atoms cooled to quantum degeneracy and
placed in a three-dimensional cubic lattice where the atoms
occupy the lowest band. In particular, we have measured
directly the Heisenberg-limited width of both the position
and momentum of the single ground state atomic wave
function in an optical lattice. Furthermore, there is a revival
of Bragg scattered light some time after releasing the
atoms from the optical lattice, analogous to the optical
Talbot effect. This signal gives a direct measure of the
coherence of the superfluid component in the lattice.

The experimental apparatus has been described in detail
elsewhere [13]. Briefly, laser cooling and evaporative cool-
ing are used to achieve quantum degeneracy of 8’Rb atoms
in the |F = 2, my = —2) state which are loaded into a
crossed dipole trap whose trap frequencies range between
30 and 160 Hz. Once quantum degeneracy is achieved, the
optical lattices generated by a single 1064 nm fiber laser
are adiabatically ramped on. The lattices are calibrated by
applying a 12.5 us pulse and measuring the Kapitza-Dirac
diffraction of the atoms and comparing this to theory. The
system typically contains about 10° atoms, which leads to
up to 5 atoms per lattice site. The Bragg reflected light is
detected on a CCD camera which images along a direction
which satisfies the Bragg condition.

The Bragg scattering condition for a three-dimensional
cubic lattice is given by 2dsin = nA,, where d is the
spacing between lattice planes, 6 is the angle between the
incoming beam and the lattice planes, n is any positive
integer, and A, is the wavelength of the probe beam. For
our experiment A, is 780 nm and d is 532 nm. With these
conditions, the only allowed angle 6 is 47° where n is one
and corresponds to Bragg reflection off the [1 0 0] plane or
any equivalent plane. A schematic of the probe beam with

© 2011 American Physical Society
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respect to the atoms is shown in the inset in Fig. 1. Since
the full angular width of the Bragg scattered light is small
(measured to be 4.1 = 0.4°), a precise alignment of the
incident beam had to be performed at the 1/ min repetition
rate of the experiment. In contrast, in one and two dimen-
sions, diffractive light scattering occurs at any angle of
incidence, as recently shown with atoms in a two-
dimensional optical lattice [14].

The probe beam at the Bragg angle had a typical power
of 0.3 mW and beam diameter of 300 wm, large enough to
illuminate the entire atomic cloud, and was detuned from
the 528, ,,, F =2 — 5°P;, F' = 3 cycling transition of
8'Rb by a few natural linewidths, where the natural line-
width I' is 6 MHz. The detuning needs to be sufficient so
that the light traverses the entire atom cloud. Although the
absolute signal varies with the detuning, the conclusions
reached in this Letter appear not to depend strongly on the
amplitude or sign of the detuning. The probe beam was
applied for a few microseconds, enough to obtain a signal
but short enough to avoid heating effects.

As the lattice is increased, the Bragg reflected signal
increases as expected from the crystal ordering and tighter
localization of the atoms (Fig. 1). For these data, the lattice
in the z direction, which is also the direction of gravity, was
ramped to 15Eg, where Eg = h*/(2mA3?) is the recoil
energy, h is the Planck constant, m is the mass of 8’Rb,
and A; = 1064 nm is the lattice laser wavelength.
Simultaneously, the lattices in the horizontal directions
were ramped to various lattice depths. Note that for our
geometry the Bragg reflected intensity is insensitive to
the lattice depth in the z direction, because Bragg scat-
tering occurs only in the horizontal xy plane, as we
discuss later.

Bragg Intensity (arb.)
Wave function Width (nm)

0 2 4 6 8 10 12 14 16
Lattice Depth (ER)

FIG. 1 (color online). Bragg scattering as a probe of the spatial
wave function width. Bragg scattered intensity vs lattice depth in
units of the recoil energy. The right axis gives the corresponding
root-mean-square width of the wave function squared. The solid
line is a no-free-parameter curve given by the Debye-Waller
factor. Error bars are statistical. The inset is a schematic of the
setup for Bragg scattering.

The scattering of light by a collection of atoms can be
modeled in the following way. In the limit of low probe
intensity and low optical density of the cloud, the Born
approximation can be used. Then the scattering cross
section do/d{) can be written as a product of one-
dimensional Debye-Waller factors where do/d{) «
[T expl—(Ar;)?K?/2], where i = x,y, z is the index for
the three dimensions, K; is the magnitude of the ith com-
ponent of K, where K = k;, — k,, is the difference be-
tween the incoming probe beam and Bragg scattered wave

vectors, and Ar; = y/i/(mw;) is the harmonic oscillator
width, where 7 is the reduced Planck constant and w; is the
trap frequency in the ith direction, which depends on the
optical lattice depth. The atoms are approximated as
Gaussian wave functions, which is a good approximation
for sufficiently large lattice depths. However, we find that,
even for low lattice depths where significant superfluid
components are expected, this approximation describes
the Bragg scattered signal well.

For our experimental conditions, K, = 0 because Bragg
scattering occurs in the horizontal xy plane. The lattice
depths are controlled in a way such that they are the same
in both the x and y directions which leads to Ax = Ar, =
Ar,. This simplifies the scattering cross section to
do/dQ o« exp[—(Ax)?K?/2]. Thus Bragg scattering al-
lows the study of the spatial extent of the atomic wave
function.

The data can be compared to a no-free-parameter theo-
retical line, assuming noninteracting atoms. The Bragg
scattered intensity B(N;) as a function of lattice depth
N, is proportional to exp[—A2K?/(87%/N.)]. Both the
harmonic oscillator width Ax, which depends on the mass
of the rubidium atom and trap frequency, and change in
wave vector K are known. This theoretical line and the data
are shown in Fig. 1, and we see good agreement. Thus the
Bragg scattered light as a function of lattice depth can be
well described by a model where the atoms are assumed to
be noninteracting Gaussian atomic wave functions whose
spatial width is determined by the lattice depth.

Bragg scattering can also be used to probe the momen-
tum width of the atomic wave functions. This is done by
measuring Bragg reflection as a function of the expansion
time of the atoms between a rapid lattice turn-off and
Bragg probe. In particular, the two horizontal lattices
were turned off from 15ER to OER in less than 1 us, and
the lattice in the z direction was kept at 15ER. Turning off
the lattices allows the atomic wave packets in each indi-
vidual lattice well to expand freely in those directions. The
data in Fig. 2 show that the signal has decayed in 30 ws.
The time it takes to lose crystal structure is roughly the
time it takes for the atoms to move over half of a lattice
distance.

The Debye-Waller factor can be used to determine more
precisely how the Bragg reflection should behave as a
function of the expansion time with no free parameters,
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FIG. 2. Bragg scattering as a probe of the momentum wave
function width. Bragg scattered intensity vs the free-expansion
time of the atoms after rapidly turning off the lattices from 15Ey.
The decay in signal indicates a melting of the crystal structure or,
in other words, spreading of the atomic wave packet with a given
momentum uncertainty. The gray area is a no-free-parameter
curve using the Debye-Waller factor taking into account the
probe pulse duration of 5 ws. Error bars are statistical.

assuming Gaussian atomic wave packets. This makes
use of the well-known time-dependent behavior of a
Heisenberg-limited Gaussian wave packet in free space
which can be written as [Ax(1)]> = (Ax)*> + (Ap)*1?/m?,
where Ax and Ap are the uncertainty of position and
momentum, respectively, at the initial time and ¢ is the
expansion time [15]. In a previous paper where the atoms
were not quantum degenerate, the momentum distribution
was assumed to be determined by temperature [12]. The
results in this Letter show that the momentum uncertainty
is Heisenberg limited, meaning (Ax)?(A p)> = h*/4, so the
Bragg scattered light B(z) as a function of expansion time
decays as exp[—(Ap)>K?t?/(2m?)]. This curve is also
shown in Fig. 2. The curve is broadened by taking into
account the probe beam duration, which was 5 us and
shows good agreement with the data. This analysis shows
that, by releasing the atoms from a lattice, we can directly
probe the in situ time evolution of the ground state atomic
wave functions with a spatial extent of tens of nanometers.
Furthermore, the atomic spatial and momentum widths are
seen to be Heisenberg limited.

