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Abstract

Ultracold atoms in optical lattices are among the most developed platforms of interest
for building quantum devices suitable for quantum simulation and quantum compu-
tation. Ultracold trapped atoms are advantageous because they are fundamentally
indistinguishable qubits that can be prepared with high fidelity in well-defined states
and read-out with similarly high fidelities. However, an outstanding challenge for
ultracold atoms in optical lattices is to engineer interesting interactions and control
the effects of heating that couple the system to states that lie outside the Hilbert
space we wish to engineer.

In this thesis, I describe a series of experiments and theoretical proposals that ad-
dress several critical issues facing ultracold atoms in optical lattices. First, I describe
experiments where the tunneling behavior of atoms in the lattice is modified to make
our fundamentally neutral particles behave as though they are charged particles in a
magnetic field. We show how engineering this interaction creates intrinsic degeneracy
in the single particle spectrum of the many-body system and how to introduce strong
interactions in the system with the goal of producing exotic many-body states such
as a bosonic fractional quantum Hall states. Then, I discuss how this technique can
be easily generalized to include spin and higher spatial dimensions in order to access
a rich variety of new physics phenomena.

Next, I report on the realization of a spin-1 Heisenberg Hamiltonian which emerges
as the low energy effective theory describing spin ordering in the doubly-occupied
Mott insulator of two spin components. This integer spin Heisenberg model is qual-
itatively different from the half-integer spin model because it contains a gapped,
spin-insulating ground state for small inter-spin interaction energies which we call
the spin Mott. Using a spin-dependent lattice to control the inter-spin interactions,
we demonstrate high-fidelity, reversible loading of the spin-Mott phase and develop a
probe of local spin correlations in order to demonstrate a spin entropy below 0.2 𝑘𝐵
per spin. Progress on adiabatically driving the quantum phase transition from the
spin Mott to the 𝑥𝑦-ferromagnetic is discussed along with the progress towards the
creation of a quantum gas microscope for single atom detection and manipulation.
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Chapter 1

Introduction

Ultracold atoms in optical lattices represent one of the most promising platforms for

studying complex many-body quantum systems. One important reason for the intense

interest in such atomic systems is the clean, well-characterized, precisely controllable

nature of each sample. This enables the experimenter to create and detect physics

from intuitive demonstrations of quantum single-particle physics with high signal-to-

noise to complex many-body physics with precise controllability. Along these lines the

field of ultracold atoms has produced many iconic results ranging from the realization

of atomic Bose-Einstein condensates (BECs) [6, 38, 20] and degenerate Fermi gases

(DFGs) [63, 132, 177, 176] to detailed studies of superfluidity in these systems at all

interaction scales from the weakly interacting limit to the unitary limit [84, 85].

One of the most important examples of a strongly interacting state of matter

realized with ultracold atoms is the realization of both bosonic and fermionic Mott

insulators by loading an ultracold gas into an optical lattice [62, 78, 139]. For bosons,

the optical lattice realizes a quantum phase transition between a superfluid state and

a Mott insulating state. The realization of this quantum phase transition has led to

groundbreaking studies of the dimensional dependence, including in one-dimension

the Tonks-Girardeau gas [126], hidden string-order parameters [45], magnon bound

states [50], spin and entanglement transport [49], and direct measurements of en-

tanglement entropy [75]; in two-dimensions the evolution of the Higgs mode [46]

and single-atom imaging of the many-particle system [9, 143, 127, 32, 124, 66, 44];

17



and in three-dimensions the dependence on exotic lattice geometries [77, 150] among

many other studies. The more recent realization of fermionic Mott insulators has also

quickly led to observation of short range antiferromagnetic correlations in one-, two-,

and three-dimensional systems [61, 68, 18, 30, 41] as well as observations of long range

antiferromagnetic states [115, 22]. Throughout all the above results, the impeccable

cleanliness and control of ultracold atoms in optical lattices has been a key asset for

creating and detecting these important states. For these reasons, ultracold atoms in

optical lattices remain one of the most promising platforms for realizing and studying

exotic quantum many-body states of matter.

In recent years, two important directions have emerged in the ultracold atom

community. The first is the creation of synthetic gauge potentials and spin-orbit

coupling leading to the realization of topological states of matter [103, 59], and the

second is the realization of extremely low temperature states of matter enabling the

detection of long-range magnetic correlations [115, 22]. Gauge potentials and, most

importantly, gauge symmetry, have been central concepts in modern physics starting

with the formulation of quantum electrodynamics, leading to an understanding of

non-Abelian gauge fields and electroweak symmetry breaking [36], and culminating

with the formulation of the standard model of particle physics [128]. Emergent gauge

potentials also play an important role in condensed matter physics, playing a crucial

role in our understanding of diverse systems from quantum critical points in two-

dimensional magnetic systems [142] to the binding of electrons and vortices in Chern-

Simons theories of the fractional quantum Hall states [106].

In cold atoms, these fields do not arise naturally in the many-body context be-

cause the constituent particles are neutral, and thus do not couple directly to any

gauge potential. An important development in the field has thus been the creation of

synthetic gauge fields for neutral ultracold atoms [103, 59]. This accomplishment has

also both raised the possibility of creating topologically ordered states of matter by

creating states analogous to the two-dimensional electron gas in a magnetic field [76]

as well as generated considerable interest in engineering new, effective Hamiltonians

using periodic driving of many-body systems – sometimes referred to as Floquet en-

18



gineering [57, 56]. The creation of such large effective magnetic fields in an optical

lattice using such periodic driving techniques is one of the main focuses of the work

discussed in this thesis.

A second important direction of theoretical and experimental research in ultracold

atoms is towards realization of extremely low entropy states of matter in an optical

lattice. For example, in order to study many interesting phases of matter, such as

ferromagnetic and antiferromagnetic states, the entropy must be sufficiently low to

develop long-range ordering. For magnetic systems, the corresponding temperature

scale to realize such low entropies is determined by the exchange interaction energy

scale. As a result, to realize a magnetically ordered states of 87Rb atoms in optical

lattices the corresponding temperature one needs to realize is on the scale of many tens

of picokelvin, a temperature that has proven difficult so far for the field of ultracold

atoms to reach. Realizing extremely low spin entropies, and how to turn this low

entropy state into a magnetically ordered, low temperature state, is the second main

focus of this thesis.

This structure of the thesis is as follows. I will outline some of the big-picture

problems that we hope to address using the study of cold atoms and highlight why

these are hard problems to solve. Then I will discuss several useful toy models for

understanding the physics to conclude chapter 1. In chapter 2 I will discuss in detail

the both the theoretical and experimental aspects of the implementation of an optical

lattice in the lab and then the realization of strong artificial magnetic fields in both

chapters 3 and 4. The focus will next shift to realization of ultralow temperatures in

chapter 5 before concluding with some outlooks in chapter 6.

1.1 Many-body Physics - Why is this Hard?

In principle, the physics of a collection of many non-relativistic, interacting particles

in a box is fully encapsulated in the many-particle Hamiltonian:

𝐻 =
𝑁∑︁
𝑖=1

p2
𝑖

2𝑚𝑖

+
∑︁
𝑗 ̸=𝑖

𝑉 (r𝑖, r𝑗) (1.1)
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where p𝑖 is the momentum of the 𝑖-th particle and 𝑉 (r𝑖, r𝑗) is a generic interaction

between any two particles 𝑖 and 𝑗 in the system. This equation is solvable for systems

of one or two particles, but, given a form of the interaction, the solution is not

generally accessible for a thermodynamically large number of particles, 𝑁 .

Remarkably, much progress has been made in the understanding of materials by

solving for the spectrum of a single particle and using the resulting basis of states to

understand at a perturbative level through scattering calculations how interactions

both qualitatively and quantitatively change the resulting character of the single par-

ticle states compared to the observed many-particle states. Such approaches have

given rise to an understanding of many phases of matter such as metals and band

insulators and also forms the theoretical basis for the physics underlying the modern

semiconductor industry. In this picture, the interacting electron system closely resem-

bles a non-interacting electron system and is understood using Fermi-liquid theory

[13].

However, to account for additional and unexpected phases that strong interactions

bring we want to move beyond Fermi-liquid theory. One might be tempted to accom-

plish this task by keeping track of all the states on the Hilbert space and attempt to

diagonalize the resulting Hamiltonian. To give a concrete example, take an arbitrary

spin-1/2 system and try to write down the basis for increasing numbers of spins. The

bases for calculating the Hamiltonian scale as:

2 Particles: {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩} (1.2)

3 Particles: {| ↑↑↑⟩, | ↓↑↑⟩, | ↑↓↑⟩, | ↑↑↓⟩, | ↓↑↓⟩, | ↓↓↑⟩, | ↑↓↓⟩, | ↓↓↓⟩} (1.3)

4 Particles: {| ↑↑↑↑⟩, | ↓↑↑↑⟩, | ↑↓↑↑⟩, | ↑↑↓↑⟩, | ↑↑↑↓⟩, | ↑↑↓↓⟩ . . .

. . . | ↑↓↑↓⟩, | ↑↓↓↑⟩, | ↓↓↑↑⟩, | ↑↓↓↓⟩, | ↓↑↓↓⟩, | ↓↓↑↓⟩, . . .

. . . | ↓↓↓↑⟩, | ↓↓↓↓⟩} (1.4)

5 Particles: . . . (1.5)

From this simple exercise of writing down the basis of a spin-1/2 chain we can see

that simply expressing the basis is an exponentially hard problem, scaling as 2𝑛. For
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comparison, in order to keep track of the full quantum state for just 300 spins we

need to store 2300 ≈ 1090 exponentially small complex numbers, a number ∼1010 times

larger than the number of atoms in the visible universe! The problem is made even

worse for the spin-1 chain that will be considered in chapter 5 where the basis size

scales as 3𝑛. As a result, we wish to find some other way of capturing the essential

physics of a many-particle system that does not rely on explicitly writing down the

full many-body basis. Otherwise, understanding the physics of a quantum many-body

state remains a fundamentally intractable problem due to the scaling of the basis size

with particle number.

1.1.1 Mean-Field Theory

The simplest and most widely used approach to handling the theoretical complexity of

the quantum many-body problem falls under the general scope of mean-field theories.

In the case of an interacting spin system, this mean field assumption arises from

treating the interaction terms with the assumption that individual quantum particles

interact with a classical field composed of the mean-value of the surrounding spins. In

this way, much of the complexity of correlations induced by interactions are ignored

and, for some theories, is successful in distilling the exponential complexity to a few

parameters which describe the physics of the resulting quantum state. Although this

works in many cases such as weakly interacting superfluids and three-dimensional

ferromagnets, there are many interesting states for which particle correlations play

a fundamental role in determining the resulting properties of the quantum state;

for example the unitary Fermi gas equation of state [89] or more dramatically the

appearance of the fractional quantum Hall states over Wigner crystallization in the

ground state of the two-dimensional electron gas [94, 146, 152].

Regardless, the mean-field approximation has proven to be highly effective for

many quantum states, so we begin by discussing the underlying reason it is so suc-

cessful: because fluctuations in such systems are small compared to the average value.

This allows for approximating interaction term via what is called a decoupling approx-

imation. For a concrete example, we take a perturbation term such as the tunneling
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term perturbing the atomic limit Mott insulator, a result we will see in chapter 2:

𝑉 ′ ∝ 𝑎̂†𝑖 𝑎̂𝑗. (1.6)

We can exactly re-write this term as fluctuations around some average value we will

define to be the order parameter, 𝜓 = ⟨𝑎̂𝑖⟩:

𝑎̂†𝑖 𝑎̂𝑗 = (𝑎̂†𝑖 − ⟨𝑎̂†𝑖⟩+ ⟨𝑎̂†𝑖⟩)(𝑎̂𝑗 − ⟨𝑎̂𝑗⟩+ ⟨𝑎̂𝑗⟩) (1.7)

= (𝑎̂†𝑖 − ⟨𝑎̂†𝑖⟩)⟨𝑎̂𝑗⟩+ (𝑎̂𝑗 − ⟨𝑎̂𝑗⟩)⟨𝑎̂†𝑖⟩+ ⟨𝑎̂†𝑖⟩⟨𝑎̂𝑗⟩+ (𝑎̂†𝑖 − ⟨𝑎̂†𝑖⟩)(𝑎̂𝑗 − ⟨𝑎̂𝑗⟩)(1.8)

= 𝛿𝑎̂†𝑖⟨𝑎̂𝑗⟩+ 𝛿𝑎̂𝑗⟨𝑎̂†𝑖⟩+ ⟨𝑎̂†𝑖⟩⟨𝑎̂𝑗⟩+ 𝛿𝑎̂†𝑖𝛿𝑎̂𝑗 (1.9)

where we have defined new fluctuation operators 𝛿𝑎̂𝑗 = (𝑎̂𝑗 − ⟨𝑎̂𝑗⟩). The underlying

assumption that makes mean field theory work is that the fluctuations from the aver-

age value are not large. Crucially, this assumption allows us to neglect the last term

in equation 1.9 which corresponds to the product of two small numbers. This approx-

imation is generally called the decoupling approximation, and leads to a tractable

perturbation term:

𝑎̂†𝑖 𝑎̂𝑗 ≈ 𝛿𝑎̂†𝑖⟨𝑎̂𝑗⟩+ 𝛿𝑎̂𝑗⟨𝑎̂†𝑖⟩+ ⟨𝑎̂†𝑖⟩⟨𝑎̂𝑗⟩ (1.10)

= 𝑎̂†𝑖⟨𝑎̂𝑗⟩+ 𝑎̂𝑗⟨𝑎̂†𝑖⟩ − ⟨𝑎̂†𝑖⟩⟨𝑎̂𝑗⟩ (1.11)

= 𝑎̂†𝑖𝜓 + 𝑎̂𝑗𝜓
* − 𝜓2 (1.12)

From the form of equation 1.12 we can interpret this decoupling approximation as

treating individual states as though they interact with a background field composed

of the average value of all other states in the sample, i.e. the mean-field. This

order parameter, 𝜓 now becomes a variational parameter used to minimize an energy

functional in order to find the ground state configuration of the system. An important

example of such a calculation is seen in chapter 2 in order to determine the superfluid

to Mott insulator phase diagram.

If we look at the form of the term dropped in making the mean-field approx-
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imation: 𝛿𝑎̂†𝑖𝛿𝑎̂𝑗 we see that this term can become large, and thus the underlying

assumption of this approximation breaks down, when correlations between fluctua-

tions become on the order of the average value of the order parameter. Typically,

this approximation can be broken by introducing sufficiently strong inter-particle in-

teractions at which point the position of one particle can become strongly correlated

with the positions of all the other particles in the system. In the discussion of frac-

tional quantum Hall states in the next section, this will appear prominently in the

two-particle wavefunction as well as the Laughlin wavefunction as the amplitude of

the wavefunction of one particle will depend sensitively on its position relative to the

other particles in the problem.

1.1.2 Why is Magnetism Quantum?

The second part of this thesis will address the questions of preparing low entropy

states of matter with a special emphasis on the spin-1 Heisenberg model. In general,

the problem of such magnetic states of matter can also highlight the importance of

capturing electron correlation in a many-body wavefunction. To understand this, we

first examine a classical argument for why magnetism must be quantum-mechanical

in origin.

The argument follows that considered in the Bohr-van Leeuwen theorem [17, 47]

which considers an isolated, non-rotating ensemble of classical particles. In essence,

the proof shows that such classical particles cannot have a magnetic moment in ther-

mal equilibrium. Consider the classical Hamiltonian for a charged particle:

𝐻 =
∑︁
𝑖

(︂
(𝑝𝑖 + 𝑞𝑖𝐴⃗𝑖)

2𝑚𝑖

)︂2

+ 𝑞𝑖𝜑 (1.13)

The magnetic moment, 𝜇, can be calculated via the partition function, 𝑍 =
∫︀
𝑑3𝑝
∫︀
𝑑3𝑟𝑒−𝛽𝐻 ,
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where 𝛽 = 1
𝑘𝐵𝑇

, as the statistical average of the constituent magnetic moments:

⟨𝜇⟩ =
𝜕

𝜕𝐵

(︂
𝜕 ln𝑍

𝜕𝛽

)︂
=

[︂ ∫︁
𝑑3𝑟

∫︁
𝑑3𝑝

𝑒

2𝑐
(r× v)𝑒−𝛽𝐻

]︂⧸︁
𝑍 (1.14)

=

[︂ ∫︁
𝑑3𝑟

∫︁
𝑑3𝑝

𝑒

2𝑐

(︁
r×

(︁ p
𝑚

− 𝑒

𝑚𝑐
A
)︁)︁
𝑒−𝛽𝐻

]︂⧸︁
𝑍 (1.15)

∝
∫︁ ∞

−∞
𝑑𝑝 𝑝 𝑒−𝑝2 = 0 (1.16)

Examining the expression in equation 1.15, we see that the integral over all momenta

will force the magnetic moment to be identically zero. This is because the scalar

and vector potential only depend on the coordinates, r, so the integrand is an odd

function of p. As a result, integration over all momenta from positive to negative

infinity will always give a classical, magnetic moment that is zero. The interpretation

of this result and its many generalizations to broader circumstances is that the origins

of magnetism are strictly quantum mechanical in nature [47].

Now that we know we will need a quantum mechanical description of our system

to understand magnetism, we consider several energy scales upon which magnetic

properties are observed in order to look for clues as to their origins. As a simple

example we consider the hydrogen molecule, H2. If we consider that the electron has

a quantum-mechanical spin which contains a magnetic moment that may circumvent

the Bohr–van Leeuwen theorem, we can calculate the expected interaction energy of

aligned versus anti-aligned spins via the dipole-dipole interaction and a mean inter-

particle distance of the size of the hydrogen bond length, ∼ 1𝑎0. Assuming dipoles

aligned head-to-tail, the energy shift of one electron in the field produced by the other

electron is on the order of 1 meV. However, we see magnetic materials in our day-

to-day lives whose magnetism survives thermal energies of >300 K, an energy scale

above ∼40 meV, more than an order of magnitude higher than one would expect from

dipole-dipole interactions alone.

The answer to this apparent discrepancy arises instead from the antisymmetriza-

tion requirement for a multi-particle fermionic wavefunction. To understand this,

we consider the hydrogen molecule as a two-site analog of a many-particle spin sys-
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tem. For hydrogen, the two-particle wavefunction must be antisymmetric with re-

spect to particle exchange, so if we write the wavefunction as a separable function,

𝜓 ∝ 𝜓space𝜒spin, of the spatial and spin degrees of freedom, the requirement for total

antisymmetry of the wavefunction means that the anti-symmetric or symmetric spin-

state of the electronic wavefunction effects the respective symmetry or anti-symmetry

of the spatial wavefunction. This is the key to understanding how the triplet or singlet

nature of the spin state gets promoted to ∼eV energy scales. To see this, expectation

values of the molecular Hamiltonian within the Born-Oppenheimer approximation [91]

can be constructed using the symmetric and anti-symmetric spatial wavefunctions,

yielding an effective spin model for the total energy as a function of the internuclear

separation, 𝑅:

𝐸± = 𝜖(𝑅) + 𝐽(𝑅)
(︁
𝑆1 · 𝑆2 +

1

4

)︁
. (1.17)

The parameter 𝐽 sets the energy scale for the spin-dependent energy, which, from

the matrix elements of the Hamiltonian, is mostly determined by the exchange part

of the electron-electron interaction, a large ∼ eV energy scales in the problem!

From this simple model we gain a clear picture as to why having a complete picture

of many-body quantum correlations is important in understanding magnetism: spin-

spin interactions, which we might normally ignore due to their seemingly low energy

scale, can have a profound effect on the macroscopic quantum state. Looking at the

hydrogen molecule as a simple, two-site model of an interacting electron system, we see

that the spin state can interplay with the charge degrees of freedom in order to make

magnetic effects visible on the eV scale as a result of electron-electron interactions.

As a result, we are interested in simulating the effects of electron-electron repulsion

in a truly many-particle system to see what new states of matter might emerge in

such a situation. One classic example of this effect that we will discuss next, is in the

strongly interacting regime of the quantum Hall effect wherein the qualitatively new

features of the fractional quantum Hall effect are realized.
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1.2 Topological Phases of Matter

The fractional quantum Hall states are some of the best known examples of topo-

logically ordered phases of matter. Topologically ordered states comprise a class of

quantum phases which are not characterized by any symmetry-breaking as in Landau-

Ginzberg theory, but instead are characterized by ground state degeneracy [163],

long-range entanglement, edge states, and fractional statistics [162]. Such states are

gapped in the bulk where the band structure can be characterized by a topological

invariant. States with different topologies cannot smoothly be deformed into one an-

other without the closing of a bulk energy gap, so at the boundary of the material

there are necessarily protected edge modes. To understand this effect, we work with

the toy model of two-dimensional electrons in a magnetic field, the classic problem of

Landau levels.

In the next subsection, we will develop the theoretical framework under which

we will proceed to discuss in the following subsections the integer and fractional

quantum Hall effects. For an intuitive discussion of these states as motivation for

ultracold atom experiments, skip to sections 1.2.2 and 1.2.3.

1.2.1 Landau levels

We begin with the single-particle Hamiltonian for a particle of mass, 𝑚, and charge,

𝑒 coupled to an externally applied vector potential, A:

𝐻 =
(p− 𝑒

𝑐
A)2

2𝑚
. (1.18)

In the following, we will use the symmetric gauge for the applied field such that,

A = 𝐵(−𝑦𝑒𝑥 + 𝑥𝑒𝑦)/2, and B = ∇ × A corresponds to a uniform magnetic field

oriented in the 𝑧-direction. We define the cyclotron frequency such that, 𝑚𝜔𝑐 =
𝑒𝐵
𝑐

and the Hamiltonian simplifies to the following form when we express it in terms of
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new momentum operators, Π̂𝑥 = 𝑝𝑥 +
1
2
𝑚𝜔𝑐𝑦 and Π̂𝑦 = 𝑝𝑦 − 1

2
𝑚𝜔𝑐𝑥̂:

𝐻 =
1

2𝑚

(︂(︁
𝑝𝑥 +

1

2
𝑚𝜔𝑐𝑦

)︁2
+
(︁
𝑝𝑦 −

1

2
𝑚𝜔𝑐𝑥̂

)︁2)︂
=

1

2𝑚

(︁
Π̂2

𝑥 + Π̂2
𝑦

)︁
. (1.19)

An important and recurring scale that will become crucial to understanding the

physics is the length scale associated with the magnetic flux, 𝑙 =
√︁

~
𝑚𝜔𝑐

=
√︁

~𝑐
𝑒𝐵

.

Using this definition of the magnetic flux length we find a simple factorization of

equation 1.2.1 into a product of the sum and difference of their two constituent

operators:

𝑎̂ =
𝑙√
2~

(︁
Π̂𝑥 + 𝑖Π̂𝑦

)︁
(1.20)

𝑎̂† =
𝑙√
2~

(︁
Π̂𝑥 − 𝑖Π̂𝑦

)︁
. (1.21)

We can now re-write the Hamiltonian in terms of the raising and lowering operators

such that the problem looks like that of a one dimensional harmonic oscillator:

𝐻̂ = ~𝜔𝑐

(︁
𝑎̂†𝑎̂− 1

2

)︁
. (1.22)

It is remarkable that we have taken a two dimensional problem and reduced it to a

one-dimensional one by a coordinate transformation! What’s going on? The problem

becomes more transparent when we change coordinates to a coordinate system that

more closely reflects the symmetry of the underlying vector potential. To do so,

we identify a new coordinate, 𝑧 = 𝑥 + 𝑖𝑦, and the derivative of that coordinate,

𝜕𝑧 = 𝜕𝑥 − 𝑖𝜕𝑦, (note that 𝜕𝑧𝑧 = 2, an important factor of 2!) such that the raising

and lowering operators can be rewritten as:

𝑎̂ =
−𝑖√
2

(︂
𝑧

2𝑙
+ 𝑙𝜕𝑧*

)︂
𝑙=1
=

−𝑖√
2

(︂
𝑧

2
+ 𝜕𝑧*

)︂
(1.23)

𝑎̂† =
𝑖√
2

(︂
𝑧*

2𝑙
− 𝑙𝜕𝑧

)︂
𝑙=1
=

𝑖√
2

(︂
𝑧*

2
− 𝜕𝑧

)︂
(1.24)
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For compactness of notation, we will set 𝑙 = 1 until we want to reintroduce a length

scale for interpretive reasons. We can understand the wavefunction of the states

which diagonalize the Hamiltonian by applying the lowering operator to the vacuum

wavefunction and solving the resulting differential equation:

⟨𝑧, 𝑧*|𝑎̂|GS⟩ =
(︁𝑧
2
+ 𝜕𝑧*

)︁
𝜓 = 0 (1.25)

𝜓𝑛(𝑧, 𝑧
*) = 𝑓(𝑧)𝑒−𝑧𝑧*/2 = 𝑁𝑛𝑧

𝑛𝑒−|𝑧|2/2. (1.26)

Most importantly, we see that in solving the integral for the wavefunction in equation

1.26 there exist an infinite family of solutions, all describing the same energy state of

the Hamiltonian, each with a different, analytic function of 𝑧 as a prefactor. Hinting

at a future solution to this problem, we will express this arbitrary, analytic function

of 𝑧 as a normalization constant, 𝑁𝑛 = (𝜋𝑛!)−1/2 times a polynomial factor 𝑧𝑛.

Examining the wavefunction in 1.26, we see that this family of states corresponds

to a series of localized gaussian wavepackets with average radius governed by the

power of the polynomial factor, 𝑛, as ⟨𝑟2⟩ =
√
2(𝑛+1). Given the form of the ground

state wavefunctions as localized, circular states, an interesting question to ask is:

are these states also angular momentum eigenstates? We can construct the angular

momentum operator in terms of the circular coordinates, 𝑧 and 𝑧* and use them to

operate on the family of wavefunctions, 𝜓𝑛(𝑧, 𝑧
*):

𝐿𝑧𝜓𝑛(𝑧, 𝑧
*) = (𝑥𝑝𝑦 − 𝑦𝑝𝑥)𝜓𝑛(𝑧, 𝑧

*) (1.27)

= ~(𝑧𝜕𝑧 − 𝑧*𝜕𝑧*)𝜓𝑛(𝑧, 𝑧
*) (1.28)

= 𝑛~𝜓𝑛(𝑧, 𝑧
*). (1.29)

Therefore, we see that each polynomial of power 𝑛 is simultaneously both a lowest

energy eigenstate of the Hamiltonian and an eigenstate of angular momentum with

𝑧-projection 𝑛~.

We can systematically construct these states via canonical quantization of the

variables conjugate to the generalized momenta, Π𝑥 and Π𝑦 introduced earlier, the

28



Angular Momentum (Lz)

…

E
ne

rg
y 

(h
f)

0 1 2 3-1-2

1/2

3/2

5/2

…

…
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Figure 1-1: The spectrum of Landau levels. Each manifold of states is equally spaced
by the cyclotron energy, ~𝜔𝑐 and is 𝑁 -fold degenerate. Each state in the series
of Landau levels can be constructed by sequential application of the two creation
operators, 𝑎̂†, which promotes a particle to a higher Landau level, and 𝑏̂†, which
raises the angular momentum state of the particle within a Landau level.

generalized coordinates, 𝑋 and 𝑌 . However, we take a different approach here by tak-

ing inspiration from equation 1.26 and applying another operator, 𝑏̂, that annihilates

the lowest angular momentum eigenstate:

⟨𝑧, 𝑧*|𝑏̂|GS⟩ = 𝐵(𝑧, 𝑧*)𝑒−𝑧𝑧*/2 = 0 (1.30)

Ansatz:
(︁𝑧*
2

+ 𝜕𝑧

)︁
𝑒−𝑧𝑧*/2 = 0 (1.31)

𝑏̂ =
1√
2

(︁𝑧*
2

+ 𝜕𝑧

)︁
(1.32)

𝑏̂† =
1√
2

(︁𝑧
2
− 𝜕𝑧*

)︁
. (1.33)

We can check that the operator 𝑏̂ is exactly what one would get from canonical

quantization, and it properly follows the commutation relation [𝑏̂, 𝑏̂†] = 1. In addition,

we find that sequential application of the raising operator 𝑏̂† to the ground state

wavefunction with polynomial order 𝑛, has the effect of raising the angular momentum

of the state while keeping the state within the ground state manifold,

𝑏̂†|𝑛⟩ = |𝑛+ 1⟩ (1.34)

From the action of both operators 𝑎̂ and 𝑏̂ on the gaussian wavefunction we can
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construct the entire spectrum of states. This spectrum is sketched in figure 1-1.

1.2.2 Landau levels and the IQHE

Now that we have solved for the spectrum and the wavefunctions, we return to the

question of topology. How can I see the underlying topology of this state and char-

acterize when it changes?

We begin by formulating the underlying translation symmetry of this state. In

analog to a free-particle system where the momentum operator is the generator of

translations, we use the canonical momentum of this system to define a translation

operator:

𝑇 (d) = 𝑒−𝑖d·Π/~ = 𝑒−𝑖d·(p− 𝑒
𝑐
A)/~. (1.35)

Note that this translation operator is gauge-dependent, and related to the translation

operator in different gauges by a simple gauge transformation. In addition, different

translations do not necessarily commute as shown by operation on the wavefunction

at some location, 𝜓(𝑥, 𝑦) with the translation operators:

𝑇 (𝑑𝑦)𝑇 (𝑑𝑥)𝜓(𝑥, 𝑦) = 𝑒−𝑖
𝑑𝑦𝑥

2𝑙2 𝑒𝑖
𝑑𝑥(𝑦+𝑑𝑦)

2𝑙2 𝜓(𝑥+ 𝑑𝑥, 𝑦 + 𝑑𝑦) (1.36)

𝑇 (𝑑𝑥)𝑇 (𝑑𝑦)𝜓(𝑥, 𝑦) = 𝑒𝑖
𝑑𝑥𝑦

2𝑙2 𝑒−𝑖
𝑑𝑦(𝑥+𝑑𝑥)

2𝑙2 𝜓(𝑥+ 𝑑𝑥, 𝑦 + 𝑑𝑦) (1.37)

such that the commutation relation between the two directions can be established as:

𝑇 (𝑑𝑥)𝑇 (𝑑𝑦)𝜓(𝑥, 𝑦) = 𝑒𝑖
𝑑𝑦𝑑𝑥

𝑙2 𝑇 (𝑑𝑦)𝑇 (𝑑𝑥)𝜓(𝑥, 𝑦). (1.38)

We now see that, in general, these translation operators do not commute for arbi-

trary translations. However, for 𝑑𝑥𝑑𝑦/𝑙2 = 2𝜋𝑛, where 𝑛 is an integer, the operators

commute and we then have a good set of operators to formulate a discrete translation

symmetry! Formally, this relation is known as the Dirac quantization condition.

We can now use our operators with discrete translation symmetry of 𝑑𝑥,𝑦 = 𝑙 to

formulate Bloch’s theorem to construct a momentum-space wavefunction, as we show

for an optical lattice in chapter 2. Since we are interested in the topology of the band,
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we wish to evaluate the Berry connection [69]:

A = 𝑖⟨𝜑𝑘|∇𝑘|𝜑𝑘⟩ = (−𝑘𝑦𝑙2𝑒𝑥 + 𝑘𝑥𝑙
2𝑒𝑦)/2, (1.39)

which, perhaps unsurprisingly, looks like the underlying vector potential. We can

prove that the Berry connection is in fact gauge dependent, and changes depending

on the underlying vector potential because the symmetry of the vector potential is

reflected in the modified translation symmetry used to formulate the Bloch wave-

functions. Despite the apparent gauge-dependence of the Berry connection, we can

compute two gauge invariant quantities, the Berry flux, B and Chern number,𝐶:

B = ∇×A = 𝑙2𝑧 (1.40)

𝐶 =

∫︁
BZ
𝑑k B = 𝐵 × (BZ Area) = 1. (1.41)

For a general quantum state, these are gauge-invariant quantities which encode the

topological quantum number of the state [69]. The Hall conductance which is tradi-

tionally measured by measuring the transverse conductance in a transport experiment

can be calculated from the Chern number by the relation:

𝜎𝑥𝑦 = 𝐶
𝑒2

~
(1.42)

A useful way to visualize this effect is seen in figure 1-2 by plotting the energy

of the Landau levels as a function of position in the sample [99]. In the bulk, the

system behaves ideally; however, at the interface between the 2D electron gas and

a trivial state, such as the vacuum or a high bandgap insulator, the gaps of the

Landau level spectrum must close in order to transform into a topologically trivial

state with zero Chern number. Therefore, at the edges the Landau levels of the bulk

system necessarily cross the chemical potential, 𝜇, shown by the dotted line in figure

1-2, at which point the insulting nature of the bulk breaks down and a conduction

channel opens. The Hall conductance is given by the number of states which cross

the chemical potential on the edge multiplied by the Chern number of each band. In

31



μ

n = 0

n = 1

n = 2

n = 3
...

x

E

L0

σH = ν
e2

h

ν = 2

Tr
iv

ia
l M

at
er

ia
l, 

C
 =

 0

Tr
iv

ia
l M

at
er

ia
l, 

C
 =

 0

Figure 1-2: Edge states responsible for the integer quantum Hall effect. A schematic
of the spectrum of Landau levels changing as a function of the spatial coordinate 𝑥
at the interface with two topologically trivial materials at 𝑥 = 0 and 𝐿. In the bulk,
all levels below the chemical potential, shown as a dashed line, are occupied with
electrons and there are no states close to the chemical potential to carry current,
so the bulk is insulting. However, at the edges of the sample, these occupied levels
necessarily become unbound and increase in energy, eventually crossing the chemical
potential at locations indicated by the red circles. These states crossing the level
of the chemical potential open up a discrete number of channels for conductance,
resulting in a quantized Hall conductance.
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the example given in figure 1-2, at the position of the chemical potential there are

two Landau levels which cross at the edge, each carrying a Chern number of one, so

the Hall conductance is 2× 𝑒2

ℎ
, realizing the 𝜈 = 2 quantum Hall effect.