Coherent many-body nonequilibrium dynamics can also
be studied with Bragg scattering after a sudden release of
the atoms from the optical lattice in three dimensions. At
low lattice depths, the Bragg scattered signal shows reviv-
als as a function of expansion time because of the rephas-
ing of the superfluid atomic wave functions that were
originally confined in the lattices. Therefore, these revival
signals should give a measure of the superfluid order
parameter. Furthermore, the revivals are analogous to the
optical Talbot effect, whose atomic version was observed
previously for a thermal beam [16] and for a quantum

degenerate gas in the temporal domain [17]. Here we
observe the atomic Talbot effect for an interacting quantum
degenerate gas in a three-dimensional optical lattice.
Revivals can be seen in Fig. 3 and become less pronounced
as the lattice depth increases.

In particular, the characteristic revival time is deter-
mined by 7 = h/[h*(2k)*/(2m)] and is 123 us for our
parameters, where 2k corresponds to the wave vector of
the matter wave. However, with Bragg scattering we ex-
pect the first revival at half that time of 61 us, which is
what we observe in Fig. 3. This can be understood by
realizing that the atomic wave packets need only travel
half the lattice spacing to constructively interfere with the
wave packets traveling in the opposite directions from the
nearest neighbor sites.

The superfluid coherence as a function of lattice depth
can be studied by comparing the Bragg reflected signal
when the atoms are in the optical lattice to the signal at the
first revival. The revival signal as a function of lattice depth
is shown in Fig. 4, where the superfluid to Mott insulator
transition is expected to occur around 13ER [5]. In a non-
interacting system without any dissipation, one would ex-
pect complete revivals. The decrease in revival fraction as
the lattice depth increases is consistent with the picture
that, as interactions increase, phase fluctuations among
neighboring lattice sites increase and, consequently, the
superfluid fraction decreases. In the Mott insulating phase,
revivals should completely disappear, except for a very

Bragg Intensity (arb.)

0 30 60 90 120 150
Atom Expansion Time (ps)

FIG. 3 (color online). Revivals of Bragg scattered light. Bragg
scattered intensity vs the expansion time in three dimensions for
three different initial lattice depths: SER (circles), 8Er (tri-
angles), and 15ER (squares). Each data set is normalized to the
Bragg intensity at the initial time. Revivals at lower lattice
depths indicate coherence of the atoms across multiple lattice
sites. The lines are phenomenological fits to exponentially
decaying sine waves. Different lattice depth data are offset for
clarity, and the error bar is representative. The inset is a solution
to the one-dimensional Gross-Pitaevskii equation with experi-
mental parameters and an initial state of a chain of Gaussian
wave functions, showing the revivals of the density distribution
as a function of time. The white dotted line represents the revival
time.
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FIG. 4. Bragg scattering revival as a probe of superfluid co-
herence. Top: Bragg scattered revival signal at 60 us vs lattice
depth. Bottom: The top plot normalized to the Bragg scattered
signal without expansion. We see a decrease in revival, and
consequently superfluid coherence, as the lattice is increased.
Error bars are statistical.

weak signal at intermediate lattice depths due to particle-
hole correlations [18].

To understand the measured revival decay, we have
numerically studied the one-dimensional Gross-Pitaevskii
equation that assumes interacting matter waves at zero
temperature. The simulations show that interactions and
finite size effects have a negligible effect on the decay of
revivals. Empirically, randomizing the phase between
neighboring sites reduces the revival fraction. The loss of
phase coherence across lattice sites could be due to factors
such as temperature, beyond Gross-Pitaevskii equation
effects, or technical factors. We have considered quantum
depletion [19], but the calculated depletion fraction at SER
is 2%, too low to account for the observed decay. Future
work should provide a more complete picture of the decay
of revivals.

Note that Bragg scattered revivals are complementary to
the observation of diffraction peaks in time-of-flight ab-
sorption images [5]. Both are based on matter-wave inter-
ference due to superfluid coherence: revivals at short
expansion times and diffraction at long expansion times.
Diffraction is a far-field effect possible only for finite size
samples, whereas revivals are a near-field bulk effect. The
order of the revival or the angular resolution of the diffrac-
tion peaks determines whether these techniques probe
short-range or long-range spatial coherence. Further stud-
ies are needed to determine which technique is more
sensitive to certain aspects of the superfluid to Mott insu-
lator transition.

In this Letter, we have not focused on the effects of the
occupation number on Bragg scattering. In principle, the
atomic wave functions are more extended for higher occu-
pation numbers, but this effect is small for our parameters.
However, light scattering at higher occupation numbers
will have an inelastic component due to colliding atoms
or photoassociation [20]. The dependence of Bragg scat-
tering on lattice depth suggests that these effects are not
dominant.

After Bragg scattering has been established as a probe
for Mott insulators, it can now be applied to study other
types of quantum phases such as antiferromagnetic order-
ing in both the occupation number and spin sectors [21,22].
Although temperatures required to realize spin ordering are
on the order of tens to hundreds of picokelvins, recent
experimental results suggest a way forward to lower the
temperature of a two-component Mott insulator [23].

In conclusion, we have observed Bragg scattering of
near-resonant photons from a quantum degenerate Bose
gas in a three-dimensional optical lattice. We have shown
that this technique probes not only the periodic structure
of the atoms but also the spatial and momentum width of
the localized atomic wave functions and the superfluid
coherence.
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We demonstrate a new cooling method in which a time-varying magnetic field gradient is applied to an
ultracold spin mixture. This enables preparation of isolated spin distributions at positive and negative
effective spin temperatures of =50 pK. The spin system can also be used to cool other degrees of freedom,
and we have used this coupling to cool an apparently equilibrated Mott insulator of rubidium atoms to
350 pK. These are the lowest temperatures ever measured in any system. The entropy of the spin mixture

is in the regime where magnetic ordering is expected.

DOI: 10.1103/PhysRevLett.106.195301

Attainment of lower temperatures has often enabled
discovery of new phenomena, from superconductivity to
Bose-Einstein condensation. Currently, there is much in-
terest in the possibility of observing correlated magnetic
quantum phases in lattice-trapped ultracold atoms [1-3].
The relevant critical temperatures are on the order of
200 pK, lower than any previously achieved temperature
[4,5]. Realization of this temperature scale requires the
development of new methods of refrigeration which can
be applied to ultracold atoms. Many such techniques have
been proposed [6—13] but await experimental realization.
The cooling method we demonstrate here opens up a
previously inaccessible temperature regime and provides
a realistic path to the observation of magnetic quantum
phase transitions in optical lattices.