In a condensed matter experiment, transitions between different quantum Hall

states can be controlled either by tuning the chemical potential with a gate voltage

or by changing the applied magnetic field strength. To move towards the regime

of electrons occupying a single Landau level, the density of electrons, given by the

chemical potential, is reduced and the Landau level spacing is increased such that the

chemical potential lies in between the lowest landau level and the first Landau level.

In the process, the effective electron-electron interaction is also tuned relative to the

Landau level spacing, 𝑒2/𝑙
~𝜔𝑐

∝ 𝑒3/2√
𝐵

. This is important for realizing of the fractional

quantum Hall effect because interactions ideally shouldn’t be larger than the spacing

of Landau levels, and this scaling allows for the preparation of strongly interacting,

but not too strongly interacting, electrons in the lowest Landau level.

The regime of electron filling fractions less than one complete Landau level is

known as the extreme quantum limit and was challenging to realize with two-dimensional

electron gases because in such a dilute regime the effects of disorder come to dominate

the physics at very low electron densities. As a result, for very strongly interacting

electron systems, the effects of disorder play a prominent role in understanding the

resulting transport measurements, and it was advances in doping that helped experi-

ments achieve this regime [152, 146]. This highlights the attractive nature of realizing

these states in an ultracold atomic system, whose cleanliness allows such states to be

realized and observed free of the competing effects of disorder.

1.2.3 FQHE and the Laughlin wavefunction

For developing intuition for the problem of interacting particles in the lowest Landau

level, it is instructive to begin with the two-body problem with the coulomb inter-

action [55]. We begin by writing out the two-particle Hamiltonian, transforming to

the center-of-mass and relative coordinates, and showing that the problem, as usual,

can be reduced to a one-body problem in the relative coordinate, r = r1 − r2. The
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resulting Hamiltonian is the single-particle, charged particle in a magnetic field prob-

lem we solved above, but now also contains an added coulomb interaction term. To

get an intuition for how the coulomb interaction changes the Landau level structure

in figure 1-1, we evaluate the matrix element:

⟨
𝜓𝑚

⃒⃒⃒⃒
𝑒2

𝑟

⃒⃒⃒⃒
𝜓𝑚

⟩
=

2𝜋𝑒2

𝜋𝑚!

∫︁ ∞

0

𝑟𝑑𝑟 𝑟2𝑚𝑒−𝑟2 (1.43)

=
𝑒2

𝑚!
Γ

(︂
𝑚+

1

2

)︂
=

(2𝑚)!
√
𝜋𝑒2

22𝑚(𝑚!)2
(1.44)

which forms the diagonal elements of degenerate perturbation theory. A more intu-

itive scaling is given by using Stirling’s approximation, 𝑛! ≈
√
2𝜋𝑛

(︀
𝑛
𝑒

)︀𝑛, to simplify

the factorial functions to get the simple scaling relation, valid for large, 𝑚:

⟨
𝜓𝑚

⃒⃒⃒⃒
𝑒2

𝑟

⃒⃒⃒⃒
𝜓𝑚

⟩
≈ 𝑒2

𝑙
√
𝑚

(1.45)

Recall that the average radius of a state with angular momentum 𝑚 is 𝑙
√
𝑚, so

we interpret this relation to indicate that two repulsively interacting particles in

the lowest Landau level minimize their interaction energy in the perturbative regime

when they are maximally separated, occupying the state where the relative coordinate

maximizes its angular momentum state. The result also shows how interactions can

lift the degeneracy of the states in the lowest Landau level and provides a natural

way of generalizing the two-body wavefunction to a many-body ansatz. Writing the

above relative wavefunction in terms of the original coordinates the wavefunction for

the relative angular momentum state, 𝑚, looks like:

𝜓(𝑧1, 𝑧2) ∝ (𝑧1 − 𝑧2)
𝑚𝑒−(|𝑧1|2+|𝑧2|2)/2. (1.46)

The form of the two-particle wavefunction lends itself to a simple interpretation of the

nature of the weakly interacting state. First, the electrons try to maximize their inter-

particle distance by maximizing the relative angular momentum state, the polynomial

index, 𝑚. Second, the probability of the electrons to be at the same location in
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space is zero because of the node in the relative wavefunction that multiplies the

gaussian, (𝑧1 − 𝑧2). This factor appears in the wavefunction of many interacting

systems and is commonly known as the Jastrow factor. If we model the electron-

electron interaction pseudopotential with a short-ranged function then this node in the

relative two-particle wavefunction reduces the total interaction energy, and in the limit

of a delta-function pseudopotential the interaction energy becomes identically zero.

Finally, we see that this wavefunction is properly anti-symmetrized under exchange of

coordinates, so it properly obeys fermionic statistics and represents a valid fermionic

wavefunction.

Drawing inspiration from the solution to the interacting two-particle problem we

now write down an ansatz for the many-particle problem, which turns out to be the

celebrated Laughlin wavefunction [93]. The wavefunction should have each electron

be localized with the appropriate gaussian factor in addition to having a node in

the relative wavefunction corresponding to the location of every other electron in the

system. The simplest wavefunction we can think of writing has the following form:

𝜓Laughlin =
𝑁∏︁
𝑖<𝑗

(𝑧𝑖 − 𝑧𝑗)
𝑚

𝑁∏︁
𝑘

𝑒−|𝑧𝑘|2/2 (1.47)

which corresponds to our two-particle wavefunction in the limit that N=2 and cor-

responds to the Laughlin wavefunction when N is arbitrarily large. We can also see

that in the limit of a two-body interaction pseudopotential that is short-ranged like

a delta function, the many-body interaction energy also goes to zero! The exponent

of the Jastrow factor, 𝑚, is controlled by the filling fraction of electrons in the lowest

Landau level, 1/𝜈. For the 1/3 Laughlin state the ratio of the number of particles to

the number of available states in the lowest Landau level is 𝜈 =1:3, so the exponent

is 𝑚 = 1/𝜈 = 3. Intuitively, this is corresponds to larger average spacing between

particles with the inter-particle spacing set by
√︀

⟨𝑟2⟩ = 𝑙
√
𝑚, as expected from the

minimization of interaction energy by maximizing the angular momentum state of the

relative wavefunction. In the limit of a completely filled Landau level, the exponent

is 𝑚 = 1 and the state corresponds to the integer quantum Hall state.
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It is interesting to construct a quasiparticle and quasihole wavefunction from the

Laughlin state by applying the raising or lowering operators 𝑏̂ and 𝑏̂† to the Laughlin

state. The result of this calculation for a quasi-hole is to produce a state with the

structure:

𝜓hole(𝑧0) =
∏︁
𝑖

(𝑧0 − 𝑧𝑖)
𝑁∏︁
𝑖<𝑗

(𝑧𝑖 − 𝑧𝑗)
𝑚

𝑁∏︁
𝑘

𝑒−|𝑧𝑘|2/2. (1.48)

Using this quasi-hole wavefunction, we can now begin to calculate many quantities of

interest such as the charge associated with this excitation or, by creating two quasi-

holes, calculating braiding phases associated with permutation of hole indices in the

many-particle wavefunction [121].

A final important point to explore is to examine the electron density in the Laugh-

lin wavefunction. Given the strongly repulsive nature of the system, we anticipate that

the ground state wavefunction should encode a uniform density. One intuitive way to

check this is via the analogy with a two-dimensional plasma potential, |𝜓|2 = 𝑒−𝛽Φ,

such that [93]:

Φ = −2𝑚 ln |𝜓| = −2𝑚2

𝑁∑︁
𝑖<𝑗

ln |𝑧𝑖 − 𝑧𝑗|+𝑚
∑︁
𝑘

|𝑧𝑘|2. (1.49)

Here we have set the thermodynamic temperature to be equal to 𝛽 = 1
𝑚

. Recalling the

electrodynamics of charged particles in two-dimensions, we examine the right-hand

side of equation 1.49. The first term corresponds to the two-dimensional coulomb

interaction, −∇2Φ = 2𝜋𝑚𝛿2(r), between particles with charge 𝑚. The second term

corresponds to the interaction with a uniform background charge, −∇2Φ = 2𝜋𝜌𝐵 =

−1/𝑙2, which accounts for overall charge neutrality [55]. Here the charge neutrality

requirement results in the relation between the charge density and the background

charge, 𝜌𝐵 = −1/2𝜋𝑙2, arising from applying the Laplacian to equation 1.49:

𝑛𝑚+ 𝜌𝐵 = 0. so: 𝑛 =
1

𝑚

1

2𝜋𝑙2
. (1.50)
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In other words, the charge density in the 𝜈 = 1/𝑚 Laughlin state corresponds to

a uniform charge density with 1/𝑚-th of an electron per cyclotron orbit or, equiv-

alently, one electron per a 𝑙 → √
𝑚𝑙 enlarged cyclotron orbit. This system is also

incompressible and exhibits sub-Poissonian density fluctuations [55]. In addition to

these properties, this system exhibits a novel kind of order, off-diagonal long range

order corresponding to the condensation of particles onto fluxes at low temperatures

[54].

Examining the form of the Laughlin wavefunction, we see how this state automat-

ically builds in both electron-electron correlations and anti-symmetrization via the

Jastrow factor, with an odd exponental factor, multiplying the exponential localiza-

tion single-particle factor. Intuitively, we see how electron correlations are built in and

short-ranged interactions are minimized by forcing a node in the wavefunction of the

𝑖-th particle at the location of every other particle in the many-body state. Capturing

such a state at the mean-field level is understandably hard since the single particle

wavefunction contains non-uniform density and we recover uniform density only when

considering the truly many-particle wavefunction. Such a system is a promising for

realization in an ultracold atomic system. The local control and detection capabilities

of such systems might allow the creation of well-localized quasi-particle or quasi-hole

excitations for interferometric measurements of exchange phases or local detection of

fractional particle statistics [19], and represent an exciting direction for development

of many-body interferometric tools in ultracold atoms [86, 75].

So far, we have introduced why the physics of many interacting particles is a chal-

lenging task for a classical calculation due to the exponential scaling of the problem

size. We discussed situations where mean-field theory works in describing quantum

many-body systems and why these approaches are successful for weakly interacting

systems with small fluctuations. We then discussed two situations where inherently

quantum effects have a profound impact on the ground state of the system. First, the

hydrogen molecule, where we saw that the inclusion of quantum-mechanical spin and

a fermionic anti-symmetrization requirement results in an effective spin model for the

electronic degrees of freedom. Second, we examined the integer and fractional quan-
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tum Hall states as examples of topologically ordered states and strongly interacting

systems that host fundamentally different types of orders and excitations from nor-

mal symmetry-breaking states. In the next chapter, we will discuss a crucial tool we

use to realize similar many-particle states of matter: an optical lattice. Throughout,

these two toy models will help interpret the resulting physics.
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Chapter 2

Optical Lattices

The main tool we will use to bring condensed matter phenomena to our cloud or

ultracold 87Rb atoms is an optical lattice. In real crystalline systems the ionic lattice

forms a regular array of trapping sites for electrons that can move through the material

an interact with each other. The mapping of a cold atoms experiment to a condensed

matter model finds the atoms in the lattice playing the role of the electrons and the

interfering laser beams that create a regular array of trapping sites playing the role

of the ions in a crystal. Similarly to electrons in a crystal, these atoms can both

move freely from site-to-site in the lattice as well as interact with each other. In the

discussion that follows, I show how this connection can be made rigorous and what

unique challenges the implementation of an optical lattice brings to experimental

physics.

2.1 The Simple Cubic Lattice

For ultracold atoms, we can make a regular array of identical trapping potentials

by interfering far-detuned laser beams. This technique creates very clean potentials

without the presence of defects and lends itself to a precise description of the re-

sulting physics because all the Fourier components of the lattice are known and the

interaction of the atom with the resulting electric field interference pattern is well-

characterized. Using various laser configurations and polarizations, a large variety of
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lattice geometries have been experimentally realized [62, 9, 77, 151, 79, 150] resulting

in a rich literature of new ways to prepare and measure cold atomic systems [16].

To illustrate the machinery of solving for the energy spectrum and eigenstates

given the electric field of our laser configuration and the resulting AC Stark shift of

an atom, we focus on the simple cubic lattice for clarity. The simple cubic lattice, also

called the primitive cubic lattice, consists of a unit cell with sites on the corners of the

primitive cell. This lattice is emulated by counter-propagating pairs of laser beams

(for simplicity, with equal intensity) along the three orthogonal spatial directions

creating the potental:

𝑉Latt(x) = 𝑉𝐿
(︀
cos2(𝑘𝑥𝑥) + cos2(𝑘𝑦𝑦) + cos2(𝑘𝑧𝑧)

)︀
, (2.1)

where 𝑘𝛼 = 2𝜋/𝜆𝛼 is the lattice wavevector in the 𝛼 direction defined by the wave-

length of light. Practically speaking, we have assumed that the three wavelengths are

close in energy but offset in frequency to avoid any cross-modulation terms between

the light fields in different directions, and that the lattice is independent of spin –

both assumptions we will break later in this thesis.

With the form of the optical lattice potential known, we can write down the

Hamiltonian for a single particle in this potential:

𝐻 =
p2

2𝑚
+ 𝑉Latt(x). (2.2)

Due to the separability of the potential, we can write the wavefunction as a product

of functions for each of the spatial directions, 𝜓(x) = 𝜓𝑥(𝑥)𝜓𝑦(𝑦)𝜓𝑥(𝑧), so the prob-

lem reduces to the sum of three one-dimensional differential equations satisfying the

energy relation:

𝐻𝜓𝑥(𝑥) =
(︁ 𝑝2𝑥
2𝑚

+ 𝑉𝐿 cos
2(𝑘𝑥𝑥)

)︁
𝜓𝑥(𝑥) = 𝐸𝑥𝜓𝑥(𝑥), where: 𝐸 = 𝐸𝑥 +𝐸𝑦 +𝐸𝑧 (2.3)

The solutions of the 1D Hamiltonian presented above are known as the Mathieu

functions. However, knowing this does not teach us anything about atoms in optical
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lattices so we move for a different approach. We can utilize the discrete translation

symmetry of the lattice – translations by the lattice spacing, 𝑎, do not change the

lattice – to invoke Bloch’s theorem which allows us to decompose the wavefunction

as the product of plane waves and a function that has the same periodicity as the

lattice:

𝜓(𝑥) = 𝑒𝑖𝑞𝑥𝜑𝑞(𝑥) (2.4)

The states are labeled by a new index, 𝑞, called the quasimomentum. The quasimo-

mentum acts like momentum, but is only unique within what is called a Brillouin

zone – states that cover the space between wavevectors 𝑞 ∈ (−𝜋/𝑎, 𝜋/𝑎] – and is only

conserved modulo the reciprocal lattice wavevector, 𝑄 = 2𝜋/𝑎. Scattering processes

associated with transitions to quasimomentum states outside the Brillouin zone are

called umklapp processes. The decomposition of the wavefunction into a product of

a plane wave and a periodic function allows us to rewrite the Hamiltonian as:

𝐻𝐵 =
(𝑝+ 𝑞)2

2𝑚
+ 𝑉𝐿 cos

2(𝑘𝑥𝑥). (2.5)

We can proceed towards a solution now by expanding the periodic part of the Bloch

wavefunction in a plane wave basis:

𝜑𝑞(𝑥) =
∑︁
𝑙

𝑐𝑞𝑙 𝑒
2𝑖𝑙𝑘𝑥𝑥 (2.6)

and writing down a tridiagonal matrix that can be numerically diagonalized.

𝐻 = 𝐸𝑅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . ...
...

...

· · ·
(︁
2(𝑙 + 1) + 𝑞

~𝑘

)︁2
−𝑁𝑅

4
0 · · ·

· · · −𝑁𝑅

4

(︁
2𝑙 + 𝑞

~𝑘

)︁2
−𝑁𝑅

4
· · ·

· · · 0 −𝑁𝑅

4

(︁
2(𝑙 − 1) + 𝑞

~𝑘

)︁2
· · ·

...
...

... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.7)

Here 𝐸𝑟 is the recoil energy, which sets the inherent energy scale of the lattice, and
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Figure 2-1: The spectrum of the three lowest bands of an optical lattice. From left
to right, the band structure for 1/2, 4, 10 and 15 𝐸𝑟 are shown in units of the atomic
recoil energy.

is given by:

𝐸𝑅 =
ℎ2

2𝑚𝑎2
(2.8)

and 𝑎 = 𝜆/2 sin(𝜃/2) is the lattice constant set by the laser wavelength and the beam

intersection angle, 𝜃. In the Hamiltonian matrix, 𝑁𝑟 is the number of recoil energies

that compose the total lattice depth, i.e. 𝑉𝐿 = 𝑁𝑟𝐸𝑟. This matrix can be diagonalized

for each quasimomentum in the first Brillouin zone. Plotting the energy eigenvalues

as a function of the quasimomentum yields the familiar picture of energy bands of a

lattice seen plotted in figure 2-1.

The numerical solution also gives access to the eigenvectors for each band and

for each quasimomentum. Usually, to get convergence towards a value for the en-

ergy eigenvalues one need to include 5 or more Fourier coefficients, 𝑐𝑞𝑙 . Using the

eigenvalues from this diagonalization, we can construct maximally localized Wan-

nier functions, the lattice analogue of the position space eigenstate - the Dirac-delta

wavefunction - in free space.

𝑤(𝑥− 𝑥𝑖) = 𝑁
∑︁
𝑞

𝑒−𝑞𝑥𝑖/~𝜑𝑞(𝑥) (2.9)
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Figure 2-2: Maximally-localized Wannier functions of the lowest band. From left to
right, the Wannier function corresponding to lattice depths of 1/2, 4, 10 and 15 𝐸𝑟 in
dimensionless spatial units with the lattice constant setting the length scale, 𝑎 = 1.
Note the sharp increase in peak density and reduction in wavefunction width with
increasing lattice depth.

For more general lattice geometries, this analogy with the Dirac delta function can

be exploited to formulate an alternate approach to construct maximally localized

Wannier functions by numerically minimizing the expectation value of the spatial

variance operator. While this technique is not covered in detail here, in one dimension,

this approach is outlined in the following preprint [96].

The maximally localized wavefunction is important because it allows the calcu-

lation of a variety of different lattice parameters such as tunneling matrix elements,

interaction energies, excitation probabilities, and more. As we see in the following

sections on the formulation of the Bose-Hubbard Hamiltonian from the microscopic

model of our atoms in optical lattices, these Wannier functions play an important

computational role.
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2.2 Scalar and Vector AC Stark Shifts

The creation of optical lattices for neutral atoms and molecules using far-detuned

laser beams has become a standard tool in ultracold atom experiments [16]. The

description above, which models the lattice structure independently of the internal

state of the atom, relies on the reduction of the atom-light interaction to that of an

effective two-level system with a ground and an excited electronic state, |𝑔⟩ and |𝑒⟩,
respectively, and a spin-independent dipole moment, d, connecting the two.

The situation becomes more complex when we consider that the ground and ex-

cited states contain additional degrees of freedom, such as the spin of an electron.

In the case of alkali atoms with one valence electron, the spin of the unpaired elec-

tron couples to the orbital angular momentum to create a 2𝑠+1𝑁𝐽 = 2𝑆1/2 ground

state and both a 2𝑃1/2 and 2𝑃3/2 excited state. If we now consider the interaction of

light with this level structure, the assumption of a dipole moment independent of the

internal state breaks down and we have to consider situations like that depicted in

fig. 2.11, where the coupling to the excited state is very different for different projec-

tions of the angular momentum in the ground state, 𝑚𝐽 , and a given polarization of

light. In one limiting case shown schematically in figure 2.11, with 𝜎+-polarized light

tuned between the D1 and D2 line, there exists a wavelength termed the "tune-out"

wavelength, approximately 790 nm, for which the Stark shift of the 𝑚𝐽 = −1/2 state

vanishes but the stark shift of the 𝑚𝐽 = 1/2 state remains finite. Shown in figure

2.11b, for general wavelengths, the Stark shift of a given state is a combination of a

spin-independent contribution, termed the scalar Stark shift, and a spin-dependent

contribution, the vector Stark shift. For an atom without hyperfine structure this

can be expressed simply within the rotating wave approximation as the sum of the

two terms, and for atoms with hyperfine structure the same argument applies in

the regime where the detuning from resonance is much greater than the hyperfine
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Figure 2-3: Vector stark shifts used to create spin-dependent potentials. (Left) The
fine structure energy levels of 87Rb interacting with 𝜎+-polarized light. The two differ-
ent projections of the spin-orbit coupled angular momentum, 𝑚𝐽 , in the ground state
have different matrix elements with the excited state, producing a spin-dependent
stark shift. (Right) The different potentials for hyperfine spins 𝑚𝐹 = ±1 interacting
with 𝜎+-polarized light are plotted for detunings below the D1 line compared to the
spin-independent potential created by 𝜋-polarized light. The difference between the
two is the vector stark shift. The resulting lattice potential for different retroreflected
polarization angles is shown in the inset.
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splitting, 𝛿 ≫ Δ𝐸HFS, leading to a Stark shift given by the general formula [64]:

𝑉𝐼=0(r) =
𝜋𝑐2Γ

2𝜔3
0

(︃
2 + 𝑃𝑔𝐽𝑚𝐽

𝛿2
+

1− 𝑃𝑔𝐽𝑚𝐽

𝛿1

)︃
𝐼(r) (2.10)

𝑉𝐼 ̸=0(r) =
𝜋𝑐2Γ

2𝜔3
0

(︃
2 + 𝑃𝑔𝐹𝑚𝐹

𝛿2
+

1− 𝑃𝑔𝐹𝑚𝐹

𝛿1

)︃
𝐼(r), (2.11)

where 𝑔(𝐹 ),𝐽 is the 𝑔-factor of the populated (hyper-)fine structure ground state, 𝛿𝑖

is the detuning from either the D1 or D2 lines, 𝐼(r) is the spatially inhomogeneous

intensity profile of the illumination beam, and 𝑃 is the laser polarization with respect

to the quantization axis of the atoms with 𝑃 = ±1 corresponding to right- and left-

circularly polarized light, respectively. In this analytic form, we see that circularly

polarized light has the same form as an effective magnetic field, generating opposite

energy shifts for states of opposite 𝑚(𝐽),𝐹 and no energy shift for linearly polarized

light.

Shown in the inset of figure 2.11b, and as will be discussed later in the thesis,

the spin-dependent nature of the vector Stark shift allows the creation of optical

lattices whose properties depend on the internal spin state of the atom. Shown as

one example, rotating the polarization of the two laser beams that form an optical

lattice changes the spatial mode experienced by |𝐹,𝑚𝐹 ⟩ = |1,±1⟩ atoms, therefore

changing the maximally-localized Wannier functions in a spin-dependent way:

𝑤(𝑥− 𝑥𝑖) → 𝑤𝜎(𝑥− 𝑥𝜎𝑖 ). (2.12)

The spin-dependence of the Wannier functions and the interaction and tunneling

energies they encode will become a prominent feature of the experiments featured in

chapter 6 of this thesis.

One prominent feature of using an optical trap to confine neutral atoms is the

presence of heating terms due to light scattering. Creating an AC Stark potential

by admixing a bit of the excited state wavefunction inevitably also leads to heating

by spontaneous emission due to the finite diople moment created by mixing in the
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excited state. For the two-level system, the scattering rate is given by [64],

Γsc =
𝜋𝑐2Γ

2~𝜔3
0

(︂
𝜔

𝜔0

)︂3(︂
Γ

𝜔 − 𝜔0

+
Γ

𝜔 + 𝜔0

)︂2

𝐼(r). (2.13)

Usually, if light scattering is a limiting factor in an experiment, the ratio of AC

stark potential to scattering rate can be tuned by changing the detuning of the laser

used to trap atoms. In the same way as the detuning dependence of the reactive

and absorptive quadratures of a driven harmonic oscillator response, the ratio of the

scattering rate to the scalar AC Stark potential depth is given by:

~Γsc

𝑉scalar
=

Γ

𝛿
, with: 𝑉scalar ∼

𝐼(r)

𝛿/Γ
. (2.14)

Equations 2.14 show that for longer photon scattering times, and therefore lower

heating rates, the detuning 𝛿/Γ can be increased at the expense of increasing overall

power needed to achieve a constant trap depth. Unfortunately, this argument only

holds for the scalar AC stark shift. For the vector shift, we can get a more intuitive

picture of the scaling from further detuning by expanding equation 2.11 to first order

in the detuning 𝛿0 ≫ Δ𝐸FS relative to the center of the D1 and D2 lines (such that

𝛿1 = 𝛿0 − Δ𝐸FS/3 and 𝛿2 = 𝛿0 + 2Δ𝐸FS/3) to get an analytic relation between the

scalar and vector shifts as a function of the detuning,

𝑉𝛿0≫Δ𝐸FS =
𝜋𝑐2

2𝜔3
0

Γ

𝛿0

(︂
3− Δ𝐸FS

𝛿0
− 𝑃𝑔𝐹𝑚𝐹

Δ𝐸FS

𝛿0

)︂
𝐼(r) (2.15)

From this we can clearly see that the vector Stark shift scales ∝ ΓΔ𝐸FS
𝛿2

, such that the

ratio of the scattering rate to the vector stark shift is independent of detuning!

~Γsc

𝑉vector
=

Γ

Δ𝐸FS
(2.16)

Practically, this means that given the fine structure splitting of 87Rb and the natural

linewidth of the excited state, the heating rate will be directly proportional to the

vector AC Stark shift needed, independent of frequency. Therefore, when utilizing
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the vector Stark shift to accomplish a task in an experiment, one should always aim

to use the minimum possible vector shift as is needed! This is a critical lesson we will

come back to in a later chapter.

2.3 The Bose-Hubbard Hamiltonian

With the position space wavefunction in hand, we can construct three very important

quantities which will parameterize, how atoms move, how they interact with each

other, and the local potentials the confined atoms experience. Movement is typically

parameterized with a tunneling rate between two sites 𝑖 and 𝑗, 𝑡𝑖𝑗, interaction is

parameterized by a two-body interaction rate, 𝑈𝑖𝑗, and potential energy (coming

from e.g. an external trapping potential or a magnetic field gradient) is given by a

local energy, 𝜖𝑖. We can construct these quantities from our microscopic Hamiltonian

by taking the appropriate matrix elements:

𝑡𝑖𝑗 =

∫︁
𝑑x 𝑤(x− x𝑖)

*
(︁ 𝑝2
2𝑚

+ 𝑉Latt

)︁
𝑤(x− x𝑗) (2.17)

𝑈𝑖𝑗 =

∫︁
𝑑x 𝑉int(x𝑖,x𝑗)|𝑤(x− x𝑖)|2|𝑤(x− x𝑗)|2 (2.18)

𝜖𝑖 =

∫︁
𝑑x 𝑉ext(x𝑖)𝑤(x− x𝑖)

*𝑤(x− x𝑖). (2.19)

For example, in our experiments we might use 87Rb loaded into the ground band of

an isotropic, cubic lattice formed from 1064 nm laser light. This situation simplifies

the equations above first because the cubic lattice is a separable potential, so the

tunneling matrix element is a one-dimensional integral, and second, the Rb atoms

mainly interact via short range, contact interactions, so the interaction matrix element

only has an on-site, 𝑖 = 𝑗 component. Therefore, the tunneling and interaction matrix

elements simplify to:

𝑡𝑖𝑗 =

∫︁
𝑑𝑥 𝑤(𝑥− 𝑥𝑖)

*
(︁ 𝑝2
2𝑚

+ 𝑉𝐿 cos
2(𝑘𝑥𝑥)

)︁
𝑤(𝑥− 𝑥𝑗) (2.20)

𝑈𝑖𝑖 =
4𝜋~2𝑎
𝑚

∫︁
𝑑𝑥 |𝑤(𝑥− 𝑥𝑖)|4

∫︁
𝑑𝑦 |𝑤(𝑦 − 𝑦𝑖)|4

∫︁
𝑑𝑧 |𝑤(𝑧 − 𝑧𝑖)|4 (2.21)
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Figure 2-4: Relevant energy scales for atoms in an optical lattice. Comparison of
analytic expressions based on an asymptotic approximation and numerical results for
the lowest band tunneling and interaction parameters in an isotropic, cubic lattice
with lattice constant 𝑎 = 532 nm. From the numerical results we also plot the relevant
exchange coupling, 𝐽 = 4𝑡2

𝑈
, and the second band tunneling rate.

Numerical results for these elements are shown in figure 2-4 and are compared to

the asymptotic expression for the tunneling and the harmonic approximation for the

interaction energy:

𝑡 =
4√
𝜋
𝐸𝑟𝑁

3/4
𝑟 𝑒−2𝑁

1/2
𝑟 (2.22)

𝑈 =

√︂
8

𝜋
(𝑘𝑎𝑠)𝐸𝑟𝑁

3/4
𝑟 . (2.23)

More generally, we can use these localized wavefunctions to parameterize any

interaction, for example dipolar interactions, by taking the appropriate matrix ele-

ments. Using these parameterizations, we can re-write our microscopic Hamiltonian

as a Hamiltonian equation expressed with second-quantized position operators:

𝐻 = −
∑︁
𝑖𝑗,𝜎

(︀
𝑡𝑖𝑗,𝜎𝑎

†
𝑖,𝜎𝑎𝑗,𝜎 + H.c.

)︀
+

1

2

∑︁
𝑖,𝜎,𝜎′

𝑈𝑖𝑗,𝜎𝑎
†
𝑖,𝜎𝑎

†
𝑗,𝜎′𝑎𝑗,𝜎′𝑎𝑖,𝜎 (2.24)
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which is a realization of the celebrated Hubbard model as the minimal description of

ultracold atoms in optical lattices.

In this Hamiltonian, we see two qualitatively different behaviors of the ground

state wavefunction for the two terms that compose the Hamiltonian. When the

tunneling term dominates over the interaction term, the ground state is a superfluid

with a macroscopic occupation of the lowest delocalized Bloch wave. In the strongly

interacting limit where the interactions are much larger than tunneling, the system

prefers to minimize the local density and number fluctuations are suppressed, leading

to the system to occupy the lowest Fock state on each site of the lattice. For bosonic

atoms in optical lattices, this model describes the quantum phase transition between

a superfluid state and a Mott insulating state.

2.3.1 Superfluid to Mott insulator Transition

For electrons, the Mott insulating phase is a gapped (though topologically trivial)

phase of matter which, due to electron-electron interactions, does not follow the

normal classification of solids with 1/2 filled bands as metals. In such materials,

the electron-electron interactions are much larger than the kinetic energy, causing

an insulating phase to appear. For ultracold bosons in optical lattices, tuning the

interaction parameter with respect to the tunneling parameter allows us to realize the

quantum phase transition between the superfluid ground state and a Mott insulating

ground state [62].

We can develop a quantitative understanding of this transition in a single bosonic

spin component by examining the mean-field solution of the Hubbard Hamiltonian.

We begin with the isotropic, 𝑑-dimensional Hamiltonian for a single bosonic spin

component in the lowest band of an optical lattice:

𝐻 = −𝑡
∑︁
⟨𝑖𝑗⟩

(𝑎̂†𝑖 𝑎̂𝑗 + 𝑎̂†𝑗 𝑎̂𝑖) +
𝑈

2

∑︁
𝑖

𝑛̂𝑖(𝑛̂𝑖 − 1)− 𝜇
∑︁
𝑖

𝑛̂𝑖 (2.25)

where the angled bracket sum denotes a sum over only nearest neighbors, 𝑡 is the

hopping amplitude, 𝑈 is the two body interaction parameter, and 𝜇 is the chemical
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potential.

We proceed by assuming that we are close to an insulating state and we can make

the following mean field decoupling approximation discussed in chapter 1:

𝜓 = ⟨𝑎̂𝑖⟩ = ⟨𝑎̂†𝑖⟩ =
√
𝑛𝑖 (2.26)

⟨𝑎̂†𝑖 𝑎̂𝑗⟩ ≈ ⟨𝑎̂†𝑖⟩𝑎̂𝑗 + 𝑎̂†𝑖⟨𝑎̂𝑗⟩ − ⟨𝑎̂†𝑖⟩⟨𝑎̂𝑗⟩ = (𝑎̂𝑗 + 𝑎̂†𝑖 )𝜓 − 𝜓2 (2.27)

We can now substitute this approximation into equation 2.25 to construct a local,

effective Hamiltonian.

𝐻𝑒𝑓𝑓 = −𝑧𝑡𝜓
∑︁
𝑖

(𝑎̂𝑖 + 𝑎̂†𝑖 ) + 𝑧𝑡𝜓2𝑁𝑠 +
𝑈

2

∑︁
𝑖

𝑛̂𝑖(𝑛̂𝑖 − 1)− 𝜇
∑︁
𝑖

𝑛̂𝑖 (2.28)

= 𝑁𝑠𝑧𝑡

(︂
𝑈

2
𝑛̂𝑖(𝑛̂𝑖 − 1)− 𝜇𝑛̂𝑖 − (𝑎̂𝑖 + 𝑎̂†𝑖 )𝜓 + 𝜓2

)︂
(2.29)

To simplify notation we define dimensionless parameterizations of 𝜇 and 𝑈 by nor-

malizing by the tunneling energy, 𝑡, and the number of nearest neighbors 𝑧, in the

following way:

𝑈̃ =
𝑈

𝑧𝑡
, 𝜇̃ =

𝜇

𝑧𝑡
. (2.30)

We now have a completely local, effective Hamiltonian for each site of the lattice that

we can diagonalize to get energy eigenvalues and eigenstates.

We proceed in two different ways following the procedure of ref. [155]. First,

we will find the ground state energy perturbatively and from this extract the mean-

field phase boundary. Then, we will find the density profile by direct numerical

diagonalization of the effective Hamiltonian. We begin by defining the zeroth order

Hamiltonian and perturbation:

𝐻0 =
𝑈̃

2
𝑛̂𝑖(𝑛̂𝑖 − 1)− 𝜇̃𝑛̂𝑖 + 𝜓2 (2.31)

𝑉 = (𝑎̂𝑖 + 𝑎̂†𝑖 )𝜓 (2.32)

In the number basis, the first part is diagonal and gives a ground state energy for
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particles:

𝐸(0)
𝑔 =

𝑈̃

2
𝑔(𝑔 − 1)− 𝜇̃𝑔, for 𝑈̃(𝑔 − 1) < 𝜇̃ < 𝑈̃𝑔. (2.33)

We now focus on evaluating the more interesting perturbative part. To first order,

the perturbation produces no non-trivial matrix elements, so the first non-zero term

appears at second order:

𝐸
(2)
𝐺𝑆 = 𝜓2

∑︁
𝑛̸=𝑔

|⟨𝑔|𝑉 |𝑛⟩|2

𝐸
(0)
𝑔 − 𝐸

(0)
𝑛

(2.34)

=
𝑔

𝑈̃(𝑔 − 1)− 𝜇̃
+

𝑔 + 1

𝜇̃− 𝑈̃𝑔
(2.35)

The ground state energy is given by the sum of the zeroth and second order energies,

𝐸𝑔(𝜓) = 𝐸0(𝑔, 𝑈̃ , 𝜇̃)+𝐸2(𝑔, 𝑈̃ , 𝜇̃)𝜓
2+..., and we find the transition point as in Landau-

Ginzburg theory by the inflection point of the energy. We find this corresponds to

𝜓 = 0 for 𝐸(2)
𝑔 > 0 and 𝜓 ̸= 0 for 𝐸(2)

𝑔 < 0 so we can set 𝐸(2)
𝑔 = 0 and solve for the

phase boundary:

𝑔

𝑈̃(𝑔 − 1)− 𝜇̃
+

𝑔 + 1

𝜇̃− 𝑈̃𝑔
+ 1 = 0 (2.36)

𝜇̃
(𝑐)
± =

1

2
[𝑈̃(2𝑔 − 1)− 1]± 1

2

√︁
𝑈̃2 − 2𝑈̃(2𝑔 + 1) + 1 (2.37)

For aesthetic reasons, I prefer to write this out in terms of a dimensionless tunneling,

𝑡 = 𝑧𝑡/𝑈 :
𝜇
(𝑐)
±

𝑈
=

1

2
[(2𝑔 − 1)− 𝑡]± 1

2

√︁
1− 2𝑡(2𝑔 + 1) + 𝑡2 (2.38)

The phase boundary this yields is seen below.

Now to get the full density profile, we can carry forward with higher orders of

perturbation theory and find a density term, but we will find this is a poor approx-

imation for reality because between Mott plateaus where the order parameter, 𝜓,

approaches unity, the perturbation theory will break down. A more reliable method

is to instead use an exact diagonalization approach for the Hamiltonian shown on

the second line of equation 2.29. What makes this approach efficient is that we have
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Figure 2-5: The superfluid to Mott insulator mean-field phase diagram. (Left) the
phase diagram calculated from a perturbative expansion of the decoupled Hamiltonian
for small values of the superfluid order parameter, 𝜓. The dashed vertical line gives
an example of the local chemical potentials which exist in one sample due to the
Harmonic trap. (Right) The superfluid density extracted from exact diagonalization
of the decoupled Hamiltonian, showing agreement with the phase boundary derived
from the perturbative expansion in addition to the depletion of the superfluid as the
system approaches the Mott transition.
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reduced the Hamiltonian to a purely local basis set, and we do not need to keep track

of all the states in the many-body Hamiltonian. More precisely, we construct matrix

elements of the Hamiltonian in a local number basis and place them into a matrix to

diagonalize. The matrix can be safely truncated at a reasonable density higher than

the average filling expected in the system. Explicitly:

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓2 −𝜓 0 0 0 · · ·
−𝜓 −𝜇̃+ 𝜓2 −

√
2𝜓 0 0 · · ·

0 −
√
2𝜓 𝑈̃ − 2𝜇̃+ 𝜓2 −

√
3𝜓 0 · · ·

0 0 −
√
3𝜓 3𝑈̃ − 3𝜇̃+ 𝜓2 −

√
4𝜓 · · ·

0 0 0 −
√
4𝜓 6𝑈̃ − 4𝜇̃+ 𝜓2 · · ·

...
...

...
...

... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.39)

This matrix, properly truncated (example: for n=3 I kept up to n=6 and did not see

major impact on adding additional entries), can be directly diagonalized for a given

𝑡 and 𝜇
𝑈

for each value of 𝜓 ∈ [0, 1]. The ground state eigenvalue and eigenvector is

then found by minimizing the energy with respect to the order parameter 𝜓. Using

these eigenvalues and eigenvectors, we can then directly find the energy of the ground

state as well as the density distribution. An example of this is seen in figure 2-6.

A quick note on computing tricks: I would only evaluate the matrix for a fine mesh

over 𝑡, 𝜇
𝑈
, and 𝜓 once. Afterwards it’s much faster to use a lookup table with linear

interpolation to match the points you want with what is available in the table.

At the mean field level, we now understand the Mott state as a state for which the

superfluid density 𝜓 vanishes and the wavefunction is characterized by the product

state of a local density of 𝑛 particles:

|𝜓⟩Mott =
𝑁∏︁
𝑖

(𝑎̂†𝑖 )
𝑛|0⟩. (2.40)

In the plot of the intrap density profile, we see that the transition between different

Mott plateaus with uniform density happens in a smooth, continuous fashion. This

is reflected in the map of the superfluid density from the exact diagonalization of
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Figure 2-6: Density profiles of the Mott insulator in a harmonic trap. (Left) An
example density distribution for the 𝑛 = 1 Mott state at high lattice depth. (Right)
An example density distribution for the 𝑛 = 2 Mott state at moderate lattice depths
just beyond the transition point.

equation 2.29, between Mott lobes the superfluid develops a finite density, allowing

number fluctuations and the average density to smoothly adjust from one Mott region

to another. To develop an understanding of the physics happening in this region of

the phase diagram, we examine both the effects of finite tunneling at zero temperature

as well as the effects of finite temperature in the regime of small tunneling.

One of the defining features of the Mott state is its finite excitation gap at the

interaction energy scale, 𝑈 . In the Mott regime, the ground state is divided into a

manifold of states all with the same local occupation number defined by 𝑛. Perturbing

this state with the tunneling part of the Hamiltonian couples the local state with 𝑛

particles per site to one with 𝑛± 1 particles per site:

−𝑡 ⟨𝑛′
𝑖, 𝑛

′
𝑖+1|𝑎̂†𝑖 𝑎̂𝑖+1|𝑛𝑖, 𝑛𝑖+1⟩ = −𝑡 𝛿𝑛𝑖+1−1,𝑛′

𝑖+1
𝛿𝑛𝑖+1,𝑛′

𝑖
(2.41)

at an energy cost of 𝑈 . Since 𝑡≪ 𝑈 in the Mott regime, this process is energetically

forbidden to first order. However, at the edge of the Mott regime the superfluid

density becomes finite and the system does contain gapless excitations. It is these

excitations that, to first approximation, dominate the thermodynamics of the Mott

state.
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At zero temperature, the Mott insulating state breaks down in the region of the

trapping potential where the chemical potential approaches 𝜇 ≈ 𝑛𝑈 , where 𝑛 is an

integer according to the Mott plateau above which the fluctuations are happening.

Examining the decoupled, effective Hamiltonian, eq. 2.29, we can understand this

state as the result of tuning the energy of two different local densities into degeneracy

with each other. At this point, two diagonal elements of the matrix are small, while

the rest are higher in energy by the large energy scale, 𝑈 , so we simplify the effective

Hamiltonian to an effective two-level system given by the matrix:⎛⎝𝑛(𝑛+ 1)𝑈 − 𝑛(𝜇+ 𝜖) + 𝜓2 −
√
𝑛+ 1𝜓

−
√
𝑛+ 1𝜓 (𝑛+ 1)(𝑛+ 2)𝑈 − (𝑛+ 1)(𝜇+ 𝜖) + 𝜓2 .

⎞⎠ (2.42)

At the point 𝜇 = 𝑛𝑈 , where 𝜖 = 0 the system has a particularly intuitive in-

terpretation; the energy eigenvalues are easily solved for and the solutions sim-

plify to 𝐸± = 𝜓2 ± 𝜓
√
𝑛+ 1, which minimize the energy for superfluid densities

𝜓min =
√
𝑛+ 1/2. The corresponding eigenvectors are symmetric superpositions of

the two local densities, 𝑛 and 𝑛+ 1, that give rise to a finite superfluid fraction even

in the strongly interacting limit. This superfluid remains gapless and thus dominates

the low temperature thermodynamics of the trapped system.

Next, we consider the effect of finite temperature. Assuming no superfluid phase

exists, the lowest lying excitations in the gapped Mott state of 𝑛 particles per site

are particle-hole excitations of 𝑛 + 1 and 𝑛 − 1 particles per site, respectively. If we

restrict the Hilbert space to just singly-excited states and ignore the effects of finite

tunneling forming Hubbard excitation bands, we can solve the partition function for

this situation

𝑍 = 𝑒−𝛽
(︀

𝑈
2
(𝑛−1)(𝑛−2)−(𝑛−1)𝜇

)︀
+ 𝑒−𝛽

(︀
𝑈
2
𝑛(𝑛−1)−𝑛𝜇

)︀
+ 𝑒−𝛽

(︀
𝑈
2
(𝑛+1)𝑛−(𝑛+1)𝜇

)︀
(2.43)

= 𝑒−𝛽
(︀

𝑈
2
𝑛(𝑛−1)−𝑛𝜇

)︀[︃
1 + 𝑒−𝛽(𝑛𝑈−𝜇) + 𝑒−𝛽

(︀
−(𝑛−1)𝑈+𝜇

)︀]︃
(2.44)

= 𝑍𝑛
Mott

[︁
1 + 𝑒−𝛽(𝐸𝑝−𝜇) + 𝑒−𝛽(𝐸ℎ+𝜇)

]︁
, (2.45)
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Figure 2-7: Finite temperature entropy and density distribution of the Mott insulator
in the atomic limit, 𝑡 ≈ 0. (Left) The entropy distribution for various values of
𝑈/𝑘𝐵𝑇 at chemical potentials across one Mott plateau. Note the strong suppression
of entropy in the middle of the Mott plateau and the localization of entropy at the
edges. (Right) The particle and hole excitations which carry entropy change the
density distribution at each given chemical potential across a Mott plateau.

where we have introduced the partition function for the Mott state in just the manifold

of 𝑛 states, 𝑍𝑛
Mott, as well as the energy of a particle and hole excitation:

𝐸𝑝 = 𝑛𝑈, and: 𝐸ℎ = −(𝑛− 1)𝑈, (2.46)

respectively. From this partition function we can compute the free energy and conse-

quently the entropy:

−𝛽𝐹 = ln𝑍𝑛
Mott + ln

(︁
1 + 𝑒−𝛽(𝐸𝑝−𝜇) + 𝑒−𝛽(𝐸ℎ+𝜇)

)︁
(2.47)

𝑆

𝑘𝐵
= ln

(︁
1 + 𝑒−𝛽(𝐸𝑝−𝜇) + 𝑒−𝛽(𝐸ℎ+𝜇)

)︁
+ 𝛽

(𝐸𝑝 − 𝜇)𝑒−𝛽(𝐸𝑝−𝜇) + (𝐸ℎ + 𝜇)𝑒−𝛽(𝐸ℎ+𝜇)

1 + 𝑒−𝛽(𝐸𝑝−𝜇) + 𝑒−𝛽(𝐸ℎ+𝜇)
.

The resulting entropy distribution along with the average density distribution is

plotted in fig. 2-7. We see that entropy is primarily located in the regions where 𝜇 ≈
𝑛𝑈 and particle-hole excitations are suppressed in the core of the Mott state. This is

consistent with the zero-temperature result derived earlier where we see that chemical

potentials approaching integer values of the interaction energy bring two states with

different occupation numbers into degeneracy. Therefore, from the combined results,
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we anticipate these regions of our Mott insulating state will contain fluctuations both

inherent to the superfluid state that occupies the ground state in this parameter

regime, but also the low-lying excitations localize the distribution of entropy in the

cloud to these regions, producing locally lower-entropy states in the bulk of the Mott

insulating plateau.

2.4 Floquet Engineering

From the above discussion, we have seen how to account for both the kinetic energy

and interaction energy of atoms in an optical lattice or electrons in a crystal and how

these natural tendencies lead to the formulation of the celebrated Hubbard model.

The qualitatively different nature of these two terms in the Hubbard model lead

to a quantum phase transition between a superfluid and a Mott insulating state.

Examining how the tunneling and interaction terms arise in the lattice we see that

the symmetries of these terms arise directly from the symmetries of the microscopic

lattice Hamiltonian from which they were derived. Therefore, it is a useful question to

ask whether we can engineer the underlying Hamiltonian in such a way to either break

or to introduce new symmetries to an effective Hamiltonian that were not present to

begin with?

An important example in solid-state systems is the coupling between electrons

and electric and magnetic fields – such as the problem of Landau levels discussed in

chapter 1 – that leads to time-reversal symmetry breaking. Understanding these sys-

tems has led to a revolution in modern condensed matter physics by the realization of

materials that are not ordered according to Landau’s classic symmetry-breaking prin-

ciple, but instead are topologically ordered [163]. One paradigm of such states are the

Landau levels of electrons in a large, externally applied magnetic field. The applied

magnetic field couples to the electrons through the vector potential (in the process

breaking time-reversal symmetry) resulting in cyclotron motion of the electrons. The

eigenstates of this system are angular momentum eigenstates oriented along the field

direction. Recent understanding of this system highlights the fact that this system,
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when one Landau level is filled completely, hosts robust edge states that are protected

by the topology of the bulk states [69].

In our analog crystalline system, the constituent atoms are neutrally charged, so

there is no natural coupling to vector potentials that electrons in a crystal might

experience. However, with a desire to realize similar physics or to engineer new,

more exotic states that arise from breaking time-reversal symmetry, we are interested

in techniques that allow the experimenter to controllably break or establish new

symmetries in the underlying Hamiltonian. One powerful tool for accomplishing this

task is time-periodic driving of the many-particle system [56, 57]. In order to describe

and understand such systems we employ the formalism of Floquet theory [48].

In section 2.1, we utilized the discrete translation symmetry of the spatially peri-

odic optical lattice to employ Bloch’s theorem, which allowed us to factorize the wave-

function into the product of a plane wave and a function with the same periodicity

as the underlying lattice. In Floquet theory, we utilize the same discrete translation

symmetry as in Bloch’s theorem (although historically speaking, Floquet’s work pre-

ceded Bloch’s by 45 years! [48, 15]) to reduce the fully time-dependent wavefunction

to a plane wave term multiplying a term with the same temporal symmetry as the

driving term:

𝐻̂(𝑡) = 𝐻̂(𝑡+ 𝑇 ) , thus: 𝜓(𝑡) = 𝑒𝑖𝜖𝑡/~𝜑𝜖(𝑡), (2.48)

where 𝜖 is known as the quasienergy, akin to the quasimomentum of Bloch’s theorem,

and is periodic in units of the driving frequency, 𝜖 = 𝜖+2𝜋~/𝑇 , and 𝜑(𝑡) is a periodic

function with the same period as the driving frequency. This description allows the

solution of the eigenvalue problem between times 0 ≤ 𝑡 < 𝑇 to be sufficient to describe

the time-evolution of the wavefunction for all times according to the new Hamiltonian

equation:

(𝐻̂(𝑡)− 𝑖~𝜕𝑡)𝜑𝜖(𝑡) = 𝜖𝜑𝜖(𝑡). (2.49)

What is remarkable about equation 2.49 is that the problem for finding a time-

dependent solution to a time-dependent Hamiltonian can be solved by finding a time-

independent quasienergy eigenvalue! As with Bloch’s theorem, when given a solution
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to this eigenvalue problem, there exist a whole family of solutions equivalent to the

original solution up to a translation in quasienergy, 𝜖→ 𝜖+ 𝑛~𝜔.

This description is both a powerful way of interpreting dynamics in periodically

driven systems as a projection of the initial wavefunction onto a superposition of

quasienergy eigenfunctions as well as a useful computational tool. However, solutions

of equation 2.49 don’t necessarily easily lend themselves to an intuitive interpretation

of the dynamics of the system during the time evolution. A useful picture, and

ultimately an equivalent one, is instead to search for a useful description of the steady-

state dynamics in terms of an effective, time-independent Hamiltonian, 𝐻eff.

Taking inspiration from the above Floquet description and following the general

procedure spelled out in refs. [56, 57], we consider the operation of our time-dependent

operator, 𝐻̂(𝑡)− 𝑖~𝜕𝑡, which produced a time-independent quasienergy eigenvalue, on

a generalized transformation of the time-dependent wavefunction:

𝜓(𝑡) = 𝑒−𝑖𝐾̂(𝑡)𝜑(𝑡) (2.50)

(𝐻̂(𝑡)− 𝑖~𝜕𝑡)𝜓(𝑡) = 0 (2.51)

𝑒𝑖𝐾̂(𝑡)

(︃
𝐻̂(𝑡)𝑒−𝑖𝐾̂(𝑡) − 𝑖~

𝜕𝑒−𝑖𝐾̂(𝑡)

𝜕𝑡

)︃
𝜑(𝑡) = 𝑖~𝜕𝑡𝜑(𝑡) (2.52)

The operator we have defined here, 𝐾̂(𝑡) will become known as the "kick" operator,

upon which we will bestow time-dependence in a way that both makes the effective

Hamiltonian time-independent as well as gives the kick operator a simple experimental

interpretation that is explored below. This unitary transformation then acts on the

(𝐻̂(𝑡)− 𝑖~𝜕𝑡) operator above to define a transformed Hamiltonian:

𝐻 = 𝑒𝑖𝐾̂(𝑡)𝐻̂(𝑡)𝑒−𝑖𝐾̂(𝑡) − 𝑖~𝑒𝑖𝐾̂(𝑡) 𝜕

𝜕𝑡
𝑒−𝑖𝐾̂(𝑡) (2.53)

This transformed Hamiltonian, 𝐻, describes the evolution of the wavefunction, 𝜑(𝑡),

within one period of the optical cycle. It follows then that the time-evolution op-

erator over a single modulation cycle integrates 𝐻 over this modulation cycle, and

is given by equation 2.54. We can now define the effective Hamiltonian, 𝐻eff, as a
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time-independent Hamiltonian that gives the equivalent time-evolution operator over

the same modulation cycle.

𝑈(𝑡𝑓 = 𝑇, 𝑡𝑖 = 0) = exp

(︃
−𝑖
~

∫︁ 𝑇

0

𝑑𝜏𝐻(𝜏)

)︃
= exp

(︀
− 𝑖𝐻eff𝑇/~

)︀
(2.54)

This relation defines the effective Hamiltonian and allows the description of the wave-

function propagation for all times by reintroducing the kick operator:

𝑈(𝑡𝑓 , 𝑡𝑖)𝜓(𝑡𝑖) = 𝑒−𝑖𝐾̂(𝑡𝑓 )𝑒−𝑖𝐻̂eff(𝑡𝑓−𝑡𝑖)/~𝑒𝑖𝐾̂(𝑡𝑖)𝜓(𝑡𝑖) (2.55)

The power of this effective Hamiltonian description over the Floquet quasienergy

description is that the interpretation of the steady state motion as the action of the

system in an effective Hamiltonian is made rigorous, and the effective Hamiltonian

also highlights the ability of the modulation to change the symmetry properties of the

undriven Hamiltonian and provides a way to analyze the new symmetry properties.

One famous example is the realization of Floquet topological insulators [105, 131].

To make this transformation more concrete and to highlight its intuitive power,

we consider two different exactly solvable models involving a phase-modulated optical

lattice. The first will be in the case on non-resonant drive frequencies, and the second

will examine the case of resonant driving by adding a linear potential gradient to the

optical lattice.

2.4.1 Non-Resonant Drive

We begin with the example of a phase-modulated, one-dimensional optical lattice in

order to show how this time-dependent drive can renormalize different Hamiltonian

parameters. The time-dependent Hamiltonian for the phase-modulated optical lattice

is:

𝐻PM(𝑡) =
𝑝2

2𝑚
+ 𝑉𝐿 cos

2
(︀
𝑘(𝑥− 𝑥(𝑡))

)︀
. (2.56)
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We approach a solution by transforming into a frame accelerating with the trajectory

of the driving term, 𝑥(𝑡):

𝐻̂(𝑥, 𝑡) = 𝐻̂PM(𝑧 = 𝑥− 𝑥(𝑡), 𝑡)− 𝐹 (𝑡)𝑧 (2.57)

=
𝑝2

2𝑚
+ 𝑉𝐿 cos

2(𝑘𝑧)−𝑚𝜔2𝑥0𝑧 sin(𝜔𝑡− 𝜃) (2.58)

= 𝐻̂0 + 𝑉 (𝑡). (2.59)

The time-independent part of the Hamiltonian can be immediately solved, yield-

ing the band structure familiar to us from the previous section, and allowing us to

construct localized Wannier function operators and recast the Hamiltonian into a

second-quantized formulation:

𝐻̂ = −𝑡
∑︁
⟨𝑖,𝑗⟩

(𝑎̂†𝑖 𝑎̂𝑗 + 𝑎̂†𝑗 𝑎̂𝑖)− 𝜉 sin(𝜔𝑡− 𝜃)
∑︁
𝑗

𝑗𝑎̂†𝑗, 𝑎̂𝑗 (2.60)

where we have defined the peak force over one site of the lattice as, 𝜉 = 𝑚𝜔2𝑥0𝑎,

where 𝑥0 is the amplitude of the shaking motion and 𝑎 is the lattice constant.

Next, we define the unitary transformation to eliminate the explicit time-dependence

of the Hamiltonian, 𝑅̂(𝑡) = 𝑒𝑖𝐾̂(𝑡), what we will later discover to be the kick operator,

and derive an effective Hamiltonian:

𝑅̂ = exp
[︁
− 𝑖
∑︁
𝑗

𝜉

~𝜔
cos(𝜔𝑡− 𝜃)𝑗𝑎̂†𝑗 𝑎̂𝑗

]︁
=
∑︁
𝑗

𝑒−𝑖𝜆𝑗 𝑎̂†𝑗 𝑎̂𝑗 (2.61)

𝐻 = 𝑅̂†𝐻̂(𝑡)𝑅̂− 𝑅̂†𝑖~𝜕𝑡𝑅̂. (2.62)

For simplicity, we define the dimensionless driving parameter, 𝜁 = 𝜉/~𝜔, and the

spatially-dependent prefactor of the kick operator, 𝜆𝑗 = 𝑗𝜁 cos(𝜔𝑡). Applying the

unitary transformation to derive the effective Hamiltonian, the time-derivative term

on the right-hand-side of equation 2.62 cancels out the explicit time-dependence of

the driving term in equation 2.60, and we are left with the transformed tunneling
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part of the Hamiltonian:

𝐻 = −𝑡
∑︁
𝑗′

𝑒𝑖𝜆𝑗′ 𝑎̂†𝑗′ 𝑎̂𝑗′
∑︁
𝑖

(𝑎̂†𝑖+1𝑎̂𝑖 + 𝑎̂†𝑖 𝑎̂𝑖+1)
∑︁
𝑗′′

𝑒−𝑖𝜆𝑗′′ 𝑎̂†𝑗′′ 𝑎̂𝑗′′ (2.63)

= −𝑡
∑︁
𝑗

(︁
𝑒𝑖𝜁 cos(𝜔𝑡−𝜃)𝑎̂†𝑗+1𝑎̂𝑗 + 𝑒−𝑖𝜁 cos(𝜔𝑡−𝜃)𝑎̂†𝑗 𝑎̂𝑗+1

)︁
. (2.64)

We have arrived at equation 2.64 by repeated application of the commutation rela-

tion of the bosonic commutation relation, [𝑎̂𝑖, 𝑎̂𝑗] = 𝛿𝑖𝑗. To arrive at the effective

Hamiltonian we are interested in the time evolution operator over the modulation cy-

cle and the corresponding time-independent effective Hamiltonian. We get this from

integrating 𝐻 over the optical period, and setting the result equal to 𝐻eff𝑇 :

𝐻eff =
1

𝑇

∫︁ 𝑇

0

𝑑𝜏𝐻(𝜏) (2.65)

=
−𝑡
𝑇

∫︁ 𝑇

0

𝑑𝜏
∑︁
𝑗

(︁
𝑒𝑖𝜁 cos(𝜔𝑡−𝜃)𝑎̂†𝑗+1𝑎̂𝑗 + 𝑒−𝑖𝜁 cos(𝜔𝑡−𝜃)𝑎̂†𝑗 𝑎̂𝑗+1

)︁
(2.66)

= −𝐽0(𝜁)𝑡
∑︁
𝑗

(𝑎̂†𝑗+1𝑎̂𝑗 + 𝑎̂†𝑗 𝑎̂𝑗+1), (2.67)

which is equivalent to the lattice Hamiltonian we began with but now with renor-

malized tunneling parameter, 𝑡→ 𝐽0(𝜁)𝑡 = 𝐽0(𝜉/~𝜔)𝑡. Here we have used the Bessel

function identity, 2𝜋𝐽0(𝑧) =
∫︀ 2𝜋

0
𝑑𝛾 exp(𝑖𝑧 cos 𝛾), to evaluate the time integral ana-

lytically. It is important to note that this Hamiltonian is the effective description

of the time-periodic wavefunction, 𝜑(𝑡). The time-evolution of this state is given

by its phase evolution under the effective Hamiltonian, 𝜑(𝑡𝑓 ) = 𝑈(𝑡𝑓 , 𝑡𝑖)𝜑(𝑡𝑖) =

exp(𝑖𝐻eff(𝑡𝑓 − 𝑡𝑖)/~)𝜑(𝑡𝑖), which can be evaluated as the phase evolution of Bloch

eigenstates in the lattice with modified tunneling parameters.

Unfortunately, 𝜑(𝑡) is not directly observable in the lab frame because to get to this

effective picture we had to make the unitary transformation 𝜓(𝑡) = 𝑒−𝑖𝐾̂(𝑡)𝜑(𝑡) to get

to this effective Hamiltonian picture. Therefore, the time evolution as observed in the

lab frame wavefunction propagator is modified by the driving term as we transform
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back to the lab frame as:

𝜓(𝑡𝑓 ) = 𝑈(𝑡𝑓 , 𝑡𝑖)𝜓(𝑡𝑖) = 𝑒−𝑖𝐾̂(𝑡𝑓 )𝑒−𝑖𝐻̂eff(𝑡𝑓−𝑡𝑖)/~𝑒𝑖𝐾̂(𝑡𝑖)𝜓(𝑡𝑖). (2.68)

This propagator now has a very straightforward physical interpretation in terms of

the experimental implementation of the phase-modulated lattice.

Starting from the rightmost term, we begin with some initial state described by

𝜓(𝑡𝑖 = 0); for example, a BEC in the q = 0 Bloch state of the optical lattice. When we

turn on the modulation sequence, there are different initial phases of the modulation

the driving term can take, encoded in the kick operator as 𝑒−𝑖𝑗𝜁 cos 𝜃. For example,

we could use a sine drive where the lattice starts at it’s average position and begins

the modulation sequence with maximal velocity. For this case the initial phase 𝜃 = 0

and the kick operator is a uniformly increasing phase 𝑒−𝑖𝑗𝜁 . On the other hand, if we

start at the maximum extent of the modulation amplitude and at an initial velocity

of zero – a cosine modulation – the resulting kick operator has 𝜃 = 𝜋/2 and the phase

is unity. Examining these two limiting cases, it becomes clear the interpretation of

the initial kick operator as the change in momentum when going from a stationary

frame into a modulated frame. Note also that the modulation amplitude 𝜁 ∝ 𝑥0, so

starting the modulation with zero modulation strength can also send the initial kick

operator to unity.

Now that we have understood the transition of the state from the lab frame to

the modulation frame via the initial kick operator, we now see that the state is

undergoing unitary evolution under the effective Hamiltonian of interest. After some

experimental time where the effective Hamiltonian is experienced by the initial state,

we now wish to measure the system. As with the initial kick operator, the final kick

operator tells us how the phase of the modulation imprints a phase on the ensemble

as we transform from the modulation frame back to the lab frame for a measurement.

Putting these three parts together, we have come to a complete understanding of the

effective Hamiltonian description and how it provides an intuitive explanation of not

just the modification of the terms of the undriven Hamiltonian, but also the effect
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on the wavefunction as we transform into and out of this rotating frame for state

initialization and detection.

2.4.2 Resonant Drive

A second exactly solvable model that helps us understand the effects of time-periodic

modulation comes from the case where the driving term is now resonantly coupling

states offset in energy by some large gap, which we will call Δ. There have been

several implementations of this type of energy offset with important examples being

in double well potentials, uniformly tilted lattices, and using the first and second

bands of the lattice. To see the similarities and differences with the case of non-

resonant driving, we analyze the case of a uniformly tilted lattice which is resonantly

driven by phase-modulation.