The new cooling method is applied to an optically
trapped cloud of cold atoms in a mixture of two internal
states with different magnetic moments [14]. Application
of a strong magnetic field gradient results in almost com-
plete spatial segregation of the two spin components. The
“mixed region” of spins between the pure-spin domains
has a width which is proportional to the temperature 7" and
inversely proportional to the applied gradient. Reducing
the gradient mixes the two components, and due to the
mixing entropy the temperature is dramatically reduced.
Since Mott insulators can be prepared with an entropy per
particle much lower than kg In2, our scheme is a practical
way of creating a low entropy mixture in the regime where
magnetic ordering is expected. This cooling scheme intro-
duces several new concepts. It implements demagnetiza-
tion cooling with spin transport instead of spin flips, allows
decoupling of the spin and kinetic temperatures, and en-
ables the realization of negative spin temperatures. Long
tunneling times in the lattice allow two different imple-
mentations of our cooling scheme.

When the gradient is changed faster than the spin re-
laxation rate, the spin system is effectively isolated from all
other degrees of freedom, and very low spin temperatures
can be achieved. Contrastingly, when the gradient is
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changed slowly enough, the spin system is fully equili-
brated and can absorb entropy from other degrees of free-
dom, cooling the whole sample. As shown in Fig. 1,
reduction of the gradient after (before) the optical lattice
has been raised realizes the regime of isolated (equili-
brated) spins.

First, we discuss isolated spins, of which atoms in a Mott
insulating state are an almost ideal realization. Spin dis-
tributions relax by two atoms exchanging sites through a
second-order tunneling process. The time scale of this
relaxation is typically 1 s, and the gradient can easily be
varied much faster. The equilibrium spin distribution de-
pends only on the ratio of the applied gradient V|B| and
temperature 7. When V|B| is changed, the effective tem-
perature of the decoupled spin degrees of freedom (spin
temperature) is rescaled proportionally. This enables the
realization of spin distributions with a very low positive
(or, if the sign of the gradient is changed, negative) effec-
tive temperature. Negative temperatures can occur only for
systems with an upper bound on the energy and correspond

a 3 N

Isolated spins 5 z o

END ®reresesreressesivaiannnanns, . 51 §

£l 4 Mott insulator H L) §
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FIG. 1. Two different cooling protocols realizing the cases of

isolated and equilibrated spin systems. (a) Experimental “phase
diagram” of lattice depth vs applied gradient. Dashed lines show
two different paths which connect the high-gradient superfluid
state and the low-gradient Mott insulating state. (b) and (c) show
the lattice depth (solid line) and gradient strength (dashed line)
vs time for the two cases (equilibrated spins and isolated spins,
respectively) in (a). The shape of the lattice ramp-up is designed
to ensure maximum equilibration.
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to an inverted Boltzmann distribution with the largest
population in the highest-energy state [15].

Figure 2 shows the results of experiments on isolated
spins. Fits to data on equilibrated spins indicate an initial
temperature of 6.3 nK (see Figs. 3 and 4). While reduction
of the gradient by a factor of 1000 would be expected to
reduce the effective temperature of the isolated spins to
6.3 pK, our finite optical resolution allows us only to assert
an upper bound of 50 = 20 pK. We have held the spins for
up to several seconds in the lattice. No heating is observed
during a 1-s hold, but after 3 s the 50 pK distribution is
observed to heat to about 70 pK. Similarly, at small nega-
tive gradients, we observe a negative-temperature distribu-
tion with a temperature closer to zero than —50 = 20 pK.
Since the total energy is monotonic in —1/7, these are
among the most extreme thermodynamic states ever mea-
sured in any system [16,17]. Very low condensate release
energies (not temperatures) have been observed previously
[18]. Note that the spin temperatures we report are much
lower than those attainable by magnetic trapping or opti-
cally pumping a system into a single spin state: Even for a
fractional population of 107 in other spin states caused
by imperfect pumping or spin-flip collisions [19], the spin
temperature in a bias field of 100 mG is 500 nK, assuming
a magnetic moment of one Bohr magneton. In our experi-
ment, the energy scale is set by the product of the Bohr
magneton with the magnetic field gradient and the lattice
spacing, and it is the relative ease of achieving very small
values of this parameter (corresponding to wp times a field
of less than 1 nG) which allows us to reach such low spin
temperatures.

The mixed-spin region comprises a spectrum of spin
excitations, the energy of which can be tuned by adjusting
the strength of the gradient [20]. A spin excitation consists
of a spin-up atom swapping places with a spin-down atom
on the other side of the zero-temperature spin domain
boundary. Reduction of the gradient reduces the energy
of spin excitations. In the regime of equilibrated spins, this
causes entropy to flow into the mixed-spin region from
other degrees of freedom. This lowers the temperature

50

25

50 . . . .
-1 -05 0 05 1 15
Final magnetic field gradient (G/cm)

Spin temperature (nK)
[=)

FIG. 2. Preparation of low positive and negative spin tempera-
tures. Measured spin temperature vs final gradient, for the case
of isolated spins. Error bars are statistical.

of the whole system in a manner locally analogous to
standard single-shot adiabatic demagnetization refrigera-
tion [21,22]. The kinetic excitations of a trapped Mott
insulator are particle-hole excitations [4,23]. On a micro-
scopic level, particle-hole excitations can couple directly
to spin excitations if a particle and a hole on opposite sides
of the spin domain boundary annihilate. Energy may be
absorbed by quasiparticles in the first band or by the spin
excitations themselves [24]. In the superfluid phase and
during lattice ramp-up, the kinetic excitations are different
and entropy transfer is expected to occur faster and in more
complex ways. Experimentally, it is easier to maintain
adiabaticity if most of the path along which the gradient
is changed is in a regime of fast relaxation times [e.g., the
lower path in Fig. 1(a)]. Thermodynamically, this adiabatic
cooling method is a redistribution of entropy from the
kinetic degrees of freedom to the entropy which results
from partially mixing the two initially segregated spin
domains.

It is easily possible for the mixed region to absorb nearly
all of the entropy of the system. In a one-component
harmonically trapped Mott insulator which is at a tempera-
ture low enough for the particle-hole approximation to
hold, the approximate total entropy is kg In(2) times the
volume of the “‘shells’” between the Mott plateaux [4]. The
maximum entropy of the mixed region is realized when, at
low gradient, it is broadened to a substantial fraction of the
total size. In that situation, the entropy per site approaches
kg In(n + 1), where n is the local number of indistinguish-
able bosons per site (in our samples, n varies across the trap

AN —Theory (Ti:6.3nK)
AN o Measured FWHM

A N\, |-—-Isotherm

\|--- Resolution limit

_
(=]
N
T

Mixed region width (u m)

-
(=]
T

10° 10% 10" 10
Final magnetic field gradient (G/cm)

FIG. 3. Entropy transfer from other degrees of freedom to the
spin system. Circles represent measured width of the mixed
region vs final magnetic field gradient, for the ‘“‘equilibrated
spins” protocol (see Fig. 1). Error bars are statistical. The dashed
line represents the expected behavior assuming no cooling. The
dash-dotted line shows the minimum resolvable width. The solid
curve is the theoretical prediction, assuming an initial tempera-
ture of 6.3 nK and including the effects of optical resolution (see
Ref. [25] for details). Insets show spin images at the indicated
points, the corresponding vertically integrated spin profiles
(squares), and the fit to the expected form of a tanh function
times the overall density distribution (solid line; see Ref. [20] for
details). Axis units and gray scales in the two insets are arbitrary
but identical.
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FIG. 4. Spin gradient demagnetization cooling. Circles repre-
sent measured temperature vs final magnetic field gradient, for
the equilibrated spins protocol (see Fig. 1). Error bars are
statistical. These measurements are the same as those shown
in Fig. 3. The dashed line follows the isothermal trajectory, and
the dash-dotted line shows the resolution limit. The solid line is
the theoretical prediction, assuming an initial temperature of
6.3 nK and including the effects of optical resolution. The dotted
line is the theoretical prediction without the effects of optical
resolution.

between 1 and 3). The maximum entropy of the spin system
is thus larger than the entropy of the kinetic degrees of
freedom. Thus, substantial cooling of the system can be
achieved with a single gradient demagnetization ramp.
We have made a more quantitative analysis of spin
gradient demagnetization by calculating entropy-versus-
temperature curves of our system in various field gradients
[25]. The results confirm the qualitative argument above
and show that spin gradient demagnetization cooling is
capable of cooling well below the expected Curie
temperature.