The calculation proceeds similarly as above but with a uniform acceleration term

added along with the transformation of the coordinates to one accelerated with the

modulation trajectory:

𝐻WS(𝑡) =
𝑝2

2𝑚
+ 𝑉𝐿 cos

2
(︀
𝑘(𝑥− 𝑥(𝑡))

)︀
+

Δ

𝑎
𝑥 (2.69)

𝐻(𝑡) =
𝑝2

2𝑚
+ 𝑉𝐿 cos

2(𝑘𝑧) +
Δ

𝑎
𝑧 −𝑚𝜔2𝑥0 sin(𝜔𝑡− 𝜃)𝑧 (2.70)

= 𝐻0 + 𝑉 (𝑡) (2.71)

The eigenstates of the stationary Hamiltonian are known in the deep lattice (Δ ≪
𝐸gap) and strongly tilted (4𝑡≪ Δ) limits as the Wannier-Stark ladder. The spectrum

consist of states localized on each lattice site with local energy, 𝐸0 and the energy of

the 𝑗-th site spaced uniformly by 𝑗Δ so the energy in the Wannier-Stark basis before

introduction of the modulation is 𝐸𝑗 = 𝐸0 + 𝑗Δ. Modulation now has two effects

when we examine the matrix elements ⟨𝑤𝑖|𝑧|𝑤𝑗⟩. The diagonal contribution, when

𝑖 = 𝑗, gives a time-dependent acceleration term identical to that of the non-resonant

modulation. In addition, there are now off-diagonal matrix elements we must consider

where 𝑖 = 𝑗 ± 1, 𝑗 ± 2, . . .. In the off-resonant modulation we ignored these terms
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because they are off-resonance and tunneling is dominated by the nearest-neighbor,

direct exchange, 𝑡. However, in the tilted lattice, tunneling is off-resonance because of

the strong tilt and the first term which gives rise to particle exchange is the resonant,

off-diagonal matrix element, 𝑖 = 𝑗±1. Including both diagonal and off-diagonal terms

the second-quantized Hamiltonian becomes:

𝐻̂(𝑡) =
∑︁
𝑗

(︀
Δ− 𝜉 sin(𝜔𝑡− 𝜃)

)︀
𝑗𝑎̂†𝑗 𝑎̂𝑗 −𝐾 sin(𝜔𝑡− 𝜃)

∑︁
𝑗

(𝑎̂†𝑗+1𝑎̂𝑗 + 𝑎̂†𝑗 𝑎̂𝑗+1), (2.72)

where we have defined what we will call the laser-assisted tunneling rate, 𝐾 =

𝜉⟨𝑤𝑗|𝑧|𝑤𝑗+1⟩/𝑎. The calculation proceeds similarly to the non-resonant case, we de-

fine a kick operator, 𝑅̂(𝑡) = 𝑒𝑖𝐾̂(𝑡) that eliminates the diagonal time-dependence of the

Hamiltonian and then construct a transformed Hamiltonian, 𝐻 = 𝑅̂†𝐻̂(𝑡)𝑅̂−𝑅̂†𝑖~𝜕𝑡𝑅̂

such that:

𝑅̂ = exp
[︁
− 𝑖
∑︁
𝑗

(︀
𝑗(𝜔𝑡− 𝜃) + 𝜁𝑗 cos(𝜔𝑡− 𝜃)

)︀
𝑎̂†𝑗 𝑎̂𝑗

]︁
=
∑︁
𝑗

𝑒−𝑖𝜆𝑗 𝑎̂†𝑗 𝑎̂𝑗 (2.73)

𝐻 =
∑︁
𝑗

(Δ− ~𝜔)𝑗𝑎̂†𝑗 𝑎̂𝑗 . . .

−𝐾 sin(𝜔𝑡− 𝜃)
∑︁
𝑗

(︁
𝑒𝑖((𝜔𝑡−𝜃)+𝜁 cos(𝜔𝑡−𝜃))𝑎̂†𝑗+1𝑎̂𝑗 + H.c.

)︁
. (2.74)

On resonance, ~𝜔 = Δ the diagonal term disappears and we are left with a Hamilto-

nian describing tunneling of our previously localized states through the optical lattice.

If we now set the single-period time-evolution operator equal to the time-evolution

operator for an equivalent effective Hamiltonian we get a relation between the two,

which can be evaluated either by successive use of the Jacobi-Anger Bessel func-

tion identity, 𝑒𝑖𝛼 cos(𝛾) =
∑︀

𝑚(𝑖)
𝑚𝐽𝑚(𝛼)𝑒

𝑖𝑚𝛾, or by using the Bessel function identity,∫︀ 2𝜋

0
𝑑𝛾 sin 𝛾𝑒𝑖(𝛾+𝛼 cos(𝛾)) = 2𝜋𝑖𝐽1(|𝛼|)/|𝛼| to come to the effective Hamiltonian:

𝐻eff =
1

𝑇

∫︁ 𝑇

0

𝑑𝜏𝐻(𝜏) (2.75)

= −𝑖𝐾𝐽1(𝜁)
∑︁
𝑗

(︀
𝑎̂†𝑗+1𝑎̂𝑗 − 𝑎̂†𝑗 𝑎̂𝑗+1

)︀
. (2.76)

66



In moving to the final line above we have defined a new laser-assisted tunneling

strength, 𝐾 = ~𝜔⟨𝑤𝑗|𝑧|𝑤𝑗+1⟩/𝑎.

There are some curious differences immediately visible from the effective Hamil-

tonian for resonant modulation, equation 2.76 and its associated kick operator 2.73,

and the effective Hamiltonian for off-resonant modulation, equation 2.67 and its asso-

ciated kick operator 2.61. The first is in the structure of the kick operators. Note that

for off-resonant modulation the phase imprinted on the system from the initial and

final kick operators can be eliminated by ramping the modulation amplitude to zero,

𝜉 ∝ 𝑥0 → 0. In contrast, for the case of resonant modulation there are two terms

that compose the kick operator; one term corresponds to the modulation, which can

be eliminated by ramping the modulation amplitude to zero, whereas the other term

corresponds to the energy offset between states that are being resonantly coupled

and cannot be ramped to zero by turning down the modulation strength, but must

be eliminated by the separate process of turning off the gradient field.

A second important difference between the resonantly driven system and the off-

resonant system appears in the perturbative limit of weak drive amplitude. The

tunneling term in the resonantly driven system is proportional to the first Bessel

function, compared to the zeroth Bessel function for the off-resonant driving case.

This means that constructing a perturbative understanding of the process appears at

first order in the resonantly driven case. In this case the process can be understood in

the weak drive limit as the coherent coupling by lattice vibrations of nearest-neighbor

lattice sites that are offset in energy. In contrast, for the off-resonantly driven lattice

an understanding of the effect in the perturbative limit involves second-order pro-

cesses that virtually mix in other quasimomentum states, producing a band structure

with modified curvature and thus effective mass. Either way, the discussion presented

above both serves to introduce the machinery of the periodically driven lattice as well

as provide an exactly solvable limit in both the off-resonant and resonantly driven

limits that will become useful for understanding and interpreting other modulation

experiments that aim to introduce synthetic magnetic fluxes into the effective Hamil-

tonian.
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2.5 Heating in an Optical Lattice

In the ideal limit, optical lattices are limited in temperature and entropy purely by the

lowest temperatures achievable from evaporative cooling of a BEC. Light scattering

places a fundamental limitation on the heating rate, but for typical intensities in

far-detuned lattices, this time-scale exceeds vacuum limits by orders of magnitude.

Empirically, the lifetime of a BEC in an optical lattice is much shorter than one

might naively expect, and the entropies achieved in deep lattices are significantly

higher than those achieved in BEC’s in harmonic traps.

In this section, I present several mechanisms by which atoms in optical lattices

might absorb energy from the environment and discuss a model for how these exci-

tations thermalize and share entropy with the bulk of the particles remaining in the

condensate. Throughout the discussion we will see how important a role the aver-

age density plays in not just the heating rate, but also the allowed thermalization

processes, highlighting the importance of low density atomic samples in the lattice.

Finally, we will discuss the role light scattering plays when near-resonant lattices

are employed, in addition to a practical example of how we set bounds on the en-

tropy in the Mott state when there is no finite temperature signal in time-of-flight

measurements.

For a more lab-specific and humorous discussion of the lattice we have constructed

in the lab in response to the various challenges the machine has presented, see ap-

pendix A.

2.5.1 Amplitude Noise

When we make our lattice with a laser beam or project it with an temporally inco-

herent source illuminating a phase mask, the potential depth is determined by the

intensity of the optical lattice light. We often sample this light with a photodiode

before it illuminates the atoms, compare the light level with some voltage set point,

and then servo the intensity of the laser beam to match the voltage set point. This

system does a good job of stabilizing the average intensity of the light field, but is
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fundamentally limited in its ability to stabilize the intensity to the shot noise of the

current generated at the photodiode. Often at low and high frequencies the feedback

will instead be technical, but this is beyond the scope of the discussion here. For a

more detailed treatment, see Appendix A.

Fundamentally, a small modulation of the amplitude of the light produces a time-

dependent potential that modulates the effective spring constant of the trap:

𝐻(𝑥, 𝑡) =
𝑝2

2𝑚
+

1

2
𝑚𝜔0(1 + 𝜖(𝑡))𝑥2 (2.77)

Where 𝑚 is the mass of the trapped atom, 𝜔0 is the trap frequency, and 𝜖 is the

amplitude of the small intensity noise on the laser beam. We proceed with the usual

perturbative calculation by separating the problem into a zeroth order, solvable, time-

independent Hamiltonian, 𝐻0, and a time-dependent perturbation, 𝐻 ′:

𝐻 ′ =
1

2
𝑚𝜔2

0𝜖(𝑡)𝑥
2. (2.78)

After solving the zeroth order Hamiltonian for the energy eigenstates, the excitation

rate from the ground state, 0 to an excited state, n, can now be calculated within

time-dependent perturbation theory:

(︂
𝐻0 +𝐻 ′(𝑡)− 𝑖~𝜕𝑡

)︂∑︁
𝑛

𝑎𝑛(𝑡)|𝑛⟩𝑒𝑖(𝜔𝑓−𝜔𝑛)𝑡 = 0 (2.79)

𝑑𝑎𝑓 (𝑡)

𝑑𝑡
=

−𝑖
~
∑︁
𝑛

⟨𝑓 |𝐻 ′|𝑛⟩𝑎𝑛(𝑡)𝑒𝑖(𝜔𝑓−𝜔𝑛)𝑡 (2.80)

Integrating this equation over a timescale, 𝑇 , that is long compared to the fluctuations

in 𝜖, but short compared to the final transition rate, we can calculate the population
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transferred in 𝑇 and derive a transition rate:

|𝑎𝑓 (𝑡)|2 =
⃒⃒⃒⃒
⃒−𝑖~

∫︁ 𝑇

0

𝑑𝑡′⟨𝑓 |𝐻 ′(𝑡′)|𝑛⟩𝑒𝑖𝜔𝑓𝑛𝑡

⃒⃒⃒⃒
⃒
2

(2.81)

𝑅𝑛→𝑓 =
𝛿𝑝𝑓
𝛿𝑇

=
1

𝑇

⃒⃒⃒⃒
⃒−𝑖~

∫︁ 𝑇

0

𝑑𝑡′⟨𝑓 |𝐻 ′(𝑡′)|𝑛⟩𝑒𝑖𝜔𝑓𝑛𝑡

⃒⃒⃒⃒
⃒
2

(2.82)

𝑅𝑛→𝑓 =

(︃
𝑚𝜔2

0

2~

)︃2 ∫︁ ∞

−∞
𝑑𝜏⟨𝜖(𝑡)𝜖(𝑡+ 𝜏)⟩|⟨𝑓 |𝑥2|𝑛⟩|2 (2.83)

Note that due to the symmetry of the matrix element, ⟨𝑓 |𝑥2|𝑛⟩, amplitude noise can

only change the state index by 𝑛→ 𝑛± 2. This is easily seen in the decomposition of

the 𝑥2 operator into harmonic raising and lowering operators, where the expansion of

the operator gives terms proportional to: (𝑎̂+ 𝑎̂†)2 = 𝑎̂𝑎̂+ 𝑎̂𝑎̂†+ 𝑎̂†𝑎̂+ 𝑎̂†𝑎̂†. Therefore,

starting in the ground state of the harmonic oscillator, only the last term can drive

transitions of population to the second excited state.

In addition, we have assumed that the noise is a stochastic, fluctuating back-

ground, so that the driving terms appear in the time correlation function:

⟨𝜖(𝑡)𝜖(𝑡+ 𝜏)⟩ = 1

𝑇

∫︁ 𝑇

0

𝑑𝑡𝜖(𝑡)𝜖(𝑡+ 𝜏). (2.84)

Now using the definition of the x-coordinate in terms of the harmonic oscillator raising

and lowering operator, 𝑥 =
√︁

~
2𝑚𝜔0

(𝑎̂+ 𝑎̂†), we can express the rate for the transition

to the second band as:

𝑅0→2 =
𝜋𝜔2

0

8
𝑆(2𝜔0), (2.85)

where 𝑆(𝜔0) is the one-sided spectral power density function defined as:

𝑆(𝜔) =
2

𝜋

∫︁ ∞

0

𝑑𝜏 cos(𝜔𝜏)⟨𝜖(𝜏)𝜖(𝑡+ 𝜏)⟩. (2.86)

The sum of the spectral power density function over all positive frequencies gives

the total RMS intensity noise, 𝜖0. A particularly rich intensity noise spectrum for

one direction of our optical lattice is shown in fig. 2-8. As seen here, the character
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Figure 2-8: Intensity noise spectrum of the optical lattice light. The spectrum is
collected by a digital spectrum analyzer monitoring the AC coupled signal from a
shot-noise limited, transimpedance amplified monitor photodiode. The source of most
of the structure in the spectrum is indicated. For more discussion, see appendix.

of the spectrum generally depends on the frequency region of interest. The largest

contributors to noise are at low frequencies from back reflections in the optical lattice

beam path as well as at high frequencies due to the relaxation oscillation peak of the

master laser, as well as ground loops in the connections between the RF amplifier,

control electronics and lab grounds. After eliminating these contributors, the largest

noise sources appear at intermediate frequencies typical of an optical lattice band

gap at several tens of kHz, where the spectrum is punctuated by a series of large

peaks corresponding to poor signal and ground control in the servo electronics, poor

placement (and construction) of DC-DC converters, and, again, ground loops in the

setpoint generation. For a detailed analysis of these spectra and demonstration of

shot-noise limited optical lattices, see the appendix.

In our quantum gas experiments, when we talk about maintaining the fidelity of

a quantum state, the quantity of interest is the population in the coherent portion of

the atoms. In a BEC this is the condensate fraction and in a Mott insulator this is the

atoms which adiabatically connect to the BEC when the system is ramped back to

the superfluid phase. To calculate the effect of scattering on the fraction of atoms in

this state, we need to know the average energy increase of each scattering event, and
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then – assuming the excitation thermalizes and assuming that we know the equation

of state – we are interested in the relationship between this average energy increase

and, for example, the condensate fraction.

The energy increase per scattering event is easy to calculate from the scattering

rate given that each scattering event imparts 2~𝜔0 of energy and every atom starts

out in the ground state with ~𝜔0/2 of energy, giving an exponential rate equation for

the energy increase,

𝐸̇ = ~𝜔0𝑅0→2 =
𝜋𝜔2

0

4
𝑆(2𝜔0)𝐸 (2.87)

𝛾 =
𝜋2

2
𝜈20𝑆(2𝜈0) (2.88)

The above equation holds for small excited state populations. For larger occupation

probabilities in the excited state, both transitions to higher bands, 𝑅2→4, as well as

transitions from higher bands back down to lower bands, 𝑅2→0, must be considered

in the rate equation. Nevertheless, from this analysis we see that the rate of energy

increase shows an exponential scaling with a characteristic timescale, 𝛾.

Examining the spectrum in figure 2-8, we see that for typical trap frequencies of

few to many tens of kHz, the scattering rate ranges from 10−2 to 10−4 s−1 depending

on the location of the trap frequencies with respect to the switching peaks from

the integrated microcontroller in the servo electronics. Regardless, if we take the

scattering rate to be even ∼10−3 s−1 for a trap frequency > 10 kHz, this corresponds

to an exponential rate coefficient of 𝛾 ≈ 10−3 s−1 and an initial heating rate for a

modest initial temperature of 10 nK of 10 pK/s. Given the low rate of increase due

to the experimentally observed intensity noise spectrum, we can safely disregard this

process as the dominant heating rate in the current experiment.

2.5.2 Phase Noise

In addition to the fluctuations in the effective spring constant of the on-site harmonic

confinement that can be driven either by fundamental or technical laser intensity

noise, heating can also occur due to fluctuations in the trapping center. For different
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geometry lattices these fluctuations can have different fundamental sources, but in

our experiment we typically use the retroreflected lattice geometry. In this case, noise

in the center position of the trapping potential is driven by a few main sources: the

finite linewidth of the trapping laser, fluctuations in the position of the retroreflecting

mirror surface, and fluctuations in the pointing direction of any confining laser beams

in other directions can all produces trapping potential minima noise.

To model this behavior, we begin as in the case of amplitude noise by making a

harmonic approximation to our trapping potential

𝐻 =
𝑝2

2𝑚
+

1

2
𝑚𝜔2

0(𝑥− 𝛿(𝑡))2 (2.89)

with a stochastically fluctuating time dependent term, 𝛿(𝑡) driving the trap center.

Expanding the square of the position, we recover a zeroth order Hamiltonian, 𝐻0,

that is the normal harmonic oscillator, in addition to a uniform off set term quadratic

in 𝛿 that we can ignore, and a perturbation Hamiltonian:

𝐻 ′ = −𝛿(𝑡)𝑚𝜔2
0𝑥. (2.90)

The calculation for this phase noise term proceeds in similar fashion through time-

dependent perturbation theory as the amplitude noise analysis with only the dimen-

sionality of 𝛿 (length) differing from 𝜖 (dimensionless). Defining the position noise

one-sided spectral power density function as:

𝑆𝑥(𝜔) =
2

𝜋

∫︁ ∞

0

𝑑𝜏 cos(𝜔𝜏)⟨𝛿(𝑡+ 𝜏)𝛿(𝜏)⟩, (2.91)

with ⟨𝛿(𝑡 + 𝜏)𝛿(𝜏)⟩ = 1
𝑇

∫︀ 𝑇

0
𝑑𝑡𝛿(𝑡)𝛿(𝑡 + 𝜏) we come to a similar expression for the

scattering rate from the ground state to an excited state:

𝑅𝑛→𝑓 =

(︃
𝑚𝜔2

0

~

)︃2 ∫︁ ∞

−∞
𝑑𝜏⟨𝛿(𝑡)𝛿(𝑡+ 𝜏)⟩|⟨𝑓 |𝑥|𝑛⟩|2 (2.92)

In contrast to the amplitude noise heating rate, note the different dependence of
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the matrix element on the position operator. Expressing the position operator as

𝑥 =
√︁

~
2𝑚𝜔0

(𝑎̂+ 𝑎̂†), we see that this noise source can only drive 𝑛→ 𝑛+1 transitions.

Therefore, starting out in the ground state we only have a matrix element to the first

excited state with a rate:

𝑅0→1 =
𝜋

2~
𝑚𝜔3

0𝑆𝑥(𝜔0) =
2𝜋2

~
𝑚𝜈30𝑆𝑥(𝜈0), (2.93)

Similar to the discussion of amplitude noise, each scattering event carries ~𝜔0 of

energy, so the rate of energy increase can be written as 𝐸̇ = ~𝜔0𝑅0→1.

For a laser beam that creates an optical lattice, there are two types of fluctuations

that we might be sensitive to, transverse beam pointing fluctuations in addition to

longitudinal phase fluctuations. Without knowing a priori which is of greater impor-

tance, we can make a qualitative estimation of their relative importance by modeling

an atoms confinement by two harmonic oscillators: first, the lattice trapping potential

with frequency 𝜔1, and second, a lower spring constant confinement with frequency 𝜔2.

Fluctuations in the potential minima of both potentials will appear in the harmonic

approximation to the higher spring constant potential, 𝜔1, potential as:

𝑚𝜔2
1

(︂
𝑥− 𝑥1(𝑡)−

𝜔2
2

𝜔2
1

𝑥2(𝑡)

)︂
(2.94)

where the amplitude of 𝑥2 fluctuations are attenuated by the ratio of trap frequencies

squared. Practically speaking, for optical lattice trap frequencies typically in the

range of many 10’s of kHz, and harmonic trapping frequencies ranging from 10 to 100

Hz, this means the effect of transverse pointing noise fluctuations is 104 to 106 times

less important than longitudinal noise for on-site harmonic oscillator excitations. As

a result, we hypothesize that the direction with the highest trap frequencies, i.e. the

strongest spring constant, will dominate the heating rate.

Figure 2-9 shows the typical vibration spectrum measured using a Michelson-

Morley interferometer setup with the lattice retroreflection mirror as one arm of the

interferometer. The blue trace is taken with the mirrors that form both arms of the

interferometer placed on the same breadboard, and the orange is taken with one mirror
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Figure 2-9: Position noise spectrum of the lattice retroreflection mirror. Data is col-
lected by monitoring the output port of a Michelson-Morley interferometer, approxi-
mately set to a half-fringe condition, with a shot-noise limited, transimpedance am-
plified photodiode. The blue curve is taken with all mirrors on the same breadboard
compared to the orange trace taken with the retroreflection mirror on a separate,
vibration isolated breadboard, forming one path of the Michelson-Morley interferom-
eter.
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placed on an independent breadboard which is vibrationally isolated from the table

using four Newport VIB100 mechanical isolators. Therefore, the orange trace plots

the vibration noise spectrum between the inertial frame of the floating breadboard

from the unfloated optical table. As we can see, above 1 kHz the spectrum falls sharply

and quickly drops below the shot noise of the photodiode used for measurement. If

we evaluate the scattering rate at 1 kHz from equation 2.93 we get 85 Hz. For higher

lattice depths, since the spectrum falls faster than 1/𝜈3, the lifetime gets longer. Close

to the point where the spectrum meets the noise floor at 2 kHz, the corresponding

noise-limited scattering rate has fallen to 0.2 Hz. From this spectrum we postulate

that the lifetime for scattering to higher bands at extremely low lattice depths might

be strongly limited by the phase noise inherent in the retroreflection mirrors of our

lattice setup.

Examining the heating rates from amplitude and phase noise of the optical lattice

light, we see several general features of the two different types of excitation. First

of all, we have that parametric excitation can only drive population to the second

band of an optical lattice compared to shaking excitation which can only drive to the

first band. Secondly, the relevant amplitudes are the spectral densities of each type

of excitation evaluated at the relevant frequencies of interest, 2𝜔 and 𝜔, respectively.

Third of all is the scaling of their relative importance with increasing trap frequency.

For both excitation channels, the scattering rate increases with increasing trap fre-

quency. However, the relative importance of the two depends on frequency via the

ratio:
𝑅0→1

𝑅0→2

=
4𝑚

~
𝜔0
𝑆𝑥(𝜔0)

𝑆(2𝜔0)
. (2.95)

Empirically, in our lab, the amplitude noise spectrum of the lattice light generally has

an (approximately) white spectrum within the gain bandwidth of our lattice servo

controllers and a rising spectrum out to the relaxation oscillation peak our our lattice

laser, followed by a 1/𝑓 behavior (with the exception of large, discrete peaks) out

to higher frequencies. However, the phase noise we measure from the retroreflection

mirror generally falls like a power higher than 1/𝑓 3 for the observable frequencies.
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With this hierarchy, we determine that moving to a lighter atom or going to a shorter

spacing lattice constant has a positive effect in the total lifetime when counted in terms

of the total coherence time relative to the tunneling rate. The tunneling rate increases

linearly in the recoil energy, whereas the phase noise becomes less of a limitation at

low frequencies. This scaling is reasonable until the phase noise spectrum begins to

fall more gently than 1/𝜈3.

We can test these ideas by examining the heating observed in the lattice as a

function of the lattice depth, which changes the on-site trapping frequencies and

greatly changes the heating rates. To measure the heating rate, we load a single

component condensate into an isotropic, three-dimensional lattice (𝜆 = 1064 nm)

and vary the lattice depth and hold time. In order to measure lifetimes on both

sides of the superfluid to Mott insulator transition the condensate fraction is probed

in the bulk BEC by ramping the lattice off again. Figure 2-10 shows a comparison

of two different hold times of zero and two seconds, as a function of the lattice

depth. At low lattice depths, we observe no strong heating as indicated by the phase

noise calculation. For no hold time, the condensate fraction decays only weakly as

the lattice depth is increased, indicating either that the ramp does not create much

entropy or that the entropy created in the lattice ramp has not had time to thermalize

with ground band atoms at deep lattice depths. Interestingly, for two seconds hold

time the condensate fraction at low lattice depths remains high, but as the lattice

depth increases the condensate fraction drops precipitously from 6 to 14 𝐸𝑟. The

condensate fraction is at a minimum at 14 𝐸𝑟, a lattice depth that corresponds to

the Mott insulating transition for the 𝑛 = 1 Mott state, before recovering modestly

past the transition region up to 20 𝐸𝑟. This non-monotonic behavior around the

Mott transition suggests a low-frequency heating mechanism related to the many-

particle physics happening at the transition region – perhaps due to the vanishing

gap and critical slowing down of dynamics at the quantum phase transition – and not

the single particle effects discussed above. In the following sections we will discuss

some collisional physics in an effort to understand how single particle excitations can

interact with the many-body state in the ground band.
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Figure 2-10: Condensate fraction after holding in the lattice. A single component
BEC in the |1,−1⟩ state is loaded into a three-dimensional, isotropic optical lattice
and then adiabatically ramped down to zero lattice depth after no hold at the final
lattice depth (blue circles) compared to after a 2 second hold (red squares). Of
note is the non-monotonic behavior of the data for a two second hold time. The
pronounced minimum in the condensate fraction corresponds to the location of the
phase transition from superfluid to Mott insulator.
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2.5.3 Light Scattering

In the latter part of this thesis, near-detuned light will be used to exploit the vector

stark shift in an optical lattice. As a result, light scattering will become the dominant

contributor and important limiting factor on our lattice temperature and heating rate.

We have discussed in section 2.2 the scattering rate for near detuned light and how

the scaling with detuning is not favorable for the ratio of the scattering rate to the

vector stark shift. In this section, we discuss the final state effects of light scattering

and how the process of light scattering transfers energy to the atoms in an optical

lattice.

In our discussion, we will consider the limit of a BEC in an optical lattice where

the lattice is deep enough to produce well-defined bands in the spectrum. Light scat-

tering serves to localize the initially delocalized particle as well as transfer a photon

recoil worth of energy and momentum to the atoms in the process. Starting with an

atom in the lowest band, the light scattering process which localizes the particle can

promote an atom to a higher band of the lattice. The excitation probability for this

process from the ground state 𝑛 = 0 to an excited state 𝑚 in the harmonic oscillator

approximation is:

𝐴0,𝑚 = ⟨𝑚|𝑒𝑖𝜂(𝑎̂†+𝑎̂)|0⟩ ≈ ⟨𝑚|1 + 𝑖𝜂(𝑎̂† + 𝑎̂) + . . . |0⟩, (2.96)

where we have introduced the Lamb-Dicke parameter, 𝜂, that tells us the overlap

between the initial ground state and the first excited state wavefunction. The Lamb-

Dicke parameter is defined by the product of the excitation laser wave vector and the

harmonic oscillator length or alternately, and equivalently as the ratio of correspond-

ing energies:

𝜂 = 𝑘𝐿𝑎0 = 𝑘𝐿

√︂
~

2𝑚𝜔0

(2.97)

𝜂2 =
𝜔𝑟

𝜔0

. (2.98)

In the right side of equation 2.96 we have assumed a deep lattice limit where 𝜂 < 1,
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and used this small parameter to expand the exponential to first order. Keeping only

the first two terms in the series, from this expression we can see that the probability

of exciting a ground state atom to the first excited state is given by 𝑃1 = 𝜂2 whereas

the probability of scattering to the ground band is 𝐸0 = 1−𝜂2. Therefore, the average

energy can be written as:

⟨𝐸⟩ = 𝑃0𝐸0 + 𝑃1𝐸1 + . . . (2.99)

For a typical lattice the Lamb-Dicke parameter is between a factor of 1/3 to 1/8, so

in principle multiple bands might need to be accounted for for an accurate treatment.

The localized final state in each band means that the atom occupies a superposition

of many quasimomentum eigenstates, uniformly filling the band, therefore, we can

express the energy of a particle that ends up in the 𝑛-th band as the sum of the

bandgap plus the band width, 𝐸𝑛 = 𝐸gap
𝑛 +𝑊𝑛. It is now clear that the scattering of

a particle by spontaneous emission process has the potential to raise the energy of a

many-body system not just by producing holes where a particle once occupied, but

also when we consider that a single particle in an excited band has both the energy

of the band gap as well as the energy of the band width that it can redistribute to

other particles in the many-body system via collisional processes.

In the following section, we will explore how an excitation, once it is created in the

upper bands of a lattice can thermalize through different collisional processes in order

to decrease the condensate fraction by more than just the particle removed from the

initial state by the scattering processes discussed here.

2.5.4 Density, Collisions, and Thermalization in a Lattice

In a typical experimental sequence, a nearly pure BEC in a trap is illuminated with the

optical lattice light. The light intensity is adiabatically ramped from zero to a desired

lattice depth in an finite amount of time. Ideally, the entropy of the initial condensate

is preserved in this operation. As described above, practically speaking there are a

multitude of processes that can lead to heating during this process including inelastic
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light scattering, amplitude, and phase noise. In this section we describe one additional

heating process, non-adiabaticity, in conjunction with a description of how these

excitations lead to heating through collisions and thermalization with ground state

atoms. In this discussion, we will see the important role that density plays in the

resulting dynamics and the lowest achievable temperatures in a deep lattice.

In figure 2-11, the relative energy of the first, second, and third bands are plotted

as a function of the lattice depth, expressed in units of the number of recoil energies

deep the total potential is. The strength of the three directions of the cubic lattice

are assumed to be equal such that the first excited band consists of one direction of

singular excitation and the other two are of the lowest occupation number, i.e. all

cyclical permutations of the band occupation numbers {𝑛𝑥, 𝑛𝑦, 𝑛𝑧} = {1, 0, 0}. At low

lattice depths, 𝑁𝑟 < 2.4, note that the lowest eigenstates of the first excited band lies

below the highest excited state of the ground band. This phenomena arises for states

near the Brillouin zone boundary, where the highest states of the ground band at

quasi-momentum 𝑘𝑎 = (𝜋, 𝜋, 𝜋) have energy relative to the absolute ground state of

∼ 12𝑡 whereas the lowest states of a 𝑞𝑥 excited band at quasimomentum 𝑘𝑎 = (𝜋, 0, 0)

have energy 4𝑡.

This energy hierarchy implies that at low lattices, thermal excitations at the scale

of 1 𝐸𝑟 can occupy states that are adiabatically connected to the first excited band

in a deep lattice. Fortunately, the condensate wavefunction primarily occupies states

near 𝑘 = 0, which is gapped for all lattice depths. This effect is more important

for ultracold fermions, who, even at zero temperature, can have finite occupation

probabilities at large quasi-momenta. Restricting the discussion to bosonic particles,

these state can be thermally occupied at low lattice depths and, upon increase of

the lattice depth to its final value, this thermal population is then adiabatically

transferred to the excited band. This effect is what I (admittedly, incorrectly) call

here the non-adiabatic effect that leads to finite population of thermal particles in

the excited band of a deep optical lattice.

This naturally leads to the following questions: what mechanisms are responsible

for populating these excited states and how do these excited band particles thermalize
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Figure 2-11: Bands of the isotropic cubic lattice as a function of the lattice depth.
(Left) Shaded regions correspond to the states contained within the lowest (blue) and
first excited (orange) bands. Of special interest is the overlap of the two bands at low
lattice depths where the lowest states of the upper band are lower in energy than the
highest states of the lower band. (Right) The ratio of the excited band width to the
lowest band width showing the average energy one excited band particle can impart
to the ground band particles via band-conserving collisions.

with the condensate atoms in the ground band? To address this question we begin

by describing the different collisional processes that can happen in the lattice. The

mathematics proceeds a bit differently than elastic collisions in free-space since now

momentum isn’t strictly conserved, but instead the quasi-momentum is conserved

modulo the reciprocal lattice vector, 𝑄. This enables scattering processes known as

umklapp processes – scattering to final states outside of the first-Brillouin zone. In

the following, we do not explicitly take into account such processes, but nevertheless

such final states contribute to the overall scattering amplitude.

In general, there are two different collisional processes happening between ground

band and excited band particles: band-conserving collisions, and band-changing col-

lisions.

We begin by discussing band-conserving collisions. This class of collisions changes

the quasi-momentum of the ground and excited band particles while preserving their

band index. These collisional processes allow the energy of the excited bands to be

transferred to the atoms in the ground band. In a classical picture of the scattering

process of an excited band particle and a condensate atom initially in the q = 0
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ground state, the two-body collision conserves quasi-momentum, modulo 𝑄:

q1,𝑖 = q1,𝑓 + q2,𝑓 (2.100)

and energy:

𝐸1,𝑖(q) = 𝐸1,𝑓 (q) + 𝐸2,𝑓 (q). (2.101)

In the lattice, writing the momentum as the product of the mass and velocity is

not advantageous since the effective mass of the initial and final states are different

because the band curvature is different at every point:

𝑚* = ~2
(︃
𝜕2𝐸

𝜕𝑞2𝑖

)︃−1

. (2.102)

Instead, to visualize the scattering process, diagrams like figure 2-12 are useful to

draw, showing an exemplary collision that can remove an atom from the condensate.

Note that at the bottom of the upper band the effective mass diverges and there

are no more lower energy states to relax to, so without a band-changing collision,

population in the excited state will accumulate at the bottom of the second band,

after releasing their energy through collisions with atoms in the lower band.

With this model in mind, we can quantify how much energy the relaxation of an

excited band particle adds to the ground band atoms. To begin, we assume that the

excited band particle is prepared in some energy and momentum state, 𝐸2,𝑖(q), and

relaxes down to an energy close to the excited band minimum, 𝐸min
2 (q). On average,

the energy lost by an atom in a uniformly distributed, random starting position in the

band will be Δ𝐸 = ⟨𝐸2,𝑖(q) − 𝐸min
2 (q)⟩q = 𝑊𝑛/2, where the angled brackets denote

the average over a uniform distribution and 𝑊𝑛 is the bandwidth of the 𝑛-th band.

The energy lost by the excited band atom is absorbed by the ground band atoms.

For simplicity, we assume the ground band atoms are an ideal Bose gas in a uniform

potential. With these assumptions, the heat capacity can be calculated from the
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Figure 2-12: Schematic of possible collision channels between ground and ex-
cited atoms. Excited band particles can thermalize with lowest band atoms via
quasimomentum-, energy-, and band-conserving collisions (left) shown for a second
band particle, and can also be constructed for a third band particle. A second ther-
malization mechanism occurs via band-changing collisions (right) causing an excited
band particle to fall to the lowest band and produce multiple excitations to satisfy
quasimomentum- and energy-conservation.

Bose-Einstein distribution to be:

𝐶𝑉

𝑉 𝑘𝐵
=

1

𝑉 𝑘𝐵

𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
3

2𝜆3

[︁5
2
𝑓5/2(𝑧)−

3𝑓3/2(𝑧)
2

2𝑓1/2(𝑧)

]︁
(2.103)

For a typical experiment we begin with a condensate well below the condensation

temperature, 𝑇𝑐, so the second term in the bracket is negligible and we expand the

first term to get the heat capacity at low temperatures:

𝐶𝑉

𝑁𝑘𝐵
=

1

𝑛

𝐶𝑉

𝑉 𝑘𝐵
=

15

4𝑛𝜆3
𝜁(5/2) ∝ 𝑇 3/2. (2.104)

With this knowledge in hand we can now calculate the expected temperature increase

for a small excited state population totaling 𝑁ex particles out of 𝑁BEC condensate

atoms, whose ratio give the excited state fraction, 𝑓 = 𝑁ex/𝑁BEC, as a function of

starting temperature and lattice depth via:

Δ𝑇 = 𝑁exΔ𝑄/𝐶𝑉 =
𝑁ex𝑊𝑛

2

⧸︁15𝑁BEC𝑘𝐵𝜁(5/2)

4𝑛𝜆3
=

2𝑓𝑊𝑛𝑛𝜆
3

15𝑘𝐵𝜁(5/2)
(2.105)
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Figure 2-13: The average temperature increase for band-conserving collisions with
0.1% excited band probability. Assuming a uniform initial occupation probability
within the second band and complete relaxation to the lowest state in the second
band, the average temperature increase of the condensate in the ground band as a
function of the starting temperature and the lattice depth. Results are calculated for
a non-interacting gas in a uniform potential, thermalizing with a 0.1% excited band
probability, and show how the cloud becomes increasingly sensitive to a low excitation
probability as the starting gas becomes colder.

Figure 2-13 shows these quantities in a contour plot for an arbitrarily chosen excited

state fraction to be 0.1% – chosen to be small since very large populations would be

easily detectable using standard time-of-flight and band-mapping imaging techniques.

We see that the effect of the excited band atoms gets worse as the starting condensate

temperature is lower. In fact, as the system approaches zero temperature the heat

capacity goes to zero – as required by the third law of thermodynamics – so the

effect of any finite amount of energy added to the system is magnified, making the

temperature increase on each scattered excited band atom worse. In addition, we see

that the temperature increase scales linearly with phase space density, 𝑛𝜆3. Therefore,

at fixed temperature, as we increase the average occupation of the lattice from unity

to higher fractions, the temperature increase with each relaxation process should scale

with the occupation number. For example, at a typical temperature of 10 nK and
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unity lattice occupation in a 14 𝐸𝑟 lattice – close to the transition point from the

superfluid to a Mott insulating state – the average temperature increase for a single

excited state atom is 721 pK. However, if the filling is increased to 5, an occupation

number we can easily (and often have for experiments that require a high signal-to-

noise ratio) prepared in the lab, the average temperature increase per excited state

atom is 3.6 nK! As a result, an experiment with a cloud of a few ten thousand atoms,

can be sensitive to less than a percent-level occupations of states in the excited band.

This sensitivity to the total atom number and density is a result we see here first, and

it will be a recurring theme in our continuing discussion and experimental results.

A more refined calculation may take into account the heat capacity of an interact-

ing BEC in the limit of phonon excitations. This linear spectrum gives a 𝑇 3 scaling

of the heat capacity, or if numerical precision is required, the full integral with the

Bogoliubov quasiparticle spectrum can be numerically evaluated. Note that in a re-

alistic experiment the excited fraction may not necessarily be in thermal equilibrium

with the ground band atoms at all stages of the ramp, and that dynamical effects

may play a role. One such effect that we have so far ignored is the additional heating

process of band-changing collisions.

As discussed above, when a particle is in the lowest state of an excited band,

there are no more states within that band the excited atom can relax to. In fact, for

each state in the excited bands, each collision with ground band atoms carries a finite

probability of relaxation to a lower band. This process is depicted schematically in

Fig. 2-12. Once again, just like with band-conserving collisions, this collision must

obey energy and quasi-momentum conservation (modulo Q!) rules. An interesting

situation arises when the excited band gap becomes much larger than the lower band

width; how can a band-changing collision conserve energy?

Looking at Fig. 2-14, we see, for example, at a moderate lattice depth of 14 𝐸𝑟

– close to the superfluid to Mott insulator transition for a lattice of singly-occupied
87Rb atoms – the ratio of the band gap to the lowest band width is 62. In the simple

scattering model we then expect that in order to conserve energy in the relaxation

process the final state must be one that has at least 62 excitations of a state with

86



2 4 6 8 10 12 14 16 18 20
Lattice Depth (Nrec)

100

101

102

103

B
an

dg
ap

 E
ne

rg
y 

C
om

pa
re

d 
to

 L
ow

es
t B

an
dw

id
th

Relative Bandgap Energies

Gap from 2  1
Gap from 3  1

Average Heating: Second Band Relaxation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Condensate Temperature, log10(T nK)

4

6

8

10

12

14

16

18

20

La
tti

ce
 D

ep
th

 (N
um

be
r o

f R
ec

oi
l)

2.5

3

3.5

4

4.5

5

5.5

6

6.5
Tem

perature R
ise, Δ

T log
10 (T pK

)

Figure 2-14: The average temperature increase for one excited band relaxation pro-
cess. Plotted as a function of the starting temperature and the lattice depth, the
results – similarly to the band-conserving case – are calculated for a non-interacting
gas in a uniform potential and once again show how the cloud becomes increasingly
sensitive to a low excitation probability as the starting gas becomes colder. For
sufficiently low densities, multi-particle collision events are suppressed leading to a
freeze-out of these relaxation processes at high lattice depth.

the maximum lowest band energy – a highly unlikely collision! For this reason, when

considering band-changing collisions, we treat these processes as being frozen out

at high lattice depths. However, at low lattice depths, the ratio of the band gap

to the lowest band width is much more favorable. At 4 𝐸𝑟 this ratio is a factor of

2, so for typical densities of bosons in an optical lattice, usually less than three or

four particles per site, this process is not frozen out. Therefore, we can see that, as

with the band-conserving collisions, the density of atoms in the lattice plays a crucial

role in the collisional physics. If we consider the requirement for energy conservation

during the relaxation process, then these band-changing processes can only occur for

occupation numbers of:

𝐸gap ≤ 𝑛max𝑊1, (2.106)

where 𝐸gap is the band gap at a given lattice depth between the ground band and an

excited band, 𝑛max is the maximum on-site density of the lattice (we restrict ourselves

here to on-site collisions only), and 𝑊1 is the bandwidth of the lowest band in the

optical lattice. In Fig. 2-14(b) we plot the ratio of the 1 → nth band gap to the lowest
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band width as a function of lattice depth. For a given lattice depth, the two plots can

be used to determine the energy deposited in the ground band by a band-changing

collision, as well as whether the maximum lattice occupation allows such processes to

occur.

For example, we consider the case of a shallow lattice with average filling of one

particle per site. Consider the initial state with one atom sitting in the lowest energy

state of the first excited band and another condensate atom in the q = 0 state of

the ground band. Assuming that this collision is energetically allowed, the relaxation

of the excited state atom to the ground band will create a final state of two ground

band particles in different quasimomentum states that both satisfy quasimomentum

and energy conservation. These particles can collide and thermalize with the rest of

the atoms in the ground band, thus raising the energy of the ground band atoms by

Δ𝑄 = 𝐸gap. Utilizing the heat capacity of the condensate presented above, we can

calculate the temperature increase as a result of this process, shown in figure 2-14.

The average temperature increase per single excited band relaxation is calculated,

for demonstration purposes for a peak density of three particles per lattice site, or

approximately 2× 1013 cm−1.

In the above discussion I have assumed that there is a continuous band of final

states for scattering from the initial states. However, for cold atoms in optical lattices

this is not necessarily true. In the superfluid phase, the ground band has a gapless

excitation spectrum; however, crossing the phase transition to the Mott insulating

phase, the system becomes gapped at low energy. In this regime, we will have to

account for the gapped nature of the final states in evaluating both the energetics

of scattering as well as the heat capacity of the many-body state. For example, in

deep lattices ∼ 17𝐸𝑟 for 87Rb in a 532 nm lattice, the Mott gap can exceed the first

excited state bandwidth, meaning that collisions between the ground state atoms and

all states in the first excited band are suppressed. This is an interesting collisional

regime, but further treatment of this situation lies outside the scope of the current

discussion.

One final source of heating in an optical lattice is apparent in the plot of the band
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energies as a function of lattice depth in fig. 2-11. At lattice depths between 0 and

2.4 𝐸𝑟 the lowest eigenstates of the second band lie lower in energy than the highest

eigenstates of the lowest band. This means that in the lowest parts of the lattice ramp,

the states that will adiabatically become high-energy states in the first excited band

are not energetically gapped from those states that will become the lowest band states,

and in fact they are even energetically preferable to be populated either thermally

or via technical noise! More fundamentally, the condensate is trapped in a harmonic

confining potential which breaks translational symmetry in the system. Therefore,

the translational symmetry we used to invoke Bloch’s theorem and model our lattice

energies in terms or quasimomentum eigenstates is broken and the trap causes mixing

between momentum eigenstates. Therefore, if we load a trapped condensate into a

lattice, the initial state can have some admixture of quasimomentum states that

project into excited states of the lattice. If the initial ramp is not slow enough to

adiabatically follow the ground state at every quasimomentum to the lowest trapped

band then some population of the the initial state will be excited to an upper band

where it can undergo the damaging relaxation processes detailed above.
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Chapter 3

The Harper-Hofstadter Hamiltonian

The ability to create vector potentials for neutral atoms akin to the interaction of

an electron with an electromagnetic field is a crucial step towards creating quantum

simulators of interacting gauge theories, creating new gauge theories not observable

in the context of high energy physics, as well as experimentally investigating gauge

structures that don’t exist in nature. More immediately, the ability to have neutral

atoms act as though they are charged particles in a static background field allows

creation of states that are more analogous to the two-dimensional electron gas in a

magnetic field. In certain regimes, the action of this synthetic magnetic field can

create topologically nontrivial bandstructure and realizations of strongly interacting

topological states of matter. A famous example of such a nontrivial state and a goal

for quantum simulation is the hierarchy of fractional quantum Hall states observed

in the two-dimensional electron gas [146, 152].

Despite such lofty goals, the ultracold atoms we have in the lab are neutral and

any potential 𝑒
𝑐
A will automatically be zero! At first glance, it may appear that we

are out of luck. However, if we further consider what a vector potential means for

the electron wavefunction a work-around becomes immediately obvious. Specifically,

consider how the vector potential and matter wavefunction are inexorably linked by

local gauge symmetry. If we create a unitary transformation that produces a local
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rotation of the phase of the matter wavefunction:

𝜓 → 𝑈̂𝜓 = 𝑒𝑖𝜃(x)𝜓, (3.1)

then the Hamiltonian transforms as 𝑈̂𝐻𝑈̂ †, with the canonical momentum transform-

ing as:

Π → 𝑒𝑖𝜃(x)
(︁
p− 𝑒

𝑐
A
)︁
𝑒−𝑖𝜃(x) =

(︁
p− ~∇𝜃(x)− 𝑒

𝑐
A)
)︁
. (3.2)

If we associate the phase gradient with the vector potential, we can write an effective

vector potential,

Aeff = A+
~𝑐
𝑒
∇𝜃(x). (3.3)

This effective vector potential has a provocative form since as 𝑒 → 0, the effective

vector potential term in the Hamiltonian approaches a finite value: 𝑒
𝑐
Aeff → ~∇𝜃(x)!

Physically, this vector potential emerges from the ability to create some spatially-

textured phase pattern in the wavefunction. To accomplish this task, experiments

generally take several different approaches. One approach is to physically rotate the

system to imprint a phase associated with a centrifugal force [112, 1]. A second

approach pioneered experimentally by the NIST group involves coherently coupling

the levels of a two-level system with a laser beam that transfers momentum in a

spatially-varying way [103]. A third, method involves time-modulating an optical

lattice system in a circular way that produces time-reversal symmetry breaking and

generates new tunneling matrix elements that contain spatially-varying phases [147,

79]. A final method, outlined here in this thesis, involves coherently coupling sites

of a tilted optical lattice with an incommensurate running-wave lattice that imprints

spatially-varying tunneling matrix elements [76, 88, 3].

For the experiments we will discuss, this imprinted vector potential behaves akin to

a static magnetic field from an electromagnet like that imposed on a two-dimensional

electron gas to enter the quantum Hall regime. However, in principle the laser con-

figuration used to imprint such phases can be made to be dynamically generated by

the atomic positions – for example by superradiant scattering into the mode of a
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high-finesse cavity – in such a way to realize a dynamical gauge field which couples

back to the atomic motion via the recoil momentum. This direction lies outside the

scope of the research described here, but there have been many proposals towards

this effect [76, 125, 174, 11].

3.1 Landau Levels meet the Lattice

In chapter 1, we discussed the physics of an electron in a magnetic field and how

this system realizes a simple, solvable model of a topological, many-body system. In

condensed matter systems, often we can ignore the underlying lattice structure of the

material we are working with because the magnetic flux length far exceeds the lattice

constant, 𝑙 ≫ 𝑎. In this case, the resulting physics is well-described by that of the

continuum Landau levels.

The problem of a charged particle in a uniform magnetic field becomes more

interesting when we try to formulate it in the presence of a lattice. In the tight

binding limit of an isolated Bloch band the Hamiltonian can be written by making

the Peierls substitution such that the tight-binding Hamiltonian becomes [72, 67, 8]:

𝐻 = −𝑡
∑︁
⟨𝑚,𝑛⟩

(︂
𝑒−𝑖𝜃𝑚,𝑛 𝑎̂†𝑚+1,𝑛𝑎̂𝑚,𝑛 + 𝑎̂†𝑚,𝑛+1𝑎̂𝑚,𝑛 + H.c.

)︂
(3.4)

where the action of the gauge field is to imprint a spatially-varying phase on each

link of the lattice with a phase accumulation given by:

𝜃𝑚,𝑛 =
𝑒

~𝑐

∫︁ 𝑥𝑚+1

𝑥𝑚

𝑑r ·A. (3.5)

Here, for simplicity, we choose to work in the Landau gauge so that A = −𝐵𝑦𝑒𝑥.

A more intuitive understanding of the underlying physics can be gathered by

considering the competing length scales of the lattice constant, 𝑎, and the magnetic

flux length 𝑙 =
√︁

𝑒𝐵
~𝑐 . For the purpose of defining a unit cell and diagonalizing

the Hamiltonian using Bloch’s theorem, we begin by attempting to find translation
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symmetry vectors of the Hamiltonian. In the Landau gauge, the canonical momentum

operator in the 𝑥-direction commutes with the Hamiltonian, and can be used like the

normal translation operator, now modified to reflect the presence of the lattice. In

the 𝑦-direction, the momentum operator does not commute with the Hamiltonian,

and instead must be modified by adding a term proportional to the vector potential

[172]:

𝑇𝑥 =
∑︁
𝑚

𝑎̂†𝑚+1,𝑛𝑎̂𝑚,𝑛 (3.6)

𝑇𝑦 =
∑︁
𝑛

𝑎̂†𝑚,𝑛+1𝑒
−𝑖𝑎2𝑚/𝑙2 𝑎̂𝑚,𝑛. (3.7)

To find a valid translation symmetry in the problem, we are interested in how the

wavefunction changes as a particle is translated along different paths to the same

final point – a path equivalent to moving an atom or electron in a circle back to the

same starting position. In this case, we know that the system contains two competing

length scales, the lattice constant, 𝑎, and the magnetic flux length, 𝑙, so we look for

a translation symmetry that is 𝑞-fold expanded along the direction of the broken

translation symmetry. As in the continuum case, we look at moving to the same

final point along two different paths by alternating application of the two translation

operators [130]:

(︀
𝑇𝑦
)︀𝑞
𝑇𝑥𝜓 =

(︂∑︁
𝑛′

𝑎̂†𝑚,𝑛′+1𝑒
−𝑖𝑎2𝑚/𝑙2 𝑎̂𝑚,𝑛′

)︂𝑞∑︁
𝑚′

𝑎̂†𝑚′+1,𝑛𝑎̂𝑚′,𝑛𝜓 (3.8)

𝑇𝑥
(︀
𝑇𝑦
)︀𝑞
𝜓 =

∑︁
𝑚′

𝑎̂†𝑚′+1,𝑛𝑎̂𝑚′,𝑛

(︂∑︁
𝑛′

𝑎̂†𝑚,𝑛′+1𝑒
−𝑖𝑎2𝑚/𝑙2 𝑎̂𝑚,𝑛′

)︂𝑞

𝜓. (3.9)

With a little manipulation we find that the wavefunction of a particle translated

by one lattice constant, 𝑎, along the 𝑥-direction and then one lattice constant along

the 𝑦-direction differs from that of a particle translated first along 𝑦 and then the

𝑥-direction by a phase factor:

𝑇𝑦𝑇𝑥 = 𝑒−𝑖(𝑎/𝑙)2𝑇𝑥𝑇𝑦 (3.10)
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so repeated use of this relation 𝑞-times yields a the phase accumulated along the two

separate paths:

𝑞
𝑎2

𝑙2
= 𝑞

𝑒𝐵𝑎2

~𝑐
= 2𝜋𝑞

Φ

Φ0

(3.11)

Finally, we see that for special values of the magnetic field and corresponding magnetic

flux lengths, the phase factor equals an integer number of 2𝜋 and the system recovers

translation symmetry.

2𝜋𝑞
Φ

Φ0

= 2𝜋𝛼, so: 𝛼 =
𝑝

𝑞
(3.12)

where 𝑝 is an integer, 𝑝 ∈ Z. When the flux per unit cell takes on rational values,

𝑝, 𝑞 ∈ Z, we find that we can always find a translation operator for which the magnetic

unit cell and the underlying lattice unit cell are commensurate that is equal to a

translation by 𝑑𝑦 = 𝑞𝑎. Note that the gauge we chose is a 𝑦-dependent potential in

the 𝑥-direction, but the unit cell has dimensions of 𝑎 in the 𝑥-direction and 𝑞𝑎 in

the 𝑦-direction! Particularly, we see that the translation symmetry operators of the

Hamiltonian depend on the gauge we are using, meaning the definition of the unit cell

may also change depending on the gauge. However, the Dirac quantization condition

given in equation 3.12 that fixes the flux per unit cell, is independent of gauge as one

might expect, since the strength of the magnetic field is fixed independent of gauge

choice.

Additionally, the translation symmetry operators allows us to quantify the degen-

eracy of the spectrum in the magnetic unit Brillouin zone. To do this, we assume the

field takes the value of a commensurate flux, 𝛼 = 𝑝
𝑞
, so we can form a well-defined

Brillouin zone and Bloch wavefunctions. Then if we consider the eigenvalue problem

for the translation operators:

𝑇𝑥𝑇𝑦|𝑞𝑥, 𝑞𝑦⟩ = 𝑒2𝜋𝑖𝛼𝑇𝑦𝑇𝑥|𝑞𝑥, 𝑞𝑦⟩ = 𝑒𝑖(2𝜋𝛼+𝑘𝑦𝑎)𝑇𝑦|𝑞𝑥, 𝑞𝑦⟩, (3.13)

we see that the translation in the 𝑦-direction leads to a shift in the eigenvalue of the

𝑥-translation operator. Since both translation operators commute with the Hamilto-
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nian, this must mean that:

𝑇𝑦|𝑞𝑥, 𝑞𝑦⟩ ∝ |𝑞𝑥 +
2𝜋𝛼

𝑎
, 𝑞𝑦⟩, where: 𝐸(𝑘𝑥, 𝑘𝑦) = 𝐸(𝑘𝑥 + 2𝜋𝛼/𝑎, 𝑘𝑦). (3.14)

We therefore conclude that for a flux of 𝛼 = 𝑝
𝑞

the spectrum is 𝑞-fold degenerate for all

quasimomenta in the first Brillouin zone. Reassuringly, when we take the continuum

limit where 𝛼 → 1
𝑞
, where 𝑞 → 𝑎/𝑙 we recover precisely the translation symmetry of

continuum Landau levels and the N-fold degeneracy as well.

Given the Hamiltonian and a commuting set of translation operators for some

rational flux 𝛼 = 𝑝
𝑞
, we can solve the tight-binding Hamiltonian in the basis of states

in the unit cell by taking the Fourier transform of the creation operator [130]:

𝑎̂x𝑖
=
∑︁
k

𝑒𝑖k·x𝑖 𝑎̂k (3.15)

and substituting into the Hamiltonian. Note that the good momentum-space wave

vectors now run over the magnetic Brillouin zone, {𝑞𝑥, 𝑞𝑦} ∈ {
(︁
−𝜋

𝑎
, 𝜋
𝑎

]︁
,
(︁
− 𝜋

𝑞𝑎
, 𝜋
𝑞𝑎

]︁
} and

the momentum-space wavefunction contains 𝑞 components arising from the different

phase factors of the 𝑞 sites within the magnetic unit cell.

As a concrete example, we consider the case of 𝛼 = 1/3, where the vector potential

takes the form, 𝜃𝑚,𝑛 = 2𝜋𝑛𝛼 = 2𝜋𝑛/3. The lattice now has an enlarged translation

symmetry in the 𝑦-direction, 3𝑎̂𝑦, and a Brillouin zone that is reduced in size from

the 2𝜋/𝑎 × 2𝜋/𝑎 of the underlying lattice to a size 2𝜋/𝑎 × 2𝜋/3𝑎, where we have

chosen the vector potential to be oriented in the 𝑥-direction. Fourier transforming

the creation and annihilation operators gives a 3×3 Hamiltonian in the basis of states

{𝑛 = 2; 1; 0}:

𝐻 = −𝑡

⎛⎜⎜⎜⎝
2 cos(𝑘𝑥𝑎+ 4𝜋/3) 𝑒𝑖𝑘𝑦𝑎 𝑒−𝑖𝑘𝑦𝑎

𝑒−𝑖𝑘𝑦𝑎 2 cos(𝑘𝑥𝑎+ 2𝜋/3) 𝑒𝑖𝑘𝑦𝑎

𝑒𝑖𝑘𝑦𝑎 𝑒−𝑖𝑘𝑦𝑎 2 cos(𝑘𝑥𝑎)

⎞⎟⎟⎟⎠ (3.16)

Given this Hamiltonian matrix, the spectrum is easily solved and the first Brillouin
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(a) Bands of the 1/3-flux Hamiltonian. (b) Lowest band of the 1/3-flux Hamiltonian.

Figure 3-1: Bandstructure of the 𝛼 = 1/3 Hamiltonian. Using the Landau gauge
oriented in the 𝑥-direction, A = −𝐵𝑦𝑒𝑥, the single particle spectrum displays three
bands emerging from the lowest band of the cubic lattice (a). Note the modified shape
of the Brillouin zone indicating an enlarged real space translation symmetry of 3× 𝑎
in the 𝑦-direction in addition to the triple degeneracy of every point in the spectrum
upon translation in quasimimentum, 𝑘𝑥 + 2𝜋/3𝑎. The spectrum of the lowest band
(b) shows the lowest band energies and the triple degeneracy of the ground state.

zone is shown in figure 3-1b. We immediately notice the reduced magnetic Brillouin

zone compared to the lattice unit cell in addition to the fact that the spectrum now

contains three bands, shown in figure 3-1a, thus preserving the number of states

contained within the Brillouin zone when compared to the Brillouin zone of the un-

derlying lattice. Finally, looking at the spectrum of a single band, for example the

lowest band shown in figure 3-1b, each state is triply-degenerate with states separated

by translations within the zone of 𝑘𝑥 + 2𝜋/3𝑎. Remarkably, this includes the ground

state of the lattice which is itself triply-degenerate. As predicted by the eigenvalues

of the translation operator, we will find this ground state degeneracy a generic feature

for all fluxes. In the continuum limit this smoothly connects to the 𝑁 -fold degeneracy

of a Landau level. We will discuss the implications of this ground state degeneracy

in a later section when we add interactions to the system.
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3.2 Hofstadter’s Butterfly, Gaps, and Topology

For a given flux, we can analyze the unique translation symmetry of the Hamiltonian

in order to obtain a unit cell and diagonalize the Hamiltonian to obtain its band

structure. However, without information about the unit cell we can solve for the

the energy spectrum as a function of the applied flux to the system. To obtain

this spectrum as a function of the flux, we begin with the Hamiltonian in it’s real

space basis shown in equation 3.4. Following the original solution from Hofstadter

[72, 67, 8], when we consider the wavefunction as a sum of local wavefunctions with

weights, 𝜓(𝑚,𝑛), on site (𝑥 = 𝑚𝑎, 𝑦 = 𝑛𝑎),

|𝜓⟩ =
∑︁
𝑚,𝑛

𝜓(𝑚,𝑛)|𝑚,𝑛⟩, (3.17)

the Hamiltonian in the Landau gauge oriented in the 𝑥-direction generates a recursion

relation between the wavefunction weights on adjacent sites:

𝑒2𝜋𝑖𝛼𝑛𝜓(𝑚+1, 𝑛)+𝑒−2𝜋𝑖𝛼𝑛𝜓(𝑚−1, 𝑛)+𝜓(𝑚,𝑛+1)+𝜓(𝑚,𝑛−1) = −𝐸
𝑡
𝜓(𝑚,𝑛). (3.18)

In free space, the wavefunction in the Landau gauge is factorizable into an plane wave

component that commutes with the Hamiltonian and a harmonic oscillator component

in the other direction. Taking inspiration from this wavefunction, we write an ansatz

that separates the wavefunction weights into two parts:

𝜓(𝑚,𝑛) = 𝑒𝑖𝑘𝑥𝑥𝑔(𝑦) = 𝑒𝑖𝑘𝑥𝑎𝑚𝑔(𝑛) (3.19)

such that the recursion relation between sites becomes:

2 cos(2𝜋𝛼𝑛+ 𝑘𝑥𝑎)𝑔(𝑛) + 𝑔(𝑛+ 1) + 𝑔(𝑛− 1) = −𝐸
𝑡
𝑔(𝑛). (3.20)

The recursion relation in equation 3.20 is known as Harper’s equation. To get the

spectrum of the Hamiltonian, rational values of the flux and transverse quasimomen-
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Figure 3-2: The spectrum of Hofstadter’s butterfly. The horizontal axis encodes the
magnetic field strength in terms of the magnetic flux quantum and lattice unit cell
area, 𝛼 = Φ

Φ0
= 𝐵𝑎2

ℎ𝑐/𝑒
, and the vertical axis corresponds to eigenenergies of the Harper

equation. Spectra are plotted for all rational fluxes 𝛼 = 𝑝
100

with 𝑝 ∈ [0, 100].

tum, 𝑘𝑥𝑎 ∈ (−𝜋, 𝜋] can be specified and the resulting 𝑁 × 𝑁 tri-diagonal matrix

for lattice of 𝑁 sites and periodic boundary conditions can easily be diagonalized.

The result is the famous fractal picture of Hofstadter’s butterfly, shown in figure 3-

2. Equation 3.20 also arises in the context of quasi-periodic potentials applied to

one-dimensional systems. In this context, the diagonal cosine term is a local, quasi-

periodic potential applied to a one-dimensional system of tunnel junctions and gives

rise to an identical spectrum for fixed 𝑘𝑥𝑎.

Examining the spectrum of Hofstadter’s butterfly, there are many interesting fea-

tures to note. First of all, as we saw in the last section in the limit of small fluxes,

when 𝛼 → 1
𝑞

and 𝑞 → 𝑎
𝑙
, we should recover the behavior of Landau levels. Looking

at the spacing of the lowest eigenvalues for small fluxes away from zero in the lower

righthand corner of figure 3-2, we see that the levels are equally spaced and that the

spacing increases linearly with the strength of the flux, consistent with the behavior
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of Landau levels. The next thing to notice about this spectrum is the limits of fluxes

𝛼 ∈ [0, 1]. The single-particle wavefunction is periodic in the amount of flux applied

to the system because a phase accumulated upon tunneling around one plaquette

of the lattice of 2𝜋 is completely indistinguishable from any integer multiple, 2𝜋𝑛,

where: 𝑛 ∈ Z. Therefore, the band structure at both zero flux and 𝛼 = 1 flux are

identical and correspond to the band structure of a cubic lattice with bandwidth 4𝑡.

Additionally, the behavior of the energy levels for small deviations from 𝛼 = 1 are

identical to the behavior of Landau levels for small fluxes near 𝛼 = 0.

Another symmetry we notice in the spectrum is a particle-hole symmetry around

zero energy. This becomes very important when we consider even denominator fluxes.

All fluxes with even denominators have Dirac points at zero energy. This can be

clearly seen as the absence of a band gap at zero energy for the even denominator

fluxes in figure, 3-2. The massless nature of the spectrum at zero energy means that,

as the flux moves away from commensurability, the system exhibits a half-integer

quantum Hall effect similar to that observed in graphene [123, 173]. The zero energy

mode emerging from the Dirac point is clearly visible as a straight line of states at zero

energy that connect to every even denominator state at the Dirac point. Figure 3-3

shows a zoomed-in section of Hofstadter’s butterfly close the the 𝛼 = 1/2 limit where

this effect is clearly apparent. Clearly visible as well for small deviations away from the

commensurate flux of 𝛼 = 1/2 is the scaling of the Landau level energies for massless

particles at zero energy with 𝐸𝑛 ∝
√
𝑛𝐵′, where 𝑛 is the Landau level index and 𝐵′

denotes the deviation of the magnetic field from a commensurate value. This is in

contrast to the linear energy relation for Landau levels emerging from a massive band

where 𝐸𝑛 ∝ 𝑛𝐵′. This linear scaling is visible for the gap opening from the bottom

of the band at 𝛼 = 1/2 in figure 3-3. As discussed in Chapter 1 for Landau levels in

the continuum limit, the gap that opens from a massive band would normally carry a

Chern number and corresponding Hall conductance of 𝑛 = 1. However, the gap that

opens at the bottom of the 𝛼 = 1/2 band in figure 3-3 has a Chern number of 𝑛 = 2!