Figures 3 and 4 show the results of spin gradient demag-
netization cooling experiments. As the gradient is reduced,
the width of the domain wall increases (see Fig. 3), in-
dicating transfer of entropy from the kinetic degrees of
freedom to the spins. The width increases much less
steeply than would be expected for an isothermal sample,
implying cooling. The observed domain wall width can be
converted to a temperature using spin gradient thermom-
etry. The measured temperature falls rapidly as the gradient
is lowered (see Fig. 4). The lowest measured temperature is
350 = 50 pK, making this the coldest implementation of
the atomic Mott insulator. An important goal for future
experiments will be to develop an additional method of
thermometry to measure the temperature of the kinetic
degrees of freedom at this very low temperature scale
(for progress towards this goal, see Refs. [26-28]). This
temperature is colder than the lowest temperature ever
measured in an equilibrated kinetic system [29], and it is
within a factor of 2 of the expected magnetic ordering
temperature [5].

Theoretical curves in Figs. 3 and 4 (see also Ref. [25])
show reasonable agreement with the data. These curves

were fitted to the measured temperatures by using only one
free parameter: the initial temperature at the maximum
gradient. The initial temperature inferred from this fit is
6.3 nK. In our earlier work on thermometry [20], where the
lowest measured temperature was 1 nK, some adiabatic
demagnetization cooling may have occurred during the
preparation of the system. The flattening out observed in
the measured data at low gradients could be a signal that all
accessible entropy has been pumped into the spin system.

There are both practical and theoretical limits on the
temperatures which can be attained with spin gradient
demagnetization cooling. In traditional magnetic refrigera-
tion experiments, the minimum temperature is often set by
the minimum achievable magnetic field or the presence of
internal fields in the refrigerant [30]. Analogues of both
these limits are relevant here. Practically, the ratio between
the highest and lowest attainable magnetic field gradients
is an upper bound on the ratio between the initial and final
temperatures. In our experiment, the maximum value of
V|B;|/V|B| is about 1000 (limited mainly by the accu-
racy of determining the zero crossing of the gradient),
which would give a minimum temperature below 10 pK.
Another limit stems from the small difference between the
interspin interaction energy Uj and the mean of the intra-
spin interaction energies (Uy; + U))/2. For 8’Rb, this limit
is not expected to preclude cooling below the expected
magnetic ordering temperature [25]. The fundamental
limit is set by the total entropy of the system. A single
Mott insulator has an entropy per particle much less than
kg In2. At high gradient, the spin entropy is negligible.
Lowering the gradient provides a controlled way of creat-
ing a completely mixed two-component system at the same
entropy which is low enough for spin ordering to occur.
This technique thus provides a specific and realistic
method of realizing magnetic phase transitions in optical
lattices.

Our scheme differs from single-shot adiabatic demag-
netization refrigeration (including that demonstrated in a
gas of chromium atoms [31]) in that the magnetic field is
replaced by a magnetic field gradient and spin-flip colli-
sions by spin transport. The chromium scheme cannot be
applied to alkali atoms due to the much slower spin-flip
rates, and extending it from microkelvins to picokelvins
would require submicrogauss magnetic field control. In
previous work [20], we suggested that adiabatic reduction
of the gradient could be used for cooling, and some aspects
of this proposal have recently been theoretically addressed
and verified [32].

The concept behind spin gradient demagnetization cool-
ing is compelling; if adiabaticity can be maintained, then
strong cooling in a lattice will occur. Our experimental
implementation was designed to allow the system to equili-
brate as much as possible at low lattice depths. We have
tested reversibility by replacing the single gradient ramp by
a sequence of ramp down, ramp up, ramp down. This led to
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no detectable difference in the final measured temperature.
This indicates that the gradient ramps are adiabatic.
Equilibration in the Mott insulator is more difficult to
demonstrate, although the previously demonstrated agree-
ment between spin gradient thermometry and cloud size
thermometry at high temperatures [20] indicates that the
kinetic and spin degrees of freedom are equilibrated in that
regime. The fact that the spin distribution fits well to the
form expected of an equilibrated spin system is also
evidence for equilibration, as is the one-parameter fit to
our theoretical predictions (which assume adiabaticity).
However, if the lattice is deepened, then lowered to zero,
and then raised again, heating is generally observed.
Thus, we cannot rule out the existence of long-lived meta-
stable excitations in the Mott insulating state which do not
couple to the spin degrees of freedom and thus do not
influence our temperature measurement. Other experi-
ments have seen evidence of long equilibration times in
the Mott insulator [24,33]. For quicker equilibration, spin
gradient demagnetization cooling could be implemented
with lighter atomic species (e.g., 'Li or “He*) and/or
shorter period optical lattices.

The cooling technique using isolated spins presented
here has achieved spin temperatures and entropies well
below the critical values for magnetic ordering, and spin
gradient demagnetization cooling of equilibrated spins has
cooled to a point within reach of the critical values. This
work thus opens a realistic path towards observation of
superexchange-driven phase transitions in optical lattices
and extends the potential of ultracold atoms trapped in
optical lattices to be used as flexible quantum simulators
of strongly interacting many-body systems.
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Thermometry and refrigeration in a two-component Mott insulator of ultracold atoms
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Interesting spin Hamiltonians can be realized with ultracold atoms in a two-component Mott insulator (2CMI)
[Adv. Phys. 56, 243 (2007); Rev. Mod. Phys. 80, 885 (2008)]. It was recently demonstrated that the application
of a magnetic field gradient to the 2CMI enables new techniques of thermometry [Phys. Rev. Lett. 103, 245301
(2009)] and adiabatic cooling [e-print arXiv:1006.4674]. Here we present a theoretical description which provides
quantitative analysis of these two techniques. We show that adiabatic reduction of the field gradient is capable of
cooling below the Curie or Néel temperature of certain spin-ordered phases.

DOI: 10.1103/PhysRevA.82.051603

The possibility of using ultracold lattice-trapped gases as
general simulators of strongly interacting many-body systems
has excited increasing interest in recent years [1-3]. Spin
Hamiltonians are a natural candidate for quantum simulation,
especially given the relevance of doped antiferromagnetic
systems to the important open problem of high-7, supercon-
ductivity [4]. The 2CMLI is the starting point for the simulation
of electronic spin systems in lattices [5-9]. Spin-exchange-
stabilized magnetically ordered states are expected to exist in
the 2CMI [10], and observation of these states and transitions
between them would open up an exciting new field at the
intersection of atomic and condensed matter physics. The
main obstacle which has so far prevented the observation of
spin-ordered states in the 2CMI is the very low temperature
scale required for spin ordering [11]. Quantum Monte Carlo
calculations have predicted Curie and Néel temperatures on the
order of 200 pK for the ferromagnetic and antiferromagnetic
states of ’Rb in a 532-nm lattice [12]. This is a lower temper-
ature than has ever been measured in any system. Clearly, new
methods of thermometry and refrigeration are required.