We can develop an intuitive understanding of this by considering that the 1/2-flux

model has two sites per magnetic unit cell and the spectrum has a corresponding two-
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Figure 3-3: Spectrum for small deviations from 𝛼 = 1/2. Small deviations of the
field from commensurability act like a magnetic field applied to particles occupying
the spectrum determined by a commensurate flux. For 𝛼 = 1/2, note the half-
integer Landau levels of massless Dirac particles for small field departures from 1/2
commensurability, including the zero-energy mode – first observed in the quantum
Hall effect in graphene – that does not open up a gap as a function of magnetic field
and instead stays pinned to zero energy [123, 173]. Also note the effective Landau
levels for massive particles opening at the bottom and top of the 1/2-flux band.
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fold degeneracy. If we consider small flux deviations from a commensurate value with

a quasi-continuum model, then each degenerate state in the Brillouin zone contributes

one state to the resulting Hall conductance, resulting in a Chern number of 𝑛 = 2.

The same logic applies to the half-integer Hall effect at the zero-energy states. The

lowest gap has a Chern number of one, but increasing the Fermi energy to cross the

first Landau level increases the Chern number to 𝑛 = 3.

A more systematic study of the topological features of the spectrum comes when

we calculate the topological index associated with each filled band. This task can be

accomplished in general by looking at solutions of the Diophantine equation [58, 136].

Alternately, upon solving the band structure for a specific flux, the eigenvectors of

the Hamiltonian can be used to calculate Berry’s curvature at each point in the first

magnetic Brillouin zone. Then for a band that is completely filled, either thermally or

by setting the Fermi energy inside a band gap, the populated states can be summed

over, giving rise to the Chern number of the populated bands. The Chern numbers

of each gap in the spectrum have been calculated [58], and above we highlight just a

few particularly relevant ones for understanding the general structure.

3.3 Realization of Strong, Uniform Fluxes in an Op-

tical Lattice

Before this work began, generation of artificial magnetic fields had been demonstrated

in a series of pioneering experiments demonstrating different physical mechanisms

by which effective magnetic fields could be generated. The first platform used to

demonstrate effective magnetic fields is that of a rotating superfluid. This was used to

generate large vortex arrays in both bosonic and fermionic superfluids. Unfortunately,

for many experiments, these fluxes were limited to the regime of low flux number to

particle number. Generating higher flux to particle ratios and loading the system into

an optical lattice has proven to be a more challenging task.

Pioneering work by the NIST group showed that effective fluxes can also emerge
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by Raman coupling different hyperfine states with the momentum transfer of a laser

recoil to an atom. Applying a magnetic field gradient to the sample engineers a

spatial dependence of the dressed state mixing angle, giving rise to an effective vector

potential. Unfortunately, this method is also limited to low flux to particle number

ratio and suffers from intrinsic heating processes of spontaneous emission due to the

need for spin-changing Raman transitions.

Effective magnetic fields in an optical lattice generated with far-detuned light

was first demonstrated in pioneering work by the Hamburg group that used off-

resonant driving of the optical lattice to implement Floquet engineering of staggered

fluxes into an optical lattice. This scheme succeeded in producing synthetic fluxes

with far-detuned light, but only produces staggered magnetic fluxes that lack easily

implementable generalization to produce topological band structures analogous to

electrons in a magnetic field. In addition, the scheme only produces fluxes in the

strong-driving limit and an adiabatic pathway to prepare the many-body ground state

is not obvious in addition to the inability to prepare the system in a three-dimensional

lattice in which strong interactions can be implemented.

Staggered magnetic fields were also demonstrated by the Munich group in a lattice

of asymmetric double wells. In contrast to the off-resonant Floquet engineering imple-

mented by the Hamburg group, this system features a resonant drive that coherently

couples states localized on the upper and lower states of an asymmetric double well

in addition to a momentum transfer that provides a tunneling matrix element and

imprints an additional phase. Although the synthetic fields generated in this work

were only staggered fields not yielding a topologically nontrivial system, this work

provides crucial insights on how to generalize this scheme to create uniform fluxes in

an optical lattice and provides a clear path forward to generating topological states

of matter.

Two important points we learn from this work include how to generate laser-

assisted tunneling – a technique pioneered by the Arimondo group [144] – with a

spatially-varying phase which is imprinted directly onto the ground state wavefunction

as well as how to generalize the staggered flux configuration to uniform fluxes with
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arbitrary strength.

Previous theoretical work suggested the ability of a strongly accelerated system

to realize uniform flux systems; however, these proposals are implemented in the

Landau gauge which features a laser configuration with an inhomogeneous driving

field which produces a very small tunneling matrix element. The Landau gauge

produces a vector potential oriented in the 𝑥-direction which features a phase shift

dependent on the 𝑦-position. Intuitively, the simplest implementation of this potential

term is to have an acceleration or potential offset between sites in 𝑥 and then a two-

photon resonant driving laser which produces a transition between energetically-offset

nearest neighbors and simultaneously imparts a momentum transfer in the transverse,

𝑦 direction. Unfortunately, by definition, the Wannier states localized on the two

different lattice sites we wish to drive transitions between are orthogonal:

𝐾Landau ∝
∫︁
𝑑𝑥𝑑𝑦 𝑤(𝑥− 𝑥𝑖, 𝑦 − 𝑦𝑖)𝑉drive(𝑦)𝑤(𝑥− 𝑥𝑖+1, 𝑦 − 𝑦𝑖) = 0 (3.21)

where we have denoted the laser-assisted tunneling rate between adjacent wells of the

lattice by the energy, 𝐾Landau.

A key insight of the Munich work is that if the laser drive term contains both

an 𝑥- and 𝑦-component of the momentum transfer the drive field can both provide a

tunneling matrix element in addition to imprinting a phase for generating an effective

magnetic flux. This can be seen in a straightforward way in the perturbative limit in

the frame rotating with the energy difference between adjacent sites:

𝐾pert ∝
∫︁
𝑑𝑥𝑑𝑦 𝑤(𝑥− 𝑥𝑖, 𝑦 − 𝑦𝑖)𝑒

𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑤(𝑥− 𝑥𝑖+1, 𝑦 − 𝑦𝑖) (3.22)

=

∫︁
𝑑𝑥𝑑𝑦 𝑤(𝑥, 𝑦)𝑒𝑖(𝑘𝑥(𝑥−𝑥𝑖)+𝑘𝑦(𝑦−𝑦𝑖))𝑤(𝑥− 𝑎𝑥, 𝑦) (3.23)

= 𝑒−𝑖(𝑘𝑦𝑦𝑖+𝑘𝑥𝑥𝑖)

∫︁
𝑑𝑥 𝑤(𝑥)𝑒𝑖𝑘𝑥𝑥𝑤(𝑥− 𝑎)

∫︁
𝑑𝑦 𝑤(𝑦)𝑒𝑖𝑘𝑦𝑦𝑤(𝑦) (3.24)

≈ 𝑒−𝑖(𝑘𝑦𝑦𝑖+𝑘𝑥𝑥𝑖)|𝐾pert| ∝ 𝑒−𝑖𝑘𝑦𝑦𝑖|𝐾pert| (3.25)

where the momentum transfer in the 𝑥-direction, 𝑘𝑥, provides a non-zero tunnel-

ing matrix element, and the momentum transfer in the 𝑦-direction, 𝑘𝑦, provides a
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Figure 3-4: Schematic of the flux rectification scheme. In a double well potential,
the same momentum-transfer from the Raman drive imparts staggered phases due to
the sign of the site-to-site energy offset changing on each link (left). By comparison,
in a uniformly tilted lattice as a particle tunnels in one direction, each link has the
same energy offset, allowing a single Raman drive to imprint a uniform phase. In this
manner, an arbitrarily strong, staggered flux can be rectified to produce a uniform
flux.

spatially-varying phase which imprints flux.

A second key insight of the Munich work is in explaining why this experimental

geometry leads to a staggered instead of uniform magnetic flux. Using the pertur-

bative picture used to understand the tunneling matrix elements, we consider the

phases imprinted on adjacent links of the lattice composed of offset double wells. To

derive the picture above we considered a potential ∝ cos(k · r−Δ𝑡) and transformed

into the frame rotating with the energy offset between adjacent sites. However, in a

double well potential, as a particle tunnels in one direction each adjacent link is offset

in energy with alternating sign as portrayed in figure 3-4. Considering the phase of

the tunneling matrix element we derived in the perturbative limit, the alternating

energy offset between adjacent links means that the rotating frame used on each link

is different, and thus the sign of the momentum transfer alternates between links of

the lattice:

Δ𝐸 = ±Δ,→ 𝐾pert ∝ 𝑒±𝑖𝜃𝑗 . (3.26)

Understanding this feature of the double well potential immediately points to a way

to generalize the results of the Munich experiments to generate uniform fluxes.

In short, the key to generating a uniform flux is to engineer a potential such that

either the sign of the energy offset between sites does not change, and thus one driving

laser imprints uniform phases in the lattice or the sign of the momentum transfer is
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Figure 3-5: Flux rectification in a two-dimensional lattice. (a) Raman-assisted tun-
neling between localized states in the lowest band of a uniformly tilted lattice with
an energy offset Δ between neighboring sites and two-photon Rabi frequency Ω. (b)
Tunneling along the 𝑥-direction, given by 𝐾, imprints a spatially varying complex
phase 𝜑𝑚,𝑛 into the system due to the momentum transfer in the 𝑦-direction. (c) The
resulting position-dependent phases imprinted in the lattice. Translation around one
plaquette of the lattice yields a flux per unit cell of −𝜑𝑦.

changed appropriately between different links of the lattice. In the work described

here we choose the first method described in figure 3-5(b), where, instead of a double

well potential, a uniform gradient is applied to the cloud such that each site is offset

by the same energy with the same sign as one moves along a lattice direction. A

schematic experimental setup is shown in figure 3-5(a) and (b). As depicted in part

(a) of the figure, the uniform gradient offsets nearest neighbor sites in the lattice by

an energy, Δ. In the strongly tilted regime, that is when Δ is much larger than the

bandwidth, 4𝑡, the atoms are strongly localized by the gradient and the spectrum and

wavefunctions are described by the Wannier-Stark ladder. For a complete derivation

of the spectrum and representation of the wavefunction in the Wannier-Stark ladder,

see Appendix A. We wish to work with initially localized wavefunctions and imprint

tunneling only through our two-photon drive, so we are limited in the strength of
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the tilt we can apply such that the atoms in one site do not couple to the second

band of adjacent sites. To satisfy this criteria, we require Δ ≪ 𝐸gap, such that our

experimental window is bounded by the energy hierarchy: 4𝑡≪ Δ ≪ 𝐸gap.

After we apply a uniform gradient to the lattice, the atoms are localized to each

site. We can restore tunneling by weakly driving the system with a two-photon

Raman drive with a tunable detuning. When the detuning between the two legs of

the two-photon Raman drive is equal to Δ, particles initially localized on a site can

use the energy from the Raman drive in order to delocalize via adjacent lattice sites.

From equation 3.25 we understand that each time an atom undergoes a two-photon

transition and moves to another lattice site the Raman drive also imprints a phase

given by the momentum transfer of the two-photon process.

One nontrivial consequence of needing momentum-transfer in the 𝑥-direction for

tunneling is that the vector potential we realize is not purely that of a Landau gauge.

Instead, we realize a vector potential oriented in 𝑥 that depends on both the 𝑥- and

𝑦-coordinate, A = ~
𝑎
(𝑘𝑥𝑥+ 𝑘𝑦𝑦)𝑒𝑥, where 𝑘𝑥 is the momentum transfer of the Raman

lasers in the (tilted) 𝑥-direction of the lattice, and 𝑘𝑦 is the momentum transfer in the

𝑦-direction. For understanding the spectrum, this vector potential can be converted

into the Landau gauge by a simple gauge transformation that adds a scalar potential,

𝜆 = −~𝑘𝑥𝑥2/2𝑎. Since the energy eigenvalues are gauge invariant, the spectrum is

invariant under any gauge transformation. However, the form of the vector potential

has important consequences for understanding the wavefunction – a quantity that

is NOT gauge invariant. Specifically, the form of the vector potential is visible in a

time-of-flight measurement, it impacts the translation symmetry of the magnetic unit

cell, and affects how the interacting ground state is decomposed into non-interacting

ground state wavefunctions. This will be discussed in detail later in section 3.7.

A common question arises looking at the spatially-varying phase in front of the

laser-assisted tunneling term: how do I understand this type of phase leading to a

synthetic magnetic flux imprinted on each plaquette of a square lattice? For this it is

instructive to consider the vector potential on each link of the lattice as depicted in

figure 3-5 and consider a circular path that encloses one plaquette of the lattice, for
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example the path starting at site (𝑚,𝑛) = (1, 1) and following the path:

(1, 1) → (2, 1) → (2, 2) → (1, 2) → (1, 1). (3.27)

Adding up the phases, the total phase shift accumulated after enclosing one plaquette

of the lattice is, 2𝜋𝛼 = 𝜑1,1 + 0 − 𝜑2,1 − 0 = 𝑘𝑦𝑎. This circular path argument can

be repeated for any plaquette in the lattice and results in the same phase, 2𝜋𝛼,

corresponding to a uniform magnetic field applied to the sample.

This technique for generating uniform magnetic fields has many beneficial fea-

tures that enable the study of many-body physics with such a platform. First, this

technique uses only far-detuned lasers so the intrinsic heating rate set by the spon-

taneous emission lifetime can be longer than the vacuum lifetime of the sample by

detuning from the atomic resonance. Second, this technique is not unique to any one

atomic species, but can be employed for any atom that can be cooled to sufficient

temperatures. This is especially attractive for fermionic alkali gases since neither 6Li

nor 40K have large fine-structure splittings large enough for spin-flipping Raman laser

schemes to have long lifetimes. A third benefit of this scheme is the ability to contin-

uously tune the effective magnetic flux by changing the Raman laser wavelength or

the angle of the laser beams with respect to the lattice axes. As we can see from the

spectrum of Hofstadter’s butterfly, shown in figure 3-2, changing fluxes allows one to

realize dramatically different band structures, ranging from the gapped and gapless

commensurate lattices to the effective Landau level picture of incommensurate fluxes.

Finally, as we will discuss in detail in Chapter 4, this scheme immediately points to

interesting generalizations that can be made by adding new elements such as new

dimensions and spin degrees of freedom.

3.3.1 Derivation of the Effective Hamiltonian

To make this picture more concrete, we use the Floquet formalism outlined in Chap-

ter 2 to derive an exact expression for the form of our Hamiltonian as well as the

kick operators associated with the transformation from the lab frame to the rotating
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frame, and back. The derivation begins with the microscopic Hamiltonian for a two-

dimensional lattice uniformly accelerated in the 𝑥-direction and subject to a traveling

wave potential created by a pair of far-detuned Raman laser, as outlined in figure 3-5:

𝐻 =
p2

2𝑚
+ 𝑉latt(r)−

Δ

𝑎
x+ Ωsin

(︁
𝛿k · r− 𝑘𝑥𝑎

2
− 𝜔𝜏

)︁
. (3.28)

The phase term, −𝑘𝑥𝑎/2, is included for later computational convenience, and does

not change the physics of the problem as any arbitrary phase can be added to the po-

tential without changing the time-averaged Hamiltonian. In addition, 𝜏 is used as the

variable of time to avoid confusion with the tunneling energy, commonly denoted by

the letter, 𝑡. Ignoring interactions, the Wannier-Stark Hamiltonian is projected onto

the lowest band of a cubic lattice using a basis of localized Wannier-Stark functions

in the 𝑥-direction and Wannier functions in the 𝑦-direction:

𝐻 =
∑︁
𝑚,𝑛

(︁
−𝑚Δ|𝑚,𝑛⟩⟨𝑚,𝑛| − 𝑡𝑦|𝑚,𝑛+ 1⟩⟨𝑚,𝑛|+ H.c. . . . (3.29)

. . . +
∑︁
𝑚′,𝑛′

Ω|𝑚′, 𝑛′⟩⟨𝑚′, 𝑛′| sin
(︁
𝛿k · r− 𝑘𝑥𝑎

2
− 𝜔𝜏

)︁
|𝑚,𝑛⟩⟨𝑚,𝑛|

)︁
(3.30)

There are two matrix elements of interest here: the diagonal term as well as

overlap of adjacent sites in the 𝑥 and 𝑦 directions. In general these have the form:

⟨𝑚,𝑛| sin
(︁
𝛿k · r− 𝑘𝑥𝑎

2
− 𝜔𝜏

)︁
|𝑚+ 𝑙, 𝑛+ 𝑝⟩ (3.31)

The phase shift of the Raman drive, 𝑘𝑥𝑎/2, is associated with a spatial shift for

the tunneling matrix elements and a temporal shift for the onsite matrix elements

making their self-consistent evaluation based on symmetry arguments easier. Using

R𝑚,𝑛 = 𝑚𝑎𝑥̂ + 𝑛𝑎𝑦 for the position of the lattice sites, the relevant matrix elements

can be re-written as:

⟨0, 0| sin
(︀
𝛿k · (r+R𝑚,𝑛)− 𝑘𝑥𝑎/2− 𝜔𝜏

)︀
|𝑙, 𝑝⟩ (3.32)
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To condense notation, we define: 𝜃𝑚,𝑛 = 𝜔𝜏 − 𝛿k · R𝑚,𝑛 = 𝜔𝑡 − 𝜑𝑚,𝑛, with 𝜑𝑚,𝑛 =

𝑚𝑘𝑥𝑎 + 𝑛𝑘𝑦𝑎. Expanding the sin(𝑎 + 𝑏 − 𝑐) form of the Raman operator into four

terms one obtains the relevant matrix elements:

⟨0| sin(𝑘𝑦𝑦)|𝑝 = 0⟩ = 0 (3.33)

⟨0| cos(𝑘𝑦𝑦)|𝑝 = 0⟩ = Φ𝑦0(𝑘𝑦) (3.34)

⟨0| sin(𝑘𝑥𝑥)|𝑙 = 0⟩ = 0 (3.35)

⟨0| cos(𝑘𝑥𝑥)|𝑙 = 0⟩ = Φ𝑥0(𝑘𝑥) (3.36)

⟨0| sin(𝑘𝑥(𝑥− 𝑎/2))|𝑙 = 1⟩ = Φ𝑥1(𝑘𝑥) (3.37)

⟨0| cos(𝑘𝑥(𝑥− 𝑎/2))|𝑙 = 1⟩ = Φ′
𝑥1(𝑘𝑥) (3.38)

The expressions above are evaluated using maximally localized Wannier functions

in the 𝑦-direction and Wannier-Stark wavefunctions in the 𝑥-direction. Due to the

symmetric nature of the localized Wannier function, all matrix elements of an anti-

symmetric function are zero. The Wannier-Stark wavefunctions do not have definite

parity so the overlap elements must be individually evaluated. In the tight-binding

limit, the tunneling term is dominated by Φ𝑥1 ≈ −2𝐽𝑥 sin(𝑘𝑥𝑎/2)/Δ. However, at

lower lattice depths Φ′
𝑥1 can become significant so we keep both terms. Collecting

terms for the coupling between adjacent sites in the tilted, 𝑥-direction, the prefactor

becomes:

ΩΦ𝑦0

(︀
Φ𝑥1 cos 𝜃𝑚,𝑛 − Φ′

𝑥1 sin 𝜃𝑚,𝑛

)︀
(3.39)

and in addition, the Raman-coupling induces an on-site modulation given by:

−ΩΦ𝑥0Φ𝑦0 sin(𝜃𝑚,𝑛 + 𝑘𝑥𝑎/2). (3.40)

Given the above form for the on- and off-diagonal terms, we arrive at a time-dependent,
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single band Hamiltonian,

𝐻 =
∑︁
𝑚,𝑛

[︁(︀
−𝑚Δ− ΩΦ𝑥0Φ𝑦0 sin(𝜃𝑚,𝑛 + 𝑘𝑥𝑎/2)

)︀
|𝑚,𝑛⟩⟨𝑚,𝑛| . . .

. . .+ ΩΦ𝑦0

(︀
Φ𝑥1 cos 𝜃𝑚,𝑛 − Φ′

𝑥1 sin 𝜃𝑚,𝑛

)︀
|𝑚+ 1, 𝑛⟩⟨𝑚,𝑛| . . .

. . .− 𝑡𝑦|𝑚,𝑛+ 1⟩⟨𝑚,𝑛|+ ℎ.𝑐.
)︀]︁
, (3.41)

and, as in the case of the resonantly phase modulated lattice, we can define a cor-

responding kick operator such as to eliminate the time dependence of the diagonal

terms,

𝑅̂ = exp
[︁
𝑖
∑︁
𝑚,𝑛

(︂
𝑚𝜔𝜏 − ΩΦ𝑥0Φ𝑦0

~𝜔
cos

(︂
𝜃𝑚,𝑛 +

𝑘𝑥𝑎

2

)︂)︂
|𝑚,𝑛⟩⟨𝑚,𝑛|

]︁
=

∑︁
𝑚,𝑛

𝑒𝑖Λ𝑚,𝑛|𝑚,𝑛⟩⟨𝑚,𝑛| (3.42)

where Λ𝑚,𝑛 = 𝑚𝜔𝜏 − ΩΦ𝑥0Φ𝑦0

~𝜔 cos(𝜃𝑚,𝑛 + 𝑘𝑥𝑎/2). To simplify the notation moving

forward, we will define a modified Rabi frequency, Ω′ = ΩΦ𝑦0, and a normalized

driving strength, 𝜁𝑥(𝑦) = 2Ω′Φ𝑥0

~𝜔 sin(𝑘𝑥(𝑦)𝑎/2).

We can now transform to the frame rotating with 𝑅̂, where we arrive at a trans-

formed Hamiltonian 𝐻 = 𝑅̂†𝐻𝑅̂ − 𝑖~𝑅̂†𝜕𝜏 𝑅̂. For the case of resonant drive where

~𝜔 = Δ, the diagonal terms are zero, leaving only off-diagonal elements for tun-

neling in the 𝑥-and 𝑦-directions. Considering tunneling in the 𝑥-direction first, the

exponential factor multiplying the tunneling term is:

𝑒−𝑖(Λ𝑚+1,𝑛−Λ𝑚,𝑛) = exp
[︁
− 𝑖
(︁
𝜔𝜏 − Ω′Φ𝑥0

~𝜔
(cos 𝜃𝑚+1,𝑛 − cos 𝜃𝑚,𝑛)

)︁]︁
(3.43)

= exp
[︁
− 𝑖
(︁
𝜔𝜏 − 𝜁𝑥 sin(𝜔𝜏 − 𝜑𝑚,𝑛)

)︁]︁
(3.44)

For tunneling in the 𝑦 direction, the transformation into the rotating frame multiplies
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the tunneling rate by the exponential factor:

𝑒−𝑖(Λ𝑚,𝑛+1−Λ𝑚,𝑛) = exp
[︁
𝑖
Ω′Φ𝑥0

~𝜔
(cos 𝜃𝑚,𝑛+1 − cos 𝜃𝑚,𝑛)

]︁
(3.45)

= exp
[︁
𝑖𝜁𝑦 sin

(︁
𝜔𝜏 +

(𝑘𝑥 − 𝑘𝑦)𝑎

2
− 𝜑𝑚,𝑛

)︁]︁
. (3.46)

Collecting all the terms, we find that when the system is resonantly driven we

have a transformed Hamiltonian with the form:

𝐻 =
(︁∑︁

𝑚,𝑛

𝐾𝑚,𝑛(𝜏)|𝑚+ 1, 𝑛⟩⟨𝑚,𝑛|+ 𝑡(𝜏)|𝑚,𝑛+ 1⟩⟨𝑚,𝑛|+ H.c.
)︁

(3.47)

𝐾𝑚,𝑛(𝜏) = Ω′(︀Φ𝑥1 cos(𝜔𝜏 − 𝜑𝑚,𝑛)− Φ′
𝑥1 sin(𝜔𝜏 − 𝜑𝑚,𝑛)

)︀
𝑒−𝑖(𝜔𝜏−𝜁𝑥 sin(𝜔𝜏−𝜑𝑚,𝑛))

𝑡(𝜏) = −𝑡𝑦𝑒𝑖𝜁𝑥 sin(𝜔𝜏+
(𝑘𝑥−𝑘𝑦)𝑎

2
−𝜑𝑚,𝑛)

We are interested in the time-evolution of the system over one cycle such that

we can define an effective, time-independent Hamiltonian that gives an equivalent

time-evolution, 𝑈(𝜏𝑓 = 𝑇, 𝜏𝑖 = 0) = exp(−𝑖
~

∫︀ 𝑇

0
𝑑𝜏𝐻(𝜏)) = exp(−𝑖𝐻eff𝑇/~), such

that:

𝐻eff =
1

𝑇

∫︁ 𝑇

0

𝑑𝜏𝐻(𝜏) (3.48)

The resulting integrals of the time-dependent tunneling amplitudes over the modula-

tion period can be explicitly evaluated with the help of the following Bessel function

integrals:

1

2𝜋

∫︁ 2𝜋

0

𝑑𝛼 𝑒𝑖𝛾 sin𝛼 = 𝐽0(𝛾) (3.49)

1

2𝜋

∫︁ 2𝜋

0

𝑑𝛼 cos(𝛼)𝑒−𝑖(𝛼−𝛾 sin𝛼) =
𝐽1(|𝛾|)
|𝛾| (3.50)

1

2𝜋

∫︁ 2𝜋

0

𝑑𝛼 sin(𝛼)𝑒−𝑖(𝛼−𝛾 sin𝛼) = −𝑖
(︁𝐽1(𝛾)

𝛾
− 𝐽2(𝛾)

)︁
= −𝑖𝑑𝐽1(𝛾)

𝑑𝛾
(3.51)

1

2
(𝐽0(𝛾) + 𝐽2(𝛾)) =

𝐽1(𝛾)

𝛾
(3.52)

1

2
(𝐽0(𝛾)− 𝐽2(𝛾)) =

𝑑𝐽1(𝛾)

𝑑𝛾
(3.53)
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explicitly:

𝐾𝑚,𝑛 =
Ω′

𝑇

∫︁ 𝑇

0

𝑑𝜏
(︀
Φ𝑥1 cos 𝜃𝑚,𝑛 − Φ′

𝑥1 sin 𝜃𝑚,𝑛

)︀
𝑒−𝑖(𝜔𝜏−𝜁𝑥 sin(𝜔𝜏−𝜑𝑚,𝑛)) (3.54)

=
Ω′

2𝜋

∫︁ 2𝜋

0

𝑑𝛼
(︀
Φ𝑥1 cos𝛼− Φ′

𝑥1 sin𝛼
)︀
𝑒−𝑖(𝛼+𝜑𝑚𝑛−𝜁𝑥 sin𝛼) (3.55)

= Ω′𝑒−𝑖𝜑𝑚,𝑛

(︂
Φ𝑥1

𝐽1(𝜁𝑥)

𝜁𝑥
+ 𝑖Φ′

𝑥1

𝑑𝐽1(𝜁𝑥)

𝑑𝜁𝑥

)︂
(3.56)

= 𝐾𝑒−𝑖𝜑𝑚,𝑛 (3.57)

𝑡 =
−𝑡𝑦
𝑇

∫︁ 𝑇

0

𝑑𝜏𝑒𝑖𝜁𝑦 sin(𝜔𝜏−𝜑𝑚,𝑛) (3.58)

=
−𝑡𝑦
2𝜋

∫︁ 2𝜋

0

𝑑𝛼𝑒𝑖𝜁𝑦 sin𝛼 (3.59)

= −𝑡𝑦𝐽0(𝜁𝑦) (3.60)

the resulting effective Hamiltonian is exactly that of charged particles on a lattice in

a magnetic field and when expressed in second quantized notation becomes:

𝐻eff =
∑︁
⟨𝑚,𝑛⟩

(𝐾𝑒−𝑖𝜑𝑚,𝑛 𝑎̂†𝑚+1,𝑛𝑎̂𝑚,𝑛 + 𝑡𝑎̂†𝑚,𝑛+1𝑎̂𝑚,𝑛 + H.c.) (3.61)

which is known as the Harper-Hofstadter Hamiltonian. The spatially-varying phase,

𝜑𝑚,𝑛, arises from the momentum transfer of the two-photon Raman drive projected

onto the lattice axes, 𝜑𝑚,𝑛 = 𝛿k ·R𝑚,𝑛 = 𝑚𝑘𝑥𝑎 + 𝑛𝑘𝑦𝑎. In a continuum description,

this corresponds to a vector potential of the form: A = ~
𝑎
(𝑘𝑥𝑥+ 𝑘𝑦𝑦)𝑒𝑥.

For sanity checks, we can approximate the matrix elements within the tight-

binding model, such that Φ𝑥1 ≈ −2𝑡𝑥 sin(𝑘𝑥𝑎/2)/Δ ≫ Φ′
𝑥1 and Φ𝑦0 = Φ𝑥0 ≈ 1,

where 𝑡𝑥 is the tunneling matrix element in the 𝑥-direction without any tilt applied.

As a result, in this tight-bonding limit the expression for the tunneling amplitude in

the 𝑥 direction becomes:

𝐾 ≈ −𝑡𝑥𝐽1
(︂
2Ω

Δ
sin

(︂
𝑘𝑥𝑎

2

)︂)︂
= −𝑡𝑥𝐽1

(︂
2Ω

Δ

)︂
(3.62)

where the last equality is for the specific case where 𝑘𝑥𝑎 = 𝑘𝑦𝑎 = 𝜋, as will be shown

for our experiment. Furthermore, in the limit of low Raman lattice depths, 𝜁𝑥 ≪ 1,
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where 𝐽0(𝜁𝑥) ≈ 1 ≫ 𝐽2(𝜁𝑥), Eq. 3.58 reduces to the perturbative expression for

laser-assisted tunneling given in the beginning of this section:

𝐾eff ≈ Ω

2
𝑒−𝑖𝜑𝑚,𝑛

(︁
Φ𝑥1 + 𝑖Φ′

𝑥1

)︁
≈ Ω

2
𝑒−𝑖𝜑𝑚,𝑛⟨0, 0|𝑒−𝑖𝛿k·r|1, 0⟩ (3.63)

3.3.2 Realization of the 𝛼 = 1/2 Harper-Hofstadter Hamilto-

nian

Now that we understand how to create uniform fluxes from an intuitive and math-

ematical perspective, I now outline the physical implementation of the Hamiltonian

corresponding to one particular flux of the Harper-Hofstadter model. As discussed

above, the flux we realize is set by the momentum transfer in the direction transverse

to the tilt; in this case, the tilt will be defined to be in the 𝑥-direction and therefore

the flux is set by 𝑘𝑦𝑎𝑦. In addition, we must also maintain a momentum transfer in

the 𝑥-direction in order to have a tunneling matrix element. For a first implementa-

tion, we wish to realize a commensurate flux, placing an additional constraint on the

system.

Practically, the fluxes we can possibly implement are further limited by the optical

access provided by the vacuum chamber windows in addition to the availability of

different laser sources. We choose one axis of our lattice, the 𝑥-direction, to be

aligned to gravity because we want to use the acceleration due to gravity as a uniform

gradient. Therefore, we have the 𝑦 and 𝑧-lattice axes in the horizontal plane. Given

that in the 𝑥− 𝑦 plane there are only vacuum viewports at 90 degree angles, each leg

of the Raman lasers are thus constrained to propagate close to (within ±10 degrees)

the lattice axis. Given the three main colors available in the lab – near-resonant

at 780 nm, far-detuned at 1064 nm and doubled IR light at 532 nm – the simplest

flux to realize is that at 2𝜋𝛼 = 𝑘𝑦𝑎 = (2𝜋/1064) × (1064/2) = 𝜋, or 𝛼 = 1/2.