The recently demonstrated technique of spin gradient
thermometry [13] should allow measurement of temperatures
down to the spin exchange scale in the 2CMI. The related
method of spin gradient demagnetization cooling is capable of
cooling to the neighborhood of the critical temperature for spin
ordering [14]. Together, these new techniques open a realistic
prospect of preparing spin-ordered phases in the 2CMI. In
order to compare experimental results with theory, we have
developed a simple theoretical model of the 2CMI and used it
to calculate the expected response of our system to spin gradi-
ent thermometry and spin gradient demagnetization cooling.

Our treatment of the 2CMI is similar in approach to the
studies of cooling in the one-component Mott insulator pre-
sented in Refs. [11] and [15] in that it is based on calculations
of entropy-versus-temperature curves for various values of
control parameters. Our model neglects the effects of tunneling
and treats each lattice site separately, yet is capable of qualita-
tively reproducing observed cooling curves using only one fit
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parameter (the initial temperature) [14]. Our results thus com-
plement, and are in qualitative agreement with, the classical
mean-field and Monte Carlo analysis of Natu and Mueller [16].

The inputs to the calculation are the measured trap
frequencies (w;,w,,w;), the total atom number N, and the
applied magnetic field gradient V |B| (along with various fixed
parameters like the scattering lengths and magnetic moment
of the atoms and the lattice constant). This allows direct
comparison with experiment. The particular trap frequencies
assumed here are 2w x (40,156,141) Hz. We assume an
atom number of 17 000, leading to an occupation number
of 3 in the center of the cloud. These values were chosen
because they are typical in our experiments. The scattering
lengths we assumed are a4 = 100.4ay, ay, = 98.98ag, and
ay, = 98.98ao, where ay is the Bohr radius and states 1 and |
are the |F = 1,mp = —1) and |F = 2,mpr = —2) hyperfine
states of 87Rb; these values represent the results of the most
recent theoretical calculations available [17].

Detailed technical descriptions of spin gradient thermom-
etry and spin gradient demagnetization cooling are presented
in Refs. [13] and [14], respectively. Both techniques are based
on the 2CMI in a magnetic field gradient. Since the two
components have different magnetic moments, the gradient
pulls them toward opposite sides of the trap, creating two spin
domains which remain in thermal contact. At zero temperature,
there will be a zero-width boundary between the two domains,
but at finite temperature a mixed region composed of spin
excitations will be present.

Since the total magnetization is always chosen to be zero,
the average value of the magnetic field is canceled by a
Lagrange multiplier and can be subtracted from the real field
B(x). This allows us to write the field as Betr = V|B| - x;,
where x; is the vector from the trap center to lattice site i
projected along the direction of the magnetic field gradient.
Note that Begr = O at the trap center. If tunneling is neglected,
then, at a magnetic field gradient V|B|, the energy of a
configuration with n4 up spins and n, down spins at lattice
site i is

Ei(ny,n),VIB]) = pVIB| - x;(ny —ny)
1
+ 3 ; Usong(ng — 1) + Uy nyny
+Vilny +ny) — ppny —pyny, (1)
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where p is the amplitude of the effective magnetic moment of
the atoms, x; = |x;|, 0 = {1,{}, Uy is the interaction energy
between spin @ and spin b, V; = (m/2)(w§xi2 + w%yf + wfziz)
is the optical trapping potential at site 7, y; and z; are the
distances of site i from the trap center in the two directions
transverse to the gradient, and p, is the chemical potential of
spin a. The chemical potential is set by the requirement that
the number of atoms of each spin be equal to half the total
experimentally measured number.

Equation (1) can be used in the grand canonical ensemble to
infer the thermal probability of different occupation numbers
of the two spins. The partition function at lattice site i
is Z;(V|B]) = Z{"mm} exp[—E;(ny,n,,VIB|)/kgT], where
kg is Boltzmann’s constant, T is the temperature, and the
summation is over all possible combinations of n4 and n | (each
combination is counted only once, due to indistinguishability
of the atoms). The probability of having n4 up spins and n
down spins at lattice site i is then

exp[—Ei(nT,n¢,V|B|)/kBT]

pi(ny,ny, VIBL,T) = 2
Z
and the resulting entropy at site i is
S(VIB.,T)=— )" pilnp;, 3)

{ny.n}

where the summation is performed in the same way as for the
partition function. The only additional approximation needed
is a truncation of the sums over spin configurations. For our
experimental parameters, configurations corresponding to a
total atom number per site n greater than 4 can be neglected,
and we have truncated the sums accordingly. This truncation
is reminiscent of, but more general than, the particle-hole
approximation [11,15]. The site entropy S; of Eq. (3) is
summed over all lattice sites to extract the total entropy
as a function of temperature and field gradient. From this
output one can extract column-integrated images (Fig. 1),
entropy-versus-temperature curves (Fig. 2), and the predicted
response to thermometry (Fig. 3) and cooling (Fig. 4).

It is instructive to compare the results of this calcu-
lation to those of the simple approximation which treats

FIG. 1. Comparison of simulated and measured spin images.
Simulated images are on the left. Magnetic field gradients and
temperatures for simulated images are: (a) 0.7 G/cm and 6 nK,
(b) 0.06 G/cm and 2 nK, and (c) 0.0024 G/cm and 0.4 nK. The
gradient and fitted temperature for each measured spin image (d)—(f)
are similar to the values for the simulated image in the same row. See
Fig. 3 for a comparison of the temperature extracted from this fit to
the real modeled temperature. Note that the total magnetization in all
pictures is close to zero.
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FIG. 2. Total entropy per particle versus temperature, at various
gradients, for the experimental parameters described in the text.
The arrow indicates a possible path followed during adiabatic spin
gradient demagnetization cooling.
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FIG. 3. Ratio between fitted temperature and actual temperature
at two different gradients, assuming perfect imaging. This shows
the effect of corrections due to indistinguishability and unequal
scattering lengths. Finite imaging resolution will limit the range
of temperature that can be measured with any given gradient, as
discussed in Ref. [13].
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FIG. 4. Spin gradient demagnetization cooling. Predicted tem-
perature versus final gradient, for several values of the total entropy.
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the spin and particle-hole degrees of freedom separately. In
this approximation, the partition function for an individual
lattice site i is assumed to factorize as Z = Z,Z,, where
Z, =) ,exp[—Bp, B, Bis 1/kgT, p, is the magnetic
moment of the spin ¢, and Z; is the partition function of
the particle-hole degrees of freedom (for which see [11,15]).
This simple treatment is valid for the case of one atom
per lattice site. For occupation number n > 1, there are
corrections which are captured by our more complete model.
The first correction arises from a difference AU between
the mean of the intraspin interaction energies U, and the
interspin interaction energy Ujp,. AU /Uy is about 0.007
for our states. The leading correction changes the magnetic
field gradient at the center of the sample B’ to an effective
gradient B'[1 4 (n — 1)AU/kpT]. This becomes important
at low temperatures, and destroys the factorizability of the
partition function mentioned above. The second correction is
due to indistinguishability of the atoms. This arises from the
quantum mechanical fact that there are three (rather than four)
possible spin states for a lattice site with two pseudospin-1/2
atoms. The size of both corrections is expected to be small,
but in order to treat them fully we have developed the more
general model described above.

Under the assumption that Z = Z, Z, the mean spin (s) as
a function of position, field gradient, and temperature has the
simple form

(s) = tanh[—BAp - B(x;)/2], “4)

where A p is the difference between the magnetic moments of
the two states. Spin gradient thermometry is based on the fact
that, at finite temperatures, the width of the boundary layer is
proportional to the temperature and inversely proportional to
the magnetic field gradient.

The spin profile of Eq. (4) is exact for a 2CMI with
one particle per site. The model presented here can be used
to investigate corrections to thermometry at higher filling.
Figure 3 shows the temperature measured by fitting to Eq. (4)
divided by the actual modeled temperature for two values of
the gradient. The high-temperature correction is mainly due
to indistinguishability of the atoms, and is only important for
sites containing 2 or more atoms. Note that the fitted spin
profile is integrated along both directions transverse to the
gradient, so it includes contributions from all occupation-
number domains. Although this correction is conceptually
important, it changes the measured temperature by less than
15% under our experimental conditions. The correction at low
temperatures is partly due to the fact that the scattering lengths
Usy,U,,,and Uy are not all equal. This is expected to result in
a curvature of the mixed region between the two spin domains.
This curvature arises from a buoyancy effect—the species
with greater intraspin repulsion will preferentially populate the
outer regions of the trap. This effect causes a fit to Eq. (4) to
overestimate the temperature, since a curved boundary appears
wider after integration along the directions perpendicular to
the gradient. Another correction at low temperatures arises
if the width of the mixed region becomes much less than
one lattice constant. In this case both the model and the real
physical spin system will not respond measurably to small
changes in the gradient, and the measured temperature will
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overestimate the real temperature. These corrections need to
be taken into account for precision temperature measurements
at extreme temperatures and field gradients, but they do not
alter the conclusions of Refs. [13] or [14].

Spin gradient demagnetization cooling is based on the
fact that the entropy stored in the mixed region between
the two spin domains increases with decreasing magnetic
field gradient. If the change of the gradient is adiabatic,
then the energy and entropy which flow to the spin degrees
of freedom must come from other degrees of freedom, and
the sample’s temperature can be reduced. Although spin
gradient demagnetization cooling was inspired by (and is
locally similar to) adiabatic demagnetization refrigeration in
condensed or gaseous systems [18-20], there are important
differences between the techniques. Most notably, spin gradi-
ent demagnetization cooling varies a magnetic field gradient
rather than a homogeneous field, and relies on spin transport
rather than spin flips. These differences allow the technique
to be applied to lattice-trapped ultracold atomic systems. Spin
gradient demagnetization cooling thus broadens and extends
existing magnetic refrigeration techniques.

Entropy versus temperature curves such as those plotted in
Fig. 2 can be used to calculate the response of the system to spin
gradient demagnetization cooling. If the gradient is reduced
perfectly adiabatically, the system will move horizontally
as indicated by the arrow in Fig. 2, and the temperature
will decrease. This behavior is plotted in Fig. 4 for several
values of the total entropy (corresponding to different initial
temperatures). These predictions can be used directly to fit
experimental data, with the initial temperature being the only
free parameter. Such fitting gives reasonable agreement (see
Ref. [14]).

For sufficiently low initial entropy, the spin degrees of
freedom will contain all the entropy in the system when
the gradient is adiabatically reduced by some factor. Further
reduction of the gradient below this point is expected to
linearly decrease the temperature of the system until the point
where interactions become important. Conversely, if the initial
entropy is too high, the spins will become fully disordered at
some finite value of the gradient and will no longer be able to
absorb entropy. Reduction of the gradient below this point will
not change the temperature. This behavior, which is essentially
afinite-size effect, is apparent in the upper curve in Fig. 4. If the
gradient is sufficiently high, it can pull the two spin domains so
far apart that the area where they overlap is decreased in size.
This effect reduces the entropy capacity of the spin degrees
of freedom at high gradients, and is the origin of the slight
downturn in temperatures at the highest gradients in Fig. 4.

Magnetic field gradients of 1 mG/cm are well within the
range of the experimentally achievable. Assuming reduction
of the gradient from 2 G/cmto 1 mG/cm, our analysis predicts
that samples with an initial entropy lower than about 0.4k can
be cooled below the spin-ordering temperature. Our model
neglects spin correlations, so the lowest-temperature results
plotted in Fig. 4 should be taken as evidence that reduction of
the gradient is capable of cooling below the spin-ordering
temperature rather than a prediction of the dependence of
temperature on gradient below the Curie or Neel temperature.

Figure 5 shows several images of the total entropy dis-
tribution at different final gradients during demagnetization.
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FIG. 5. (Color online) Entropy distribution during spin gradient
demagnetization cooling. The images are slices of the cloud through
the center. Each pixel represents one lattice site. All plots are at a
total entropy per particle near 0.3kg, and are thus representative of
the changing entropy distribution during isentropic demagnetization.
Values of the gradient and temperature are as follows: (a) VB =
0.5 G/cm and T =3 nK, (b) VB =0.1 G/cm and T = 1.5 nK,
(¢)VB =0.02G/cmand T = 0.5 nK. The ring-shaped structures are
the mixed-occupation-number regions between Mott domains which
carry particle-hole entropy. Note that these regions are narrower
after reduction of the gradient. This indicates that entropy has
been transferred from the mixed-occupation-number regions to the
mixed-spin region, and the temperature has been reduced.

The pumping of entropy from the kinetic degrees of freedom
to the spins is clearly visible.

These theoretical results help elucidate some limitations
on and possible extensions to the technique of spin gradient
demagnetization cooling. The technique clearly requires the
use of two states with different magnetic moments—this

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 82, 051603(R) (2010)

excludes, for example, the two lowest states of ’Li at very high
fields. The predicted behavior is also, in principle, different for
higher filling factors than it is forn = 1 (although, as discussed
above, we find this effect to be small for the particular case
of 37Rb). For example, strong miscibility or immiscibility of
the two species would change the response of the system to
demagnetization, but only if the maximum occupation number
n is greater than 1 (see also Ref. [21]). The dependence of the
response to demagnetization on the trap frequencies and total
atom number can also be investigated using the techniques
presented here; the most important effect of varying these
parameters is generally to change the maximum occupation
number and the spectrum of particle-hole excitations. For
best cooling performance, the initial entropy should be lower
than the maximum mixing entropy (kg In?2 per site for the
n =1 case). We believe that spin gradient demagnetization
cooling could, in principle, be applied to fermionic mixtures
as well. In fact, the technique does not even require a lattice,
and could potentially be applied to the thermal fraction of a
trapped two-component gas.

We have presented results of calculations based on a theoret-
ical model of the 2CMI and its response to a varying magnetic
field gradient. Our results provide quantitative support for
spin gradient thermometry and spin gradient demagnetization
cooling.
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We demonstrate spin gradient thermometry, a new general method of measuring the temperature of
ultracold atoms in optical lattices. We realize a mixture of spins separated by a magnetic field gradient.
Measurement of the width of the transition layer between the two spin domains serves as a new method of
thermometry which is observed to work over a broad range of lattice depths and temperatures, including in
the Mott insulator regime. We demonstrate the thermometry using ultracold rubidium atoms, and suggest
that interesting spin physics can be realized in this system. The lowest measured temperature is 1 nK,
indicating that the system has reached the quantum regime, where insulating shells are separated by

superfluid layers.