The Raman lasers thus propagate coaxially with the lattice lasers and has the added

benefit of a straightforward beam alignment. This flux has the added benefit that

the momentum transfer of 𝑘𝑥𝑎 = 𝜋 in the 𝑥-direction also means that the tunneling
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Figure 3-6: Schematic of the experimental setup. To realize the 𝛼 = 1/2 state, each
of the Raman drive lasers are aligned to propagate co-linearly with the 𝑥- and 𝑦-
lattices. Choosing the same laser wavelength, 𝜆 = 1064 nm, for the optical lattice
and the Raman drive realizes the momentum transfer and subsequent gauge: 𝜑𝑚,𝑛 =
𝛿k · a =

(︀
2𝜋
𝜆
𝑒𝑥 +

2𝜋
𝜆
𝑒𝑦
)︀
·
(︀
𝜆
2
𝑒𝑥 +

𝜆
2
𝑒𝑦
)︀
= 𝜋(𝑚+ 𝑛).

matrix element provided by the Raman lasers is maximized, and thus we need a

minimal amount of modulation to achieve certain tunneling rates compared to other

choices of 𝑥-momentum transfer.

The physical setup is depicted in figure 3-6. This gradient and laser arrangement

produces the spatially-varying phase pattern, 𝜑𝑚,𝑛 = 𝜋(𝑚+ 𝑛) corresponding to the

experimental gauge, A = 𝜋~(𝑥 + 𝑦)/𝑎2𝑒𝑥. Practically, the mapping of the Raman-

driven tilted lattice to the Harper-Hofstadter model requires the energy hierarchy

4𝐽 ≪ Δ ≪ 𝐸gap. The second inequality emphasizes that the Harper-Hofstadter

model requires population in a single band of the lattice, so we want to minimize

the probability for atoms to be excited to the excited bands of the lattice. In the

experiment, this requirement is even more stringent, because atoms can be excited

via higher-order multiphoton processes in addition to direct excitation via tunneling

or by laser excitation from the Raman drive. In a strongly tilted lattice, population

that is excited to higher-lying bands is quickly lost from the lattice via Landau-

Zener processes to progressively higher bands. The bandwidth of the higher bands is

considerably larger than the ground band, and the bands gaps are smaller as well, so

population in the higher bands is not localized to one site and can easily transition
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Figure 3-7: In situ cloud width as a function of Raman detuning 𝛿𝜔 after 500 ms hold.
The solid line is a Lorentzian fit to the experimental data (dots) and is consistent
with the expected offset between sites due to gravitational acceleration. Images with
field of view 135×116 𝜇m show typical column densities on or off resonance. Inset:
Dependence of the laser-assisted tunneling on optical lattice depth.

between bands until the excited band particles become untrapped from the lattice and

lost from the system. In parameter regime of our experiments, all population excited

to the second band of the lattice is quickly lost on the sub-millisecond timescale.

In the derivation of the effective Hamiltonian, we assumed that the system is

resonantly driven such that the diagonal term vanishes after transformation to the

rotating frame. However, we can choose to detune the driving frequency from res-

onance such that we introduce a diagonal term in the effective Hamiltonian that

depends on the detuning of the drive term from resonance:

𝐻eff =
∑︁
𝑚,𝑛

(~𝜔−Δ)𝑚𝑎̂†𝑚,𝑛𝑎̂𝑚,𝑛+
∑︁
⟨𝑚,𝑛⟩

(𝐾𝑒−𝑖𝜑𝑚,𝑛 𝑎̂†𝑚+1,𝑛𝑎̂𝑚,𝑛+𝑡𝑎̂
†
𝑚,𝑛+1𝑎̂𝑚,𝑛+H.c.). (3.64)

In the effective Hamiltonian we can thus continuously tune the effective gradient from

zero to high value by changing the Raman detuning from resonance. This serves as a

simple first observable to determine whether the process of laser-assisted tunneling is

proceeding as anticipated. One simple way of measuring the effect of tunneling is to

release the atoms from the external trapping potential and measure the expansion of

the cloud width as a function of time. Looking at the amplitude of Bloch oscillations

away from Raman resonance in the effective Hamiltonian for atoms in the lowest band,
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we expect the atoms remain localized to a length scale on the order of 𝐾
(~𝜔−Δ)

𝑎≪ 𝑎 –

even though the atoms are strongly accelerated by a large potential gradient [65]. As

the Raman drive becomes resonant with the offset between adjacent sites the gradient

term drops out of the effective Hamiltonian and the atoms become free to delocalize

in the lattice. From this picture, we expect a resonance feature in the Raman drive

spectrum at Δ with a width on the order of the lowest band width ∼ 4𝐾. Examining

the resonance seen in figure 3-7, we see that the full-width at half-maximum of the

resonance is ∼100 Hz. Compared to the theoretically expected bandwidth of 4×30 Hz

and a measured bandwidth of 4×12 Hz calculated from the observed tunneling rate in

figure 3-11, the width of the resonance is consistent with this picture of delocalization

when the effective tilt is less than the bandwidth.

To verify this picture experimentally, we begin with a BEC in a crossed dipole

trap as described in the experimental cycle section of the appendix. The intensity of

the Raman lasers is ramped to the final amplitude in 30 ms at a large detuning of 200

kHz – far detuned from any lattice resonance such as to avoid producing excitation

in the condensate – at which point the condensate is loaded into a two-dimensional

optical lattice in 100 ms to a depth of 9 𝐸𝑟. To apply a large gradient to the vertical,

𝑥-direction of the lattice, the confining dipole traps are ramped down, creating an

energetic offset between adjacent lattice sites of ∼ 𝑚Rb × 𝑔 × 532 nm/ℎ = 1136 Hz.

At the same time, the Raman detuning is changed to a tunable final value around

the resonance condition. The resulting expansion of the cloud along the 𝑥-direction

(vertical) is shown in the insets in figure 3-7 for Raman drive both on- and off-

resonance. Tracking the expansion of the cloud as a function of detuning we see a

clear resonance at 1133 Hz, consistent with laser-assisted tunneling of atoms through

the lattice enabled by resonant Raman driving.

In addition to the resonance corresponding to laser-assisted nearest neighbor tun-

neling, Raman drive of the tilted lattice can also induce longer-range tunneling as

well as higher-order laser-assisted tunneling processes. Figure 3-8(a) shows an ex-

ample spectrum with nearest neighbor tunneling driven by both a single two-photon

Raman process at 1133 Hz in addition to driving the same link with a four-photon
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Figure 3-8: Spectrum of tunneling resonances. (a) A strong, four-photon, nearest-
neighbor tunneling resonance appears at Δ/2ℎ along with the 𝐾 resonance at Δ/ℎ.
These data were taken at a lattice depth of 9 𝐸𝑟, for a two-photon Raman Rabi
frequency of 1092 Hz and 500 ms expansion time. A weak, broad peak at low fre-
quencies may arise from higher order nearest-neighbor tunneling processes or may be
due to thermally-driven hopping arising from heating the atoms in the lowest band
on-site. (b) Observation of next-nearest-neighbor laser-assisted tunneling at 2Δ/ℎ
and the expansion of the cloud as a function of Raman drive strength, Ω. Inset: No
saturation is reached. Expansion time of 1500 ms

process visible as an additional resonance at 567 Hz. In addition to providing multiple

ways the nearest neighbor tunneling link can be driven, longer range tunneling can

be induced by driving higher harmonics of the site offset, Δ. Figure 3-8(b) shows

the expansion of the atomic ensemble induced by resonant driving of the cloud at the

next-nearest-neighbor resonance at 2Δ. The ability to drive tunneling processes of

varying range and strength highlights the power of the laser-assisted tunneling scheme

to engineer new Hamiltonians in an optical lattice.

In summary, observing the expansion of the cloud under resonant Raman driving

confirms our ability to drive laser-assisted tunneling processes as part of a Floquet

engineering scheme to imprint synthetic magnetic fluxes in an optical lattice. In

addition, seeing tunneling on such long time scales – 500 to 1500 ms of holding time

for the figures above – provides confidence that the atomic population remains in the

lowest band long enough to prepare the atoms in the ground state of our effective

Hamiltonian, potentially opening a door to an exciting future of studying atoms in

strong synthetic magnetic fields.
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3.4 How do Floquet Systems Heat Up?

In the experiments in the previous section the potential gradient we used to ener-

getically offset neighboring lattice sites and localize the atoms in the lowest band

of the optical lattice was provided by gravity due to the removal of the external

confining potential that normally holds the atoms against gravity and confines the

ensemble spatially. In addition, these experiments have also been accomplished using

magnetic field gradients to accomplish the same energetic offset between neighboring

sites. Using a magnetic field gradient has the added benefit that the acceleration

can be applied to the atoms at the same time as they remain trapped in an external

confining potential, maintaining the flatness of the global chemical potential and thus

the ground-state Thomas-Fermi density profile. If we remain in the ground state of

the density profile, can we prepare the ground state of the superfluid in our effective

Hamiltonian? Using the procedure outlined above, the answer is no. In this section,

we explore the interesting question of how our atomic ensemble is excited and absorbs

heat and how we can control these processes to realize low entropy states of matter.

3.4.1 Transitions to Higher Bands

Without considering the microscopic details of the problem, a naive picture of heating

would say that applying an force with a certain RMS displacement for a certain

amount of time implies a certain power transferred to the atomic system. The balance

of input power and cooling power then tells us what equilibrium temperature the

system will reach. Unfortunately, ultracold atoms in optical lattices have no cooling

mechanism – they are fortunately superbly isolated from thermalization with the

surrounding environment – so given some input power the atoms should heat to

infinite temperature on some thermodynamic time scale unless prevented to do so by

some non-ergodic behavior.

The situation becomes more complicated when we consider the microscopic mech-

anisms by which the system can absorb this energy. At the single particle level, raising

the average energy corresponds to making transitions to higher bands of the lattice.
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Figure 3-9: Expected spectrum of on- and off-site multiphoton absorption processes.
Shown for a lattice depth of 10 𝐸𝑟 lattice with lowest, first, and second bands shaded
in grey, red, and blue, respectively. (Top) The expected spectrum of on-site multipho-
ton resonances including processes up to fourth order in the modulation frequency.
(Bottom) The spectrum of off-site resonances for an applied gradient of Δ = 3.4 kHz
per site.

Figure 3-9(a) shows the spectrum of band-changing multiphoton excitations that can

occur on-site in a lattice with integer divisors of the first and second band gap repre-

senting progressively higher-order excitations. For clarity, we show just the first few

integer multiphoton resonances one might expect to excite. At lower frequencies the

spacing of adjacent lines of very high-order excitations become dense, however, in the

weakly driven limit, the strength of these lines decreases in turn so on experimen-

tal timescales, we neglect these high-order band excitation processes. Figure 3-9(b)

shows the off-site transitions a single particle can make in a lattice tilted by Δ/ℎ =

3.4 kHz per site.

In the tilted lattice, the Raman transition to an excited state has a resonance at

the on-site band energy, for example the transition to the first excited band at an

energy of 𝐸1, in addition to sidebands corresponding to an excitation to the higher

band in the nearest sites, 𝐸1±Δ, next-nearest sites, 𝐸1±2Δ, and so on. We expect the

transition rate for exciting an atom to the next band in an adjacent site to be similar

to that for excitation on-site, but with the amplitude of this coupling to be reduced

by a factor proportional to ⟨𝑤0(𝑥 − 𝑥𝑖)|𝑥|𝑤1(𝑥 − 𝑥𝑖±1)⟩/⟨𝑤0(𝑥 − 𝑥𝑖)|𝑥|𝑤1(𝑥 − 𝑥𝑖)⟩,
where 𝑤𝑛(𝑥) denotes the 𝑛-th band Wannier functions. Looking at figure 3-9 we see
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Figure 3-10: Laser-assisted tunneling with amplitude modulation at high values of
the tilt. (Left) Visibility of the superfluid diffraction pattern as a function of the
driving frequency at increased values of the tilt, clearly showing a tunneling resonance
centered around 5120 Hz. (Right) At higher modulation frequencies we run into strong
atom loss at a resonance corresponding to the first band gap in an energetically lower
well, 𝐸1 − Δ. In this figure the tilt is at 5120 Hz and the lattice depth is 12 𝐸𝑟

such that the coupling to the excited band occurs starting around 5600 Hz, as we see
experimentally.

several different potential windows for the energy scale Δ which avoids any proximity

to higher band resonances. We wish to stay at a high enough frequency to satisfy the

localization condition 4𝑡 ≪ Δ, so we limit ourselves to Δ > 1 kHz. One potential

window is at low frequencies, but we know that there is a high density of high-order

resonances at the same time we are minimally satisfying the localization condition.

Looking to higher frequencies, we see that the largest gaps in the spectrum come in

the regions between 𝐸𝑛 and 𝐸𝑛/2 as well as 𝐸𝑛/2 and 𝐸𝑛/3. Considering the tilt in

addition to the band energies, we see that there exists an upper bound on Δ that

is lower in frequency than the band gap coming from a strong matrix element for

nearest-neighbor tunneling to a lower well at a frequency of 𝐸1 −Δ. We can see this

upper bound experimentally in figure 3-10. Increasing the tilt we establish tunneling

by resonantly amplitude modulating the lattice intensity. We see a corresponding

tunneling resonance at 5120 Hz. However, if we try to modulate at higher frequencies

we see a sudden loss of the atom number. If we apply the argument given above,

this resonance should correspond to atoms tunneling to a higher band in a lower

well of the tilted lattice and subsequently being accelerated out of the lattice. In
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this experiment, the lattice depth was 12 𝐸𝑟, so with a tilt of 5120 Hz this picture

predicts an atom-loss resonance at 5600 Hz, precisely what we see experimentally in

figure 3-10.

Looking back at figure 3-9, the frequency chosen for Δ reveals the punch line of

our story here, a convenient frequency of 3.4 kHz satisfies all of the constraints of the

band heating argument: it is far away from multiphoton resonances by being located

in between the second and third harmonic of the transition to the first excited band,

it is far away from resonances to excited bands in adjacent wells, and as an added

bonus it is exactly three times the acceleration due to gravity for our atoms. The

exact procedure for realizing this tilt will be discussed later, but it is relevant to

mention here that choosing a frequency of 3.4 kHz also helps the fidelity with which

we can prepare the atoms in the tilted state.

If we consider the gedanken experiment where we choose a modulation frequency

that is exactly incommensurate with all band gap frequencies in the lattice, how can

the system absorb the applied modulation power and heat up? In the absence of

multiphoton absorption processes that limit the lifetime, we consider that the Raman

lasers that produce the running wave potential which drive laser-assisted tunneling

transitions in the lattice have some noise associated with them. In principle, this could

either be intensity or phase noise, but for now we consider the case of phase noise. In

the picture of the effective Hamiltonian, phase noise of the Raman lasers corresponds

to a modulation of the parameters 𝐾 and 𝛿 = ~𝜔 − Δ. We can formulate this

precisely by modifying the time evolution of the Raman drive and the corresponding

kick operator to have a time-dependent phase such that 𝜔𝜏 → 𝜔𝜏+𝛼(𝜏). If we assume

that the amplitude of 𝛼(𝜏) is small and the phase-noise is lower frequency than that

of the modulation such that it does not integrate to zero upon time-averaging, we

can repeat the Floquet description derived in the previous sections to first order in 𝛼

to show we recover the Harper-Hofstadter Hamiltonian with the parameters:

∑︁
𝑚,𝑛

𝑚𝛿(𝜏) 𝑎̂†𝑚,𝑛𝑎̂𝑚,𝑛 +
∑︁
⟨𝑚,𝑛⟩

(𝐾(𝜏)𝑒−𝑖𝜑𝑚,𝑛 𝑎̂†𝑚+1,𝑛𝑎̂𝑚,𝑛 + 𝑡(𝜏)𝑎̂†𝑚,𝑛+1𝑎̂𝑚,𝑛 + H.c.). (3.65)
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The time dependence of 𝑡 integrates to zero to first order, and we are left with the re-

lation between our effective Hamiltonian parameters and 𝛼 in the perturbative regime

of small driving amplitude 𝜁 ≈ 2Ω
Δ

≪ 1 (ignoring higher order Bessel functions):

𝛿(𝜏) = −~
𝑑𝛼(𝜏)

𝑑𝜏
(3.66)

𝐾(𝜏) = 𝐾

(︂
1 + 𝑖𝛼(𝜏)− 𝛼(𝜏)

Φ′
𝑥1

Φ𝑥1

)︂
. (3.67)

As a result, we can see how, even in the absence of resonant multiphoton excitation

to higher bands, phase noise of the Raman drive couples to noise in the diagonal

and off-diagonal terms of the Hamiltonian. More generally, this highlights how in the

effective Hamiltonian noise of the driving frequency and phase can appear as effective

low frequency noise in the same way that low frequency noise on any other beam

that forms the lattice or trapping potentials can heat the atomic sample by driving

transitions between bands.

Of central importance for this work, is the noise mechanism driving transitions

between the bands that emerge from the lowest band of the lattice due to the presence

of the synthetic flux. Due to the structure of Hofstadter’s butterfly, the lowest band

of the lattice is split into multiple mini-bands of opposite parity that can be coupled

by either the diagonal noise term, 𝛿(𝜏), or of even parity that can be coupled by the

off-diagonal noise term 𝛼(𝜏) similarly to the discussion of amplitude and phase noise

from Chapter 2. In the experiments described in the previous section, the Raman

phase was not stabilized to a phase reference so we assume that heating due to phase

noise may play an important role in understanding heating in the system.

We can get a sense for the decoherence coming from heating within the minibands

that emerge from the lowest band in the system by looking more closely at how

the tunneling we create in the system with laser-assisted tunneling depends on the

experimental parameters we can control. From the derivation of the laser-assisted

tunneling rates, in the weakly-driven, tight-binding regime, 2Ω
Δ
< 1, the laser-assisted
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Figure 3-11: Time and intensity-dependence of the cloud expansion. Varying the
Raman laser intensity (a) changes the laser-assisted tunneling rate, 𝐾, along the tilt
direction (blue circles) and the tunneling rate along the transverse direction, 𝐽 (red
squares). Data taken at lattice depths of 9 𝐸𝑟 and hold time of 1500 ms. Inset:
Theoretical prediction for the tunneling rates 𝐾 and 𝐽 . (b) Time evolution of the
squared width for different Raman laser intensities. From the slope of the lines, we
obtain the laser- assisted tunneling rates and their statistical errors: 0.2±0.08 (red
squares), 4±0.5 (blue circles), 12±1 (black diamonds), and 8±0.5 Hz (blue triangles).

tunneling rate and transverse lattice tunneling should scale as:

𝐾 = 𝑡𝑥𝐽1(𝜁), and: 𝑡 = 𝑡𝑦𝐽0(𝜁). (3.68)

However, as we see in figure 3-11 the scaling of the tunneling with the normalized

Raman drive strength in both the 𝑥- and 𝑦-directions does not follow what one might

expect from the simple picture of our effective Hamiltonian. Qualitatively, looking at

the limit of small drive amplitudes, we see that the laser-assisted-tunneling strength

does not increase linearly with drive amplitude, but instead begins quadratically and

at higher powers behaves like a higher power of the first Bessel function. We can

understand this behavior in the limit where the decoherence rate is larger than the

tunneling rate as modifying the effective tunneling rate from that given in equation

3.68 to a second order process with a rate𝐾2/Γ = 𝑡2𝑥𝐽1(𝜁)
2/Γ(𝜁). We can quantify this

by looking at the expansion rate of the cloud also shown as a time series in figure 3-11.

If the laser assisted tunneling rate is calculated to be approximately 28 Hz at a driving

amplitude of 𝜁 = 1.9, but we measure a tunneling rate of 12 Hz, then the expression

above would place the decoherence rate at 65 Hz. Repeating this argument we see

that the relative decoherence rate decreases with increasing amplitude indicating some
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process that is reduced as we increase the laser-assisted tunneling rate. One culprit

for such a process would come from large low-frequency modulation of the applied

gradient for which mobile atoms are more able to adiabatically follow than slower-

tunneling atoms. A particularly humorous anecdote that might indicate this was a

limiting process in the initial experimental effort was the discovery that the main

magnetic field coil in the experiment was not physically secured to any mount or to

the chamber. Therefore, when we applied a large current to produce a strong gradient

in the system the coil physically lifted up, against gravity, lifting off the chamber and

literally floated in air for the duration that the gradient was applied before falling

back onto the chamber at the conclusion of the experiment. This was remedied by

epoxying the coil to a set of brass threaded rods which were in turn clamped securely

onto a breadboard added above the chamber. This upgrade also allowed more secure

mounting of the high resolution objective and vertical retroreflector and together

with current feedback – detailed in the appendix – eliminated a large amount of

low-frequency noise as well as shot-to-shot field fluctuations.

A second source of large-amplitude low frequency noise is from the phase of the

Raman drive relative to the frame of reference of the lattice. To measure the phase

noise of the Raman drive, the two beams were recombined on a 50:50 beam cube

and detected with balanced photodiodes as seen in the schematic optical setup shown

in Figure 3-12. Ideally, the two beams that compose the Raman drive would be

phase stabilized to a cube that sits in the same inertial reference frame as the lattices

to which the atoms are confined. Unfortunately, since we have chosen the vertical

direction to apply our energy gradient for the tilted lattice, the two laser beams that

compose the Raman drive are located on different optical breadboards separated by

∼1 meter of optical path length. Consequently, stabilizing the Raman phase at the

position of the atoms is a tough task. The optical setup depicted in figure 3-12 shows

several elements crucial for this task. The most important optical elements include

the two retroreflection mirrors that define the position of the atoms trapped in the

optical lattice (acceleration noise of these surfaces is discussed in detail in the phase

noise section of Chapter 2) and their motion relative to the 50:50 beamsplitter that
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defines the phase of the Raman drive in addition to the optical surfaces between the

detection surface and atoms that adds noise to the Raman drive at the position of

the atoms relative to the noise detected at the beam splitter used for stabilization.

A sample beatnote between the Raman lasers, and its associated noise spectrum, is

shown in Figure 3-12. The photodioide signal is sent to a lock-in amplifier where it is

referenced to a master oscillator set equal to the detuning between the Raman lasers.

The lock-in amplifier serves as the master clock for the two RF signal generators

established by a shared 10 MHz reference signal. The Raman lasers are aligned to the

atoms by overlapping the beams with those that create the 𝑥- and 𝑦-lattices. Since

both are derived from the same laser source, to avoid any unwanted interferences

between the two, the 𝑥- and 𝑦-lattice beams are frequency shifted by +28 and −32

MHz, respectively, and the Raman lasers are offset by +80 MHz and 80 + 𝜔 MHz,

where 𝜔 is an adjustable frequency that is our Raman drive frequency. To retroreflect

the lattices without reflecting the Raman lasers, the Raman drive is separated from

the lattices by a PBS cube (with front surface reflections purposefully misaligned from
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the incoming beam) and the polarization extinction is optimized with both quarter

and half waveplates (not shown in figure 3-12) by looking with a camera at the

residual transmitted Raman light. With this method, no detectable backreflection

of the Raman lasers is seen. The Rabi frequency resulting from the interference

of the Raman lasers is independently calibrated from the lattice by time-resolved

measurement of Rabi oscillations of the condensate between the 𝑝 = 0 and 𝑝 =
√
2~𝑘

momentum states at a driving frequency of 2𝐸𝑟.

For phase-locking the Raman beatnote to the lock-in amplifier reference, the phase

of one RF signal generator is modulated by an output signal from the lock-in amplifier.

The amplifier can produce varying amounts of gain, a gain of 10 dB is illustrated in the

phase-locked spectrum shown in figure 3-12. In steady state operation, the amplifier

can produce higher gain, however, we are limited in the gain we can apply by the

transient nature of the experiment – we ramp the intensity of the Raman lasers from

zero to finite value in a period of a few milliseconds. With the available hardware,

the simplest way to achieve this task was to engage the lock with a serial command

to the lock-in amplifier once the Raman lasers had achieved finite intensity, achieving

the effect of shorting the integrator of the servo loop without having direct access to

the integrator. Future implementations of such an experimental setup should account

for the transient nature of the lock initialization in the design of the feedback loop

with a design that allows tunable gain as the signal strength is changed from zero to

maximum value.

With the ability to provide feedback to the RF signal and stabilize the phase of

the Raman drive at the position of the 50:50 beam cube in the detection setup, we

now must account for the phase noise reintroduced to the Raman drive as the beams

propagate from the position of the atoms to the reference surface. In figure 3-12

these optical elements are the beam sampler and polarizing beam cube in addition

to steering mirrors not shown in the schematic used for correctly mode-matching

the Raman beams on the detection cube. The dominant contribution to the phase

noise reintroduced by these elements comes from the relative motion of the optical

breadboards these elements are mounted on. In fact, in the first iteration of this setup,
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the relative motion of the breadboards was so severe that we were unable to even

acquire a phase lock because the RMS amplitude of the phase noise was greater than

the 2𝜋 radian capture range of the phase lock! One major improvement that allowed

the acquisition of a phase lock was to replace all the existing optical breadboards

of 1/2" thickness in the system with 1.25" thick, solid aluminum breadboards. The

improved stiffness of a thicker breadboard reduces the amplitude of drum-like modes

in the vertical direction. Each breadboard is supported by four aluminum 80/20 posts

with inner cavity filled with vibration-damping lead shot. These posts are attached to

the breadboard and optical table by multiple right-angle brackets oriented in different

directions to reduce the amplitude of bending modes and subsequent vibration in the

𝑥-𝑦 plane. Despite this upgrade, we still see significant breadboard motion in the 𝑥-𝑦

plane coming from the flexure of this mounting – see the plot of phase noise in Chapter

2 – so we hypothesize that the residual motion of the breadboards is dominated by

these degrees of freedom and future designs should incorporate more rigid mounting to

reduce the amplitude of support deflection. Despite these qualifications, the improved

vibration noise properties of the thicker breadboards reduced the amplitude of Raman

phase noise fluctuations to the point where the residual amplitude was within the

capture range of the phase lock.

To summarize the above findings, we have discussed how, even with a modulation

frequency carefully chosen to avoid prominent multiphoton resonances to the first-

and second-excited bands, noise in the modulation phase can still drive transitions

between the lowest bands in the system. This low frequency noise is heavily dictated

by the structural stability of the optical setup since the ability to apply feedback to

the Raman phase and stabilize it to the same inertial frame as the lattice retros is

hampered by the relative position stability of multiple breadboards separated on the

order of one meter. Regardless, with multiple upgrades to the optical and magnetic

field setup we have made much progress in understanding how phase noise couples to

the system and in attempting to stabilize the Raman phase relative to the lattices.

After implementing all the improvements discussed above, in addition to those we

will cover in the next section, the coherence lifetime of the sample increased from
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a few milliseconds to almost 100 ms, as we will see in the following section. As a

result, once the heating from single-particle effects is controlled and characterized, we

begin to look at multi-particle effects; specifically, we are interested in how collisions

in such Floquet systems might provide additional channels for heating. For the pur-

pose of evaluating multiple heating sources and optimizing the state preparation and

detection, we will rely heavily on a resonantly amplitude-modulated tilted lattice; a

system very similar to the resonantly Raman-driven lattice presented in this section

and the resonantly phase modulated lattice presented in Chapter 2.

3.4.2 Amplitude Modulation as an Optimization Tool

As eluded to in figure 3-10, laser-assisted tunneling can also be driven by resonant

amplitude modulation of the lattice intensity in order to create an effective Hamilto-

nian similar to that derived in Chapter 2 for the resonantly phase modulated lattice.

The exact form of the resulting effective Hamiltonian we leave it as an exercise for

the reader to derive, but the final result yields:

𝐻 =
𝑝2

2𝑚
+ 𝑉𝐿(1 + 𝛼 sin(𝜔𝜏 − 𝜃)) cos2(𝑘𝑥) +

Δ

𝑎
𝑥 (3.69)

𝑅̂ =
∑︁
𝑗

𝑒−𝑖𝑗𝜔𝜏 𝑎̂†𝑗 𝑎̂𝑗 (3.70)

𝐻eff =
∑︁
𝑗

(Δ− ~𝜔)𝑗𝑎̂†𝑗 𝑎̂𝑗 + 𝑖𝐾AM

∑︁
𝑗

(︁
𝑎̂†𝑗+1𝑎̂𝑗 − 𝑎̂†𝑗 𝑎̂𝑗+1

)︁
(3.71)

In the preceding we have defined the matrix element 𝐾AM = ⟨𝑗 + 1| cos(2𝑘(𝑥 −
𝑥𝑗))|𝑗⟩/4. In improving the technical aspects of our experiment, this model has proven

to be an invaluable tool. A key difference between amplitude modulation and Raman

modulation is that there is no phase noise introduced by the modulation because the

lattice simultaneously provides both the trapping potential as well as the modulation

terms. In addition, the diffraction pattern of a superfluid in the effective Hamiltonian

generated by amplitude modulation is identical to that of the simple cubic lattice, so

it provides a useful benchmark for understanding how the kick operators affect the

time-of-flight diffraction pattern in the lab frame compared to that in the rotating,
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or Floquet frame.

A typical modulation sequence is depicted in figure 3-13(a). The condensate in

the |𝐹,𝑚𝐹 ⟩ = |1,−1⟩ state is adiabatically loaded into the ground band of an optical

lattice and after the lattices have reached full strength the strong potential gradient or

tilt is applied after which the modulation begins. As mentioned previously, working

at higher gradients of 3.4 kHz compared to the original experiments is desirable

for satisfying the inequality 4𝑡 ≪ Δ ≪ 𝐸gap while avoiding multiphoton processes

resonant with band excitations as shown in figures 3-9 and 3-10. We can access such

gradients very conveniently by levitating the atomic sample against gravity with a

magnetic field gradient (before turning on the lattice) and once the lattice is ramped

to its final value by rapidly changing the spin to the |2,−2⟩ state by sweeping the

frequency of an RF transverse magnetic field. The magnetic moment of the |2,−2⟩
state is opposite that of the initial |1,−1⟩ state and it is twice the magnitude due

to the doubled value of 𝑚𝐹 . Therefore, the resulting gradient experienced by the

|2,−2⟩ atoms is three times that due to gravity: 2𝑔 comes from the field gradient

and 1𝑔 comes from the fact the initial state was levitated and did not experience an

acceleration due to gravity.

Initializing the gradient in this manner has several advantages compared to a more

traditional approach of turning on or off a current-carrying field coil. First, since

the current value does not change in the process, there are no stray fields or eddy

currents to compensate for so the gradient magnitude and direction will not change

as a function of time as eddy currents relax after a sudden change. In addition, the

gradient can be very precisely aligned to the direction of gravity by looking at very

long time-of-flight in the levitation field. Aligning the lattice to gravity then provides

automatic alignment of the gradient direction to the lattice direction. In our setup,

without any shimming of the gradient direction, it is within several degrees of the

lattice direction after levitation.

After we apply the tilt by flipping the spin state, the condensate is undergoing

Bloch oscillations which decay quickly over several Bloch oscillation cycles. This

is reflected in the low initial visibility of the matter wave diffraction pattern seen
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Figure 3-13: Realization of the superfluid ground state of an effective Hamiltonian
created with resonant amplitude-modulation. (a) Experimental sequence for loading
the BEC into a one-dimensional, 10 𝐸𝑟 lattice, initializing a Δ = 3.42 kHz gradient,
and restoring tunneling with resonant amplitude-modulation. (b) Images of the re-
sulting superfluid ground state at different phases of the micromotion, indicated by
the label accompanying each frame. (c) Plot of the atom number (red) and visibility
of the superfluid diffraction pattern (blue) as a function of hold time counted in the
number of modulation cycles. Note that after the tilt is applied there is no visible
superfluid but after sufficient hold time, the state relaxes to the superfluid ground
state.

in figure 3-13(b) and (c). However, as we hold in the lattice, the visibility of the

diffraction pattern increases to a maximum value reflected in the sharp superfluid

peaks we see in the images in figure 3-13(b). These peaks persist for hold times on

the order of one second, consistent with the lifetime of atom number loss in the tilted

lattice. Both loss curves are seen in figure 3-13(c).