DOI: 10.1103/PhysRevLett.103.245301

Ultracold atoms trapped in optical lattices represent a
new frontier for the investigation of many-body physics
[1,2]. The existence of novel physics at decreasing energy
scales drives the quest for lower temperatures in the atomic
Mott insulator. Insulating Mott shells form at a temperature
T ~ 0.2U, where U is the interaction energy. At the lower
temperature 7 ~ zJ, where J is the tunneling amplitude
and z is the number of nearest neighbors, the conducting
layers become superfluid and the system enters a quantum
insulator state [3]. At the even colder temperature scale
T ~ J?/U, superexchange-stabilized phases can exist in
the two-component Mott insulator; this is the regime of
quantum magnetism [4]. Various proposals [5,6] have fo-
cused on the realization of quantum spin Hamiltonians in
this regime. Detection of superexchange-driven phase tran-
sitions in these systems remains a major goal of ultracold
atomic physics. Perhaps the most important barrier to
experimental detection of such a phase transition is the
requirement of temperatures well below 1 nK [4].
Additional cooling methods [7-10] will be needed to reach
this very interesting temperature scale. However, it is clear
that to assess current methods and to validate future cool-
ing techniques, low-temperature thermometry of the Mott
insulator is needed.

Thermometry of systems in the Mott insulating state has
remained a challenge [3,11-14]. In this Letter, we discuss
and demonstrate a simple and direct method of thermom-
etry using a magnetic field gradient which works in the
two-component Mott insulator.

The theory behind this method of thermometry is
straightforward. The system under consideration is an
ensemble of atoms in a mixture of two hyperfine states
loaded into a three-dimensional optical lattice in the pres-
ence of a weak magnetic field gradient. The two states have
different magnetic moments, and are thus pulled towards
opposite sides of the trapped sample by the gradient. At
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zero temperature, the spins will segregate completely, and
a sharp domain wall will exist between the two spin
domains (a small width due to superexchange coupling is
typically negligible). This system has the same bulk phys-
ics as the single-component Mott insulator, but includes
additional degrees of freedom in the form of spin excita-
tions in the domain wall. At finite temperature, spin ex-
citations will increase the width of the domain wall. This
width will depend in a simple way on the field gradient, the
differential Zeeman shift, and the temperature, and can
thus be used as a thermometer.

For an incoherent mixture of two spins, the partition
function for an individual lattice site can be approximately
factorized as Z = Z,Z,, where Z, =Y ,exp(— B, *
B(x)), B is 1/kgT, m, is the magnetic moment of the
spin o, B(x) is the spatially varying magnetic field, and
Z, is the partition function of the particle-hole degrees of
freedom (for which see [3]). This approximation is gen-
erally valid for the case of one atom per lattice site; for
occupation number n > 1, it is valid when the mean of the
intraspin interaction energies U, is equal to the interspin
interaction energy Uy, which is a good approximation in
87Rb [15]. Since the total magnetization is fixed, the aver-
age value of the magnetic field is canceled by the corre-
sponding Lagrange multiplier; we include this in the
definition of B(x). We are free to treat the two states as
having pseudospin +1 and —1; making that identification,
the mean spin (s) as a function of position, gradient
strength, and temperature has the simple form

(s) = tanh(=B - Ap - B(x)/2), )]

where A p is the difference between the magnetic moments
of the two states. A fit of the measured spin distribution
with a function of this form will give the temperature of the
system. When the Zeeman shift due to the magnetic field
gradient is a linear function of position, imaging of the spin

© 2009 The American Physical Society
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distribution essentially corresponds to direct imaging of
the Boltzmann distribution.

The apparatus used to produce ultracold 8’Rb atoms is
described in Ref. [16]. After cooling, approximately 10°
atoms are held in a far-red-detuned crossed optical dipole
trap with trap frequencies between 100 and 200 Hz. A
three-dimensional cubic optical lattice, formed by three
retroreflected beams each of radius ~150 um, overlaps
the trapping region. Since spin gradient thermometry does
not depend on the number of atoms per lattice site n, we
perform measurements at a range of n values between 1
and 4. The trapping and lattice beams are all derived from
one fiber laser, with a wavelength A of 1064 nm. Magnetic
field gradients up to a few G/cm can be applied with
external coils, and calibrated using Stern-Gerlach separa-
tion of the different spin states after release from the trap.
The gradient is applied along the x direction, which is the
weakest axis of the crossed dipole trap. Absorptive imag-
ing of the atoms is performed with a camera pointing down
along the vertical z axis.

The sequence of steps used to measure temperature
is as follows. First, a sample of ®Rb atoms in the
|F =1, mp = —1) state is prepared by evaporation in the
optical trap. Here F and my are the quantum numbers for
the total spin and its projection on the z axis, respectively.
The atoms are then placed into a mixture of the |1, —1) and
|2, —2) states by a nonadiabatic magnetic field sweep
through the microwave transition between the two states.
This pair of states was chosen in order to avoid spin-
exchange collisions. A magnetic field gradient of
2 G/cm is applied along the weak axis of the trap and
results in additional evaporation, which is intended to
remove the entropy created by the state preparation [17].
At this point, the field gradient is changed to the value to be
used for measurement; lower gradients are used for lower-
temperature measurements to keep the domain wall width
larger than the imaging resolution. The optical lattice is
then adiabatically ramped up, typically to a depth of
14.5ER, where Ex = h*>/2mA? is the recoil energy and m
is the atomic mass. The transition to the Mott insulator
occurs at 13.5E5. At this point, the spin structure depends
on the temperature as discussed above.

There are several ways to measure the resulting spin
distribution. One way is to first take an image of the F = 2
atoms in the 14.5E} lattice, then in a second run to illumi-
nate the atoms with an optical repumper beam resonant
with the F = 1 to F' = 2 transition for a few us prior to
imaging. This method gives an image of all atoms and an
image of just the /' = 2 atoms; appropriate subtraction can
provide the spin distribution. It is possible to determine the
temperature from a single image of one spin, but the data in
this Letter were all taken using pairs of images to guard
against systematic errors.

The temperature can then be measured by fitting the spin
distribution to the hyperbolic tangent form. The resulting

thermometer has high dynamic range and variable sensi-
tivity, works at all accessible temperatures of interest, and
requires only the simplest fitting procedures.

Figure 1 shows data of the type used for spin gradient
thermometry. An image of the total atom density and an
image of the spin density are obtained as discussed above.
Both images are then integrated along the y direction,
which is transverse to the gradient. The spin distribution
is then fit by a function of the form p(x) tanh(3 B %x),
where p(x) is the total density distribution. The only free
parameters in this fit are a horizontal and vertical offset and
the temperature 7 = 1/kgS.

Figures 2 and 3 show the results of this thermometry on
ultracold 8"Rb atoms in an optical lattice. Figure 2 shows
the linear scaling of the inverse width of the domain wall as
the magnetic field gradient is varied while holding the
temperature constant. For widths larger than the optical
resolution, the scaling is as predicted by Eq. (1). The two
data sets plotted in Fig. 2 were taken at two different
temperatures: 7 and 123 nK, according to the best-fit
theoretical lines. Finite optical resolution or motion of
the atoms during imaging will blur the measured spin
profile and result in an overestimate of the domain wall
width at high gradients. This effect was modeled by apply-
ing a Gaussian blur of radius 4 um to the theoretical 7 nK
spin profile at various gradients. The resulting curve, plot-
ted as a dash-dotted line in Fig. 2, reproduces the saturation
of measured width observed in the experimental data. The
effect of finite resolution is always to overestimate the
temperature.

Figure 3 shows the measured temperature plotted as a
function of the power in the dipole trapping beam which
confines the atoms in the direction of the magnetic field
gradient (the x direction). Higher powers in this beam lead
to less effective evaporation, and thus higher final tempera-

a
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,.// -
-1

X position (pixels)

b
1 2m ‘
d

Mean spin
o
Mean spin

1
-

X position (pixels)

FIG. 1. Images used for spin gradient thermometry. Data on
the left were taken at a lower optical trap power than data on the
right. Panels (a) and (b) are images of the spin distribution.
Panels (c) and (d) show the mean spin versus x position. The fit
to (c) gives a temperature of 52 nK; the fit to (d) gives a
temperature of 296 nK. The inset of (a) shows the axes referred
to in the text. The bar in (b) is a size scale.
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FIG. 2. Independence of the measured temperature on the

applied field gradient. The inverse of the width of the spin profile
is plotted as a function of magnetic field gradient for two data
sets at two different temperatures. For constant temperature, a
linear curve is expected. The width is defined as the distance
from the center to the position where the mean spin is 1/2. The
solid (dashed) line assumes a temperature of 123 nK (7 nK) and
perfect imaging. The measured width of the colder data set
saturates at high gradient because of finite imaging resolution.
The dotted line assumes a temperature of 7 nK and an imaging
resolution of 4 pm.

tures. As a check of the new method of thermometry, Fig. 3
also presents an analysis of the same data using an existing
method of thermometry, based on measurement of the in-
trap width of the atomic cloud along the direction perpen-
dicular to the gradient. This second method is based on the
well-known relation 0> = kzT/mw?, where o is the 1/¢>
half-width of the atomic cloud and w is the trap frequency
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FIG. 3. Validation of spin gradient thermometry. Comparison

of two measured temperatures versus final power in one of the
optical trapping beams. Squares represent the results of in-trap
cloud width thermometry, and circles represent the results of
spin gradient thermometry (see text for details). Error bars
represent estimated uncertainties. The dashed line is a linear fit
to the spin gradient thermometry data. The closeness of this fit
suggests that the temperature reached is proportional to the trap
depth.

in the direction along which the width is measured [12].
The width is determined by a fit to the wings of the trapped
cloud. Trap width thermometry is based on a noninteract-
ing approximation, and will fail at temperatures less than U
when the system starts to become incompressible. As in
Ref. [12], all points on this plot are in the high-temperature
single-band regime (7 is less than the band gap but greater
than the bandwidth). For the temperatures plotted in Fig. 3,
the agreement between the two methods is reasonably
good, and gives confidence in the use of spin gradient
thermometry in regions of parameter space where no other
thermometer exists.

The large dynamic range of spin gradient thermometry
is evident in Fig. 3. Thermometry can be performed at
temperatures so high that no condensate exists before
lattice ramp-up. The lowest temperature we have measured
was achieved by using the new thermometry as a feedback
signal, enabling adjustment of experimental parameters for
optimization of the final temperature in the Mott insulator.
This method allowed us to achieve a measured temperature
as low as 1 nK. At the lattice depth used here, U is 37 nK,
and zJ is 6 nK. The measured temperature is thus well
below T, = zJ, the predicted critical temperature for the
superfluid layer between the n = 1 and n = 0 Mott do-
mains. According to the treatment of Ref. [3], at 1 nK the
system should be well inside the quantum regime, with
concentric quantum insulator shells separated by super-
fluid layers. This represents the first direct demonstration
that this temperature regime has been achieved in the Mott
insulator.

At a given value of the magnetic field gradient, very low
temperatures will result in a width of the transition region
smaller than the imaging optics can resolve (see Fig. 2).
However, the width can be increased by decreasing the
magnetic field gradient. The lowest measurable tempera-
ture will then depend on the minimum achievable gradient
as well as the optical resolution, which are technical rather
than fundamental limitations. In our apparatus, back-
ground gradients with all coils turned off are of order
1073 G/cm, which, given our imaging resolution of a
few pum, would in principle allow measurement of tem-
peratures down to ~50 pK or the superexchange scale,
whichever is higher.

It is instructive to compare the useful range of this new
method of thermometry with that of existing methods. To
facilitate meaningful comparison with non-lattice-based
methods, we discuss the range of entropy per particle
S/Nkg at which a given thermometer works, rather than
the range of temperature. Condensate fraction thermome-
try works for 0.35 < §/Nkg < 3.5, where the lower limit is
set by the difficulty of detecting a thermal fraction less than
10%, and the upper limit is set by disappearance of the
condensate. Thermometry based on the thermal cloud size
has a similar lower bound, but extends to arbitrarily high
values of S/Nkjg. Quantitative thermometry based on the
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visibility of interference peaks upon release from the lat-
tice requires state-of-the-art quantum Monte Carlo calcu-
lations fitted to the data. This technique was recently used
to measure temperatures as low as 0.08U in the superfluid
phase near the Mott insulator transition [18]. This method
cannot be applied deep in the Mott insulating state [11].
Measurement of the width of the conducting layers be-
tween the Mott shells is the only previously proposed
method which works directly in the Mott insulating state
[3,4,19]. However, this method requires tomographic tech-
niques, and the useful range of entropy is rather narrow:
0.4 < §/Nkg <1n(2), where the upper limit is set by the
melting of the Mott shells, and the lower limit is an
estimate based on typical trapping parameters and optical
resolution. Counting only spin excitations, the range of
spin entropy per particle at which spin gradient thermom-
etry works in our system is 0.1 < S,/Nkyz < In(2), where
the lower limit is a function of optical resolution and
sample size and the upper limit corresponds to the point
at which the domain wall becomes as wide as the sample. It
is important to note that spin gradient thermometry can
work even if the entropy of the particle-hole excitations
lies outside of this range in either direction. For example,
spin gradient thermometry can work at arbitrarily high
values of the total entropy per particle S/Nkg, assuming
the field gradient is increased to the point where S, /Nkp <
In(2).

The method of thermometry presented here works be-
cause the two-component Mott insulator in a field gradient
has a spectrum of soft and easily measurable spin excita-
tions. The wide dynamic range of this method is a result of
the fact that, in contrast to the gapped spectrum of the bulk
one-component Mott insulator, the energy of the spin ex-
citations can be tuned by adjusting the strength of the
magnetic field gradient. The addition of a field gradient
and a second spin component does not change the bulk
properties of the Mott insulator and can be regarded as
“attaching” a general thermometer to the first component.

The two-component Mott insulator in a field gradient is
a rich system which can provide experimental access to
novel spin physics as well as thermometry. In the work
presented here, we have always allowed the spin distribu-
tion to equilibrate in the gradient before ramping up the
optical lattice. However, changing the gradient after the
atoms were already loaded into the lattice should open up
several interesting scientific opportunities, in which the
gradient is used to manipulate or perturb the atoms rather
than as a diagnostic tool. If, for example, the gradient were
suddenly changed after lattice ramp-up, one could probe
nonequilibrium spin dynamics in a many-body quantum
system. If the gradient were instead lowered adiabatically
after ramp-up, adiabatic cooling of the Mott insulator could

potentially be performed which, in contrast to [20], would
not involve spin-flip collisions.

In conclusion, we have proposed and demonstrated a
new method of thermometry for ultracold atoms in optical
lattices. We have used the new method to measure tem-
peratures in the Mott insulator as low as 1 nK. This
temperature is to the best of our knowledge the lowest
ever measured in a lattice, and it indicates that the system
is deep in the quantum Mott regime.
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