Perhaps more interestingly, from the pictures of the condensate in the lattice we

see that the peaks change position in a periodic fashion as a function of the phase

of the modulation cycle in which we turn off the lattice and perform a time-of-flight

measurement. We can easily understand this effect from the derivation of the effective

Hamiltonian where we transformed into a frame rotating with the time-dependent
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kick operator, 𝑅̂ = 𝑒𝑖𝐾̂(𝑡), in order to derive the equivalent time-evolution over one

modulation cycle that defines the effective Hamiltonian. Mathematically, this is given

by the decomposition of the time-evolution operator:

𝑈(𝜏𝑓 , 0)𝜓(0) = 𝑒−𝑖𝐾̂(𝑡𝑓 )𝑒−𝑖𝐻̂eff𝑡𝑓/~𝑒𝑖𝐾̂(0)𝜓(0). (3.72)

In our experiment, the effective Hamiltonian is the one derived in equation 3.71 and

the kick operator is given by equation 3.71. The modulation is a sine-wave such

that the initial phase, 𝜃 is zero and the initial time is zero as well. As a result,

we can understand the time-dependence of the condensate wavefunction as a steady

state evolution under the effective Hamiltonian for some time, 𝑡𝑓 and a kick or a

projection of the wavefunction from the basis of states of the Floquet description to

a basis of states in the laboratory frame of reference. The form of this kick depends

on the phase of the drive at the final time, 𝑡𝑓 . By varying the time that we turn

off the lattices within one modulation cycle we can vary this phase and see different

diffraction patterns in time-of-flight as demonstrated in figure 3-13.

Similarly, in a two-dimensional lattice laser-assisted tunneling can be driven with

amplitude modulation to create a Hamiltonian similar to that given by equation 3.71.

In a cubic lattice, the tilted direction and the untiled directions are separable, so the

effective Hamiltonian for a two-dimensional cubic lattice with laser-assisted tunneling

in one-dimension and a normal lattice in a second direction is simply the sum of the

two terms. Figure 3-14(a) shows the result of amplitude-modulating one direction

of a two-dimensional lattice where one direction is tilted according to the protocol

outlined above for the one-dimensional lattice. Like the one-dimensional case, after

some hold time in the effective Hamiltonian we see the appearance of matter wave

diffraction patterns from the lattice. Although the formation time of the diffraction

pattern is similar in timescale to experiments in a one-dimensional lattice, unlike

the one-dimensional case, the coherence lifetime is shorter and very sensitive to the

alignment of the gradient to the lattice axes.

Figure 3-14(b) shows the sensitivity of the visibility of the superfluid diffraction
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Figure 3-14: The superfluid ground state of the effective Hamiltonian created by
amplitude-modulation in a two-dimensional lattice. (a) Superfluid diffraction from
a two-dimensional lattice under an effective Hamiltonian created with resonant am-
plitude modulation. The phase of the micromotion upon switch-off of the effective
Hamiltonian is indicated for each frame. (b) Time evolution of the diffraction visi-
bility in units of the modulation period (blue dots) compared to the lifetime of the
one-dimensional lattice (red line). The lifetime of the two-dimensional lattice is al-
most an order of magnitude shorter. (c) Optimizing the alignment of the gradient
to the lattice direction by optimizing the diffraction visibility from the amplitude-
modulated two-dimensional lattice. The atomic cloud is perfectly levitated at 4 amps
of current in the 𝑦-coil, whereas the diffraction pattern is most sharp around 0.5 amps,
indicating the mismatch between the 𝑥-lattice and the direction of gravity. The hold
time is for 200 modulation cycles or about 60 ms for a modulation frequency of 3.4
kHz.
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pattern as the value of a bias field in the 𝑦-direction is changed, effectively steering the

direction of the gradient which nominally pointed in the 𝑥-direction. In this figure,

the atom cloud was perfectly levitated against gravity at 4 amps of current in the coil

along the 𝑦-direction. However, we can clearly see that the optimal alignment of the

gradient to the lattice direction happens closer to ∼0.5 amps, indicating a misalign-

ment of the lattice to the direction of gravity. Indeed, when examined carefully, we

see a misalignment of several degrees between the two. The importance of the align-

ment of the applied force to the lattice axis becomes apparent when one considers

the competition between relevant energy scales in the problem. For a Δ = 3.4 kHz

per lattice site gradient in the 𝑥-direction, a ∼10∘ misalignment of angle means that

there is a ∼40 Hz energy offset per site in the 𝑦-direction, an energy scale comparable

to the tunneling and close to the regime where Δ𝑦 ∼ 4𝑡𝑦 and tunneling is inhibited in

the lowest band in the 𝑦-direction. To successfully compensate for the misalignment

of the gradient to the lattice direction and eliminate this effect, we use the visibility of

the superfluid diffraction pattern in the amplitude modulated lattice to compensate

for stray gradients as shown in figure 3-14(b).

With the gradient properly aligned to the lattice direction we observe high-contrast,

moderately long-lived superfluid diffraction patterns from the amplitude-modulated,

two-dimensional lattice. However, as shown in figure 3-14(a), the lifetime is still

reduced by an order of magnitude compared to the one-dimensional lattice. To un-

derstand this we consider the details of state preparation in addition to many-particle

effects that may potentially limit the experiment once heating due to single-particle

effects has been eliminated.

After we turn on the gradient, the undriven system undergoes Bloch oscillations.

These Bloch oscillations decay quickly to a final state consisting of an incoherent

population of two-dimensional BECs. Although it will not be discussed in detail

here, the physical mechanisms behind the decay of these Bloch oscillations is quite

interesting. In short, if we take the model of these localized condensates as a phased

array – a valid model deep in the localized limit 4𝑡≪ Δ – then the phase procession

on each site is given by the potential gradient in combination with the local chemical
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potential on each plane of the tilted lattice. Since we rapidly project from a coherent

state with number fluctuations in site 𝑖 of
√
𝑁𝑖, these number fluctuations are frozen

in the lattice when we tilt, resulting in a fundamentally disordered interaction energy

on each plane of the lattice and therefore a difference precession frequency for each

lattice plane. With this mechanism in mind, there is a fundamental limitation to the

Bloch oscillation coherence lifetime of a single-component, weakly interacting BEC.

Interestingly, this limit can be circumvented by adding a second superfluid component

to the system, a mechanism we experimentally demonstrated and we call superfluid

shielding. For more information see the appendix and see ref. [24].

Regardless of the physical mechanism, after applying the tilt, different planes

of the lattice have no definite phase relationship before the modulation is applied.

Viewed in the rotating frame of the modulation, this implies that the initial state is

a uniformly occupied band in the effective Hamiltonian and as such has an average

energy of 1/2 the bandwidth, or 2𝑡𝑥. Once we apply the modulation and restore

resonant tunneling, this uniformly filled band can then thermalize with the degrees

of freedom in the transverse directions and relax to a condensed ground state with

a reduced condensate fraction according to the amount of energy released from the

filled band. From this argument we see that relaxation to the ground state is assisted

by the presence of a free third dimension with many atoms. In our two-dimensional

lattices, this third direction, the 𝑧-direction, is a loosely confined tube-shaped trap

containing many hundreds of atoms. As a result, there are many atoms and a con-

tinuous set of degrees of freedom to deposit energy in and thermalize with to reach a

high final condensate fraction as the energy per particle is very low. Unfortunately,

when we wish to move to a three-dimensional lattice this energy becomes detrimental

to formation of a condensate because the atom number on each site becomes small

and the band in the 𝑧-direction becomes much flatter and less able to absorb energy.

As a result, demonstrating a condensed state in a three-dimensional lattice becomes

a much tougher challenge, and is addressed in the final section of this chapter about

adding strong interactions.

A second mechanism by which the condensate lifetime is limited is the increased
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role of density and collisions which can absorb energy from the modulation. This

mechanism, first pointed out to us by Erich Mueller and described in detail in ref. [35],

involves an off-site collision between two particles which then scatter to a pair of final

states in the transverse degrees of freedom which conserve momentum and energy.

In the tilted and modulated lattice, there are two main processes contributing to

this instability of the condensate. Wannier-Stark states – which are mostly localized

in a given well 𝑛 – have small components in lower wells 𝑛 − 1, with amplitude

∝ 2𝑡𝑥/Δ. This small component, which has energy Δ higher than the Wannier-Stark

state localized in the well 𝑛− 1, can collide with atoms in the lower lattice site, thus

creating two excitations with energy Δ/2 in the transverse direction (the creation of

two excitations is necessary for conservation of transverse momentum). The second

mechanism involves the counter-rotating term of the laser-assisted tunneling process.

Depicted schematically in figure 3-15, the co-rotating term enables resonant tunneling

to a higher lattice site by a resonant two-photon process while in the counter-rotating

process the atom virtually tunnels to the lower lattice site, off-resonant by an energy

of 2Δ, where it can collide with the population in this site. The collision fragments

can then scatter into the transverse degrees of freedom, with each atom gaining an

energy of Δ in the process. This two-body elastic collision represents a way in which

the interacting system can resonantly convert the energy of the modulation or tilt into

thermal energy along the transverse directions. The characteristic relaxation times

of the two processes are given by 𝜏1 and 𝜏2:

1

𝜏1
∝ 4𝑡2

Δ2

∑︁
𝑘

2𝜋𝛿(𝐸
(0)
𝑘 −Δ/2) (3.73)

1

𝜏2
∝ 𝐾2

Δ2

∑︁
𝑘

2𝜋𝛿(𝐸
(0)
𝑘 −Δ). (3.74)

We can associate 𝜏1 with the process that occurs even in the absence of modulation

– the rate is proportional to the tunnel coupling squared between neighboring sites,

whereas the rate of the 𝜏2 process is proportional to the square of the phonon induced

tunneling rate. Both decay processes are rather general and should apply to both
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Figure 3-15: Transverse heating mechanisms for both Wannier-Stark states and mod-
ulation sidebands. A schematic drawing of a two-particle collision originating from
a modulation sideband of the Wannier-Stark state on one lattice site colliding with
another Wannier-Stark state on a lower lattice site. The collision causes the atoms to
absorb 2Δ of energy from the modulation by scattering atoms from the condensate
into thermal states in the transverse degrees of freedom. Similarly, in the absence of
modulation the Wannier-Stark states can also produce a sideband of the wavefunction
in the lower well which also produces a collision which releases Δ of energy.

tilted lattices and lattices modulated by superlattices.

If we put in numbers for the expected lifetime limitations these collisional relax-

ation processes place on our amplitude modulated lattices we get a predicted lifetime

of 1/𝜏2 = 0.003− 0.005 s−1 and 1/𝜏1 = 0.13− 0.20 s−1, for the one-dimensional lattice

and 1/𝜏2 = 0.006−0.014s−1 and 1/𝜏1 = 0.29−0.67s−1 for the two-dimensional lattice.

Both decay rates are much smaller than the decay rates measured in the experiment,

so we conclude that we are not yet limited by these processes. However, this model

does make one important prediction for how to suppress this decay channel. In a

three-dimensional lattice of sufficient depth, the transverse modes that the collisional

fragments scatter into as final states are gapped out, effectively suppressing this decay

rate and extending the lifetime of the sample.

All told, we have reviewed a wide variety of mechanisms by which an atomic sample

in a periodically-modulated lattice can absorb energy and heat to high temperatures.

These mechanisms include direct absorption of the modulation energy by multiphoton

excitation to higher bands, noise-driven modulation of the parameters of the effective

Hamiltonian driving transitions within the Hofstadter sub-bands, energy absorbed by

the condensate by non-adiabatic state preparation, and finally by collisions between
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different Wannier-Stark states or their modulation sidebands. Given the success of

using amplitude modulation to create a superfluid in the effective Hamiltonian we now

move to replace the modulation by amplitude modulation of the lattice with that of

the Raman modulation. As we will see in the next section, we observe a difference in

the lifetime between amplitude modulation and Raman driving of the tilted lattice

that might indicate low frequency phase noise of the Raman lasers, magnetic gradient

noise, or inelastic collisions limit the overall lifetime of the state.

3.5 Bose-Einstein Condensation in 𝛼 = 1/2

Now that we have understood the various heating mechanisms affecting our imple-

mentation of the Harper-Hofstadter model in a tilted and driven lattice and have

subsequently demonstrated the ability to prepare the superfluid ground state of an

effective Hamiltonian with amplitude modulation to restore resonant tunneling in the

system, we wish to replace resonant amplitude modulation with a Raman drive that

can imprint a large synthetic magnetic field.

We begin by examining the symmetries and corresponding unit cell and spectrum

of the 𝛼 = 1/2 Hamiltonian. Using the same laser geometry described in figure 3-5 in

the third section of this chapter, the corresponding phase imprinted on each link of

the lattice is 𝜑𝑚,𝑛 = 𝜋(𝑚+ 𝑛). Examining the symmetry of the Hamiltonian we find

that, in this gauge, the translation symmetry vectors of the lattice are R = 𝑎(𝑒𝑥±𝑒𝑦)
such that the unit cell is greater in area by a factor of two and therefore the unit cell

encloses an integer number of flux quanta. The unit cell and corresponding Brillouin

zone are illustrated in figure 3-16.

In general, what we call the magnetic unit cell is the smallest unit cell which

encloses an integer number of flux quanta. For a general rational flux 𝛼 = 𝑝/𝑞 per

plaquette, the unit cell is 𝑞-times larger than the 𝑎 × 𝑎 lattice unit cell and the

magnetic unit cell encloses 𝑝 flux quanta. This is an important distinction from the

definition of the gauge unit cell which arises from the translation symmetry of the

Hamiltonian which mirrors the translation symmetry of the vector potential. For
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Figure 3-16: Unit cell and spectrum of the 𝛼 = 1/2 Hamiltonian. The unit cell for the
experimentally implemented gauge 𝜑𝑚,𝑛 = 𝜋(𝑚+𝑛), is shown by a green diamond in
(a) with translation symmetry vectors, 𝑎(𝑒𝑥 ± 𝑒𝑦). The unit cell encloses two lattice
sites and has an area of 2𝑎2. (b) The spectrum in the lowest band in reciprocal space
with the magnetic Brillouin zone shown by a green diamond. Due to the two-fold
degeneracy of the spectrum a doubly-reduced Brillouin zone can be defined, and is
shown by the brown square. (c) The spectrum contains two bands which touch at two
Dirac points inside the magnetic Brillouin zone in addition to a two-fold degenerate
ground state.

maximally symmetric gauges such as our experimental gauge and the Landau gauge

the gauge unit cell and the magnetic unit cell are the same and there is no need to

differentiate between the two.

In our experimental gauge, the Hamiltonian written in the basis of states in the

unit cell is:

𝐻1/2 =

⎛⎝ 0 −2𝑡 cos(𝑘𝑦𝑎) + 2𝑖𝐾 sin(𝑘𝑥𝑎)

−2𝑡 cos(𝑘𝑦𝑎)− 2𝑖𝐾 sin(𝑘𝑥𝑎) 0

⎞⎠ (3.75)

which results in the energy dispersion relation:

𝐸± = ±2
√︁
𝑡2 cos2(𝑘𝑦𝑎) +𝐾2 sin2(𝑘𝑥𝑎). (3.76)

The resulting spectrum in the lowest band is seen in figure 3-16(a). Note the two-fold

degeneracy in the ground state. For an arbitrary rational flux the unit cell contains 𝑞

indistinguishable and thus the spectrum is 𝑞-fold degenerate in the ground state. In

the continuum limit of Landau levels, this degeneracy becomes the 𝑁 -fold degeneracy

of each Landau level. This 𝑞-fold degeneracy was discussed earlier in this chapter in
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the context of the commutation properties of the translation operators.

In figure 3-16 we can see that the spectrum of the 1/2-flux Hamiltonian contains

two bands, as expected, that meet at two inequivalent Dirac points located at the

positions 𝑞𝑦 = ±𝜋/2𝑎. The 1/2 flux is unique within Hofstadter’s butterfly because

it is the only Hamiltonian that is time-reversal symmetric by the fact that a 𝜋 phase

and a −𝜋 phase both produce a real-valued, staggered tunneling amplitude of ±1

on alternating links in the lattice. This model is also known as the fully frustrated

Bose-Hubbard model and is equivalent to a staggered flux with 1/2 flux per plaquette

[102, 119, 129]. Examining the spectrum of this Hamiltonian, we immediately see that

atoms prepared in the ground state of this effective Hamiltonian will show a four-fold

increase in the number of Bragg peaks in time-of-flight and will also display a new,

enlarged translation symmetry, giving a clear experimental signature to observe.

The experiment begins similarly to the amplitude modulation sequence with a

magnetically levitated BEC in the |𝐹,𝑚𝐹 ⟩ = |1,−1⟩ state and is then adiabatically

loaded into a two-dimensional optical lattice with the 𝑥-direction oriented in the

vertical direction and the 𝑦-direction oriented horizontally. Both the lattices and

the Raman lasers are derived from the same 1064.2 nm laser source such that the

lattice constant is 532 nm and the artificial flux we imprint on the cloud is 1/2 flux

per plaquette. The lattices are ramped to a full power of 11 𝐸𝑟 in both the 𝑥- and

𝑦-directions, in the presence of a very weak Raman lattice (< 0.1 𝐸𝑟) with relative

frequency detunings equal to the Bloch oscillation frequency, 3.420 kHz. As detailed

in the previous section, the Raman lasers are beat together on a 50:50 beam cube

located as close to the atoms as the optical system allows and the resulting beat

note is detected on balanced photodioides. This beat note is detected using a lock-in

amplifier and the resulting error signal is used to feed back to the phase of the RF

used to derive one of the Raman beams. The weak Raman lattice is used to engage

a phase lock derived from the master 3.420 kHz oscillator of the lock-in amplifier.

Once a phase lock is achieved, we turn on a large tilt by sweeping the frequency of

an RF field in 0.29 ms to transfer all the atoms to the |2,−2⟩ hyperfine state, which

reverses and doubles the magnetic moment. The resulting energy offset per lattice
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site is Δ = 3.420 kHz. On completion of the RF sweep, the initial system represents

an array of 1D tubes resonantly coupled in the 𝑦-axis and un-coupled in the tilted

𝑥-axis.

After completion of the RF sweep that initializes the tilt, the intensity of the

Raman drive is linearly increased in 0.58 ms to its final value of 𝜁 = 2Ω/Δ = 1.6

corresponding to a Raman lattice depth of Ω = 1.6Δ/2 = 2736 Hz. After a variable

hold time, all laser beams are switched off to allow 20 ms time of flight, followed by

absorption imaging. Figure 3-17 shows the resulting time-of-flight images.

From the images in figure 3-17 (g)-(i) we immediately see the sharp peaks charac-

teristic of the diffraction pattern of a superfluid BEC from a periodic potential. These

peaks are long-lived and indicate the successful preparation of a low entropy state in

the effective Hamiltonian corresponding to a uniform synthetic magnetic flux of 1/2

flux per plaquette. As predicted from the single-particle calculation, the diffraction

pattern shows a four-fold increase in the number of diffraction peaks indicating a lower

lattice translation symmetry despite the indistinguishability of individual sites in the

unit cell. Fundamentally, this lower translation symmetry reflects the enlarged unit

cell due to the presence of magnetic flux. These images allow us to directly demon-

strate that, despite the translation symmetry of the lattice and homogeneity of the

synthetic magnetic field, the vector potential is more fundamental and necessarily

breaks translation symmetry.

The reduced translation symmetry of the vector potential is visible when the con-

densate occupies one of the two degenerate minima in the first magnetic Brillouin

zone, seen in figures 3-17 (b),(g). These images directly reveal the gauge-dependent

translation symmetry of the Hamiltonian of R = 𝑎(𝑒𝑥 ± 𝑒𝑦), a counterintuitive re-

sult given the common argument that gauge-dependent observables are not physical.

Physically, we can understand this result from considering that the time-of-flight pro-

cess allows us to observe the momentum distribution of the wavefunction: |⟨k|𝜓⟩|2.
The wavefunction itself is a gauge-dependent quantity, so the ability to directly ob-

serve its momentum distribution allows us to make such a gauge-dependent measure-

ment. An in-depth discussion of the specific appearance of these peaks and their
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Figure 3-17: Observation of Bose-Einstein Condensation in the 𝛼 = 1/2 Harper-
Hofstadter Hamiltonian. The superfluid diffraction pattern in time-of-flight pictures
(f-i) from the lattice reveals the momentum distribution of the wavefunction. (a-
d), Schematics of the momentum peaks of a superfluid. The dominant momentum
peak (filled circle) is equal to the quasimomentum of the ground state. Owing to the
spatial periodicity of the wavefunction, additional momentum peaks (open circles)
appear, separated by reciprocal lattice vectors (green arrows) or vectors connecting
degenerate states in the band structure (brown arrows). (f-i), Time-of-flight images.
The superfluid ground state of the normal cubic lattice is shown in (f) compared with
different repetitions of the same sequence for the superfluid ground state of the HH
lattice (g-i). In (g), only one minimum of the band structure is filled, directly demon-
strating the symmetry in our chosen gauge. The number of momentum components
in (h-i) is doubled again owing to population of both degenerate ground states. The
micromotion of the Floquet Hamiltonian is illustrated in (c,d,h,i) as a periodically
shifted pattern in the 𝑥-direction, analogous to a Bloch oscillation. All diffraction
images have a field of view of 631 𝜇m × 631 𝜇m and were taken at a lattice depth of
11 𝐸𝑟 and 2.7 kHz Raman coupling, with at least 30 ms hold in the HH lattice.
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gauge-dependence is presented for the next section.

The most common appearance of the diffraction peaks visible in a time-of-flight

measurement is shown in figures 3-17 (h) and 3-17 (i) where a condensate appears in

both of the minima in the first magnetic Brillouin zone of the lattice. The positions

of the peaks can be understood by the combination of the translation symmetry of

each minima in combination with the basis vector that connects the two degenerate

minima, b = 𝑎𝑒𝑥. A useful computational tool in addition to a higher level of sim-

plification is possible when both minima are occupied by defining a doubly-reduced

Brillouin zone [130]. Noting that the magnetic Brillouin zone is 𝑞-fold degenerate for

a flux 𝛼 = 𝑝/𝑞, keeping track of each state within the magnetic Brillouin zone is not

necessary because of the redundancy of description. As a result of this symmetry, an

additional reduction of the Brillouin zone is possible, shown in figure 3-17 (c)-(d). For

a weakly interacting system, repulsive mean field interactions disfavor density modu-

lation of the many-body wavefunction, so in our gauge occupation of both minima is

disfavored at the mean-field level. The interacting system will be treated in detail in

a later section; however, our interpretation of the appearance of condensate in both

minima is that the system has formed domains of different superfluid order produced

by the non-adiabatic preparation of the state.

A final observation from the superfluid diffraction peaks seen in time-of-flight

measurements is shown in figures 3-17 (h)-(i) demonstrating the effect of the kick

operator acting on the system at different phases of the modulation. From the form

of the kick operator for the Harper-Hofstadter model,

𝑅̂ = exp

[︃
𝑖
∑︁
𝑚,𝑛

(︂
𝑚𝜔𝜏 − 𝜁 cos

(︂
𝜔𝜏 − 𝜑𝑚,𝑛 +

𝑘𝑥𝑎

2

)︂)︂
|𝑚,𝑛⟩⟨𝑚,𝑛|

]︃
, (3.77)

we see that the initial kick operator is the identity operator because we ramp the

modulation amplitude, 𝜁, from zero (very low) amplitude and we define the time

the tilt is initialized by the tilt to be zero. After evolution for an integer number of

modulation cycles we turn off the lattices and Raman drive and project the atoms into

free space for time-of-flight imaging. The kick operator at the final time describes the
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additional phase evolution of the system from the last integer of the modulation cycle

to the final time within the period of the modulation. This phase causes an apparent

precession of the diffraction peaks relative to the free space momentum eigenstates

as seen in the difference of the peak positions in figures 3-17 (g) and 3-17 (i). In the

limit of zero Raman lattice depth, this kick operator corresponds exactly to the phase

precession of a Bloch oscillation in a uniformly accelerated lattice.

As previously mentioned, almost all images show a roughly equal population of

both degenerate ground states. The occupation of only one state, which reveals the

underlying symmetry of the vector potential, is observed in less than 1% of the shots.

Fitting all of the peaks seen in figure 3-17, and assigning a sublattice designation in

order to count the relative population condensed in each minima is difficult because of

the large number of peaks and the corresponding large number of degrees of freedom

for fitting a function to each peak in addition to the low signal-to-noise of many

of the smaller peaks. To alleviate this issue and allow for a better quantitative

determination of the relative sublattice populations, we developed a band mapping

technique that first adiabatically connects the Harper-Hofstadter ground states to

cubic lattice quasimomentum by adiabatically lowering the modulation strength, and

then maps to free momentum states with a rapid adiabatic lowering of the lattice

depth. A plot of the timing of the different lattice ramps is shown in figure 3-18.

Band-mapping the population from the sub-bands of Hofstadter’s butterfly to unique

free-space quasimomenta presents a unique set of challenges compared to a more

traditional band mapping procedure in an optical lattice. First, the two Hofstadter

sub-bands are connected at Dirac points and the band gap is therefore zero. Thus, any

adiabatic mapping technique will break down for those quasimomentum eigenstates

where the gap closes. However, since the atoms are condensed, they are sufficiently

localized to quasimomentum states that are far away from the Dirac points and

remain locally gapped. Therefore, the first step in our band mapping procedure is

to map Harper-Hofstadter quasimomentum onto cubic lattice quasimomentum by

adiabatically lowering the modulation amplitude. A second complication arises due

to the presence of a strong potential gradient that drives Bloch oscillations in the lab
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Figure 3-18: Equal populations of two minima determined by band mapping. (a) Se-
quence for adiabatically ramping population from the rotating frame of the effective
Hamiltonian to the lab frame lattice and finally from the lattice to free-space momen-
tum. (b) Histogram of population imbalances between the two minima demonstrating
that the minima are most often occupied equally. Inset: Time-of-flight images of the
band mapping procedure comparing the amplitude-modulated lattice to the Rama-
driven one.
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frame. For low lattice depths, the gradient can cause Landau-Zener transitions to

higher bands of the cubic lattice. The second step of our band mapping procedure

addresses this issue by ramping down the cubic lattice at a rate comparable to the

Bloch oscillation frequency. For the Harper-Hofstadter superfluid, the Raman beams

are first linearly ramped down in 0.88 ms and then the cubic lattice is linearly ramped

down in 0.43 ms as shown schematically in figure 3-18 (a).

The resulting momentum distributions for both a trivial superfluid created by

amplitude modulation and the Harper-Hofstadter superfluid are shown in the inset

of figure 3-18 (b). Fitting the distribution for the Harper-Hofstadter ground state to

a function with with peaks on top of a broad thermal background, the populations

in each of the degenerate ground states can be counted. The difference between the

two populations is shown in the histogram in figure 3-18 (b) showing that the minima

are most frequently populated with equal proportion, demonstrating the degeneracy

of the minima and the robustness of the loading procedure to technical fluctuations.

For a more detailed discussion of the interacting ground state and it’s decomposi-

tion into single-particle eigenstates, see the following section on interaction effects.

Conveniently, the gauge we implement experimentally allows a straightforward inter-

pretation of the observed equal populations to be a result of domain formation due

to non-adiabatic state preparation.

A final, crucial, question for evaluating the usefulness of this technique of creat-

ing an effective Hamiltonian for studying many-body physics is the coherence life-

time of the condensate. Figure 3-19 shows the decay of both the superfluid in the

amplitude-modulated effective Hamiltonian in addition to the Harper-Hofstadter ef-

fective Hamiltonian. The lifetime of the superfluid in the Harper-Hofstadter lattice

is similar to that in the amplitude-modulated lattice. Fitting the decay of the fringe

visibility to an exponentially decaying function gives lifetimes of 142 ± 15 ms and 71

± 8 ms, for the amplitude modulation superfluid and the Raman driven superfluid,

respectively. Both superfluids are susceptible to many of the same heating mecha-

nisms discussed earlier in the chapter on how Floquet systems heat up – multiphoton

band excitations, lattice noise, non-adiabatic state preparation, magnetic gradient
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Figure 3-19: Coherence lifetime of the effective Hamiltonian created with amplitude
modulation and Raman drive. Note that the lower visibility of the Harper-Hofstadter
superfluid is due to the peak doubling, which at the same condensate fraction leads
to lower visibility. Exponential fits to the decay of the visibility of the diffraction
patterns give lifetimes of 142 ± 15 ms and 71 ± 8 ms, respectively.

noise, and collisional noise – with the addition of Raman phase noise for the Harper-

Hofstadter superfluid that is not applicable for the amplitude modulation superfluid.

In addition, for both types of modulation, we observe lifetimes for the number of

trapped atoms that are much longer than the coherence lifetime in either case, with

no discernible loss of atom number up to 500 ms, indicating no excitation of atoms

to higher bands or inelastic particle collisions.

We therefore conclude that the decay in figure 3-19 is dominated by transitions

within the lowest band caused by technical noise in the magnetic field gradient or by

elastic collisions that transfer energy from the micromotion into heat. In addition, we

can attribute the difference between these two lifetimes as arising from the additional

heating and sub-band transitions driven by noise in the Raman drive phase in addition

to possibly a different starting entropy due to the different structure of the superfluid

ground states and thus different relaxation channels to the ground state of the effective

Hamiltonian.

To summarize, in this chapter we presented experimental data on the first ob-

servation of a superfluid BEC in an optical lattice with a strong, uniform synthetic

magnetic field. This result is the culmination of a long-process of understanding the
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system and its heating channels and subsequently controlling them. Along the way we

discussed the value of the superfluid groundstate of the amplitude modulated lattice

as an effective tool for optimization of the system, and as a helpful comparison for

evaluating the lifetime and lattice manipulations of a superfluid in an effective Hamil-

tonian in a rotating frame. In the next sections we discuss many of the implications

of these results and how they are extended to interacting systems and generalized to

realize other paradigmatic models of condensed matter physics.

3.6 Gauge-Dependence of Observables

Previously, we saw that under action of a local gauge transformation the canonical

momentum and vector potential transform as:

𝜓 → 𝑈̂𝜓 = 𝑒𝑖𝜃(x)𝜓 so: Π → 𝑈̂Π𝑈̂ † =
(︁
p− 𝑒

𝑐
A)
)︁

(3.78)

and: A → 𝑈̂A𝑈̂ † = A+
~𝑐
𝑒
∇𝜃(x), (3.79)

under the insistence that the physics of interacting charges and fields should be in-

variant under any particular description of the field. This line of reasoning offers

a powerful argument for the statement that observables are not dependent on the

gauge description. For example, we can calculate the spectrum for the 𝛼 = 1/2

Harper-Hofstadter Hamiltonian in the Landau gauge and our experimental gauge –

or any other gauge for that matter – and the spectrum is identical as seen in figure

3-20. A simple gauge transformation, 𝑈̂ =
∑︀

𝑚,𝑛 𝑒
𝑖𝑚𝜋|𝑚,𝑛⟩⟨𝑚,𝑛|, relates the two

pictures.

Despite the equivalence of the two descriptions at the level of the Hamiltonian,

the translation symmetry which defines the unit cell is not identical for different

choices of gauge, as shown in the different shape of the Brillouin zone in 3-20 for

the two different gauges. As demonstrated from the pictures in the previous section

where the condensate only forms in one of the two degenerate minima, the transla-

tion symmetry of the underlying Hamiltonian is observable from the symmetry of the
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Figure 3-20: The spectrum of the 𝛼 = 1/2 Hamiltonian in two different gauges. The
experimental gauge is shown at left and at right we perform the gauge transformation
to the Landau gauge and plot the spectrum in this gauge. The spectrum is only
plotted for those states within the gauge Brillouin zone.

resulting diffraction peaks from the occupation of just a single minimum. This seem-

ingly contradictory behavior raises the question: does a self-consistent explanation of

this behavior exist? How can we understand when gauge-dependent measurements

can be made and when is the system truly gauge-invariant?

Essentially, gauge-dependent observations can be made in time-of-flight images of

ultracold atoms when the momentum distribution of the wavefunction is observed.

The sudden switch-off of all laser beams preserves the wavefunction, and canonical

momentum, which is gauge-dependent, becomes mechanical momentum, which is

readily observed [95]. More precisely, at the point the lattices are turned off, the

wavefunction is projected into a superposition of plane wave eigenstates of free space,∑︀
k |k⟩⟨k|𝜓⟩, which propagate under a Hamiltonian for which A = 0 for some time-

of-flight long enough such that we can neglect the initial spatial distribution, and

observe the momentum distribution of the initial wavefunction. In practice, 20 ms

is not long enough time-of-flight to quantitatively ignore the initial spatial extent of

the trapping potential when considering the shape of each Bragg peak, but for an

understanding of the symmetry and population in each peak, 20 ms is sufficient.

A more general argument can be formulated for electromagnetic fields which obey

Maxwell’s equations and can then be applied to systems of electrons in a real magnetic
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fields (note that the synthetic fields created for ultracold atoms in optical lattices

do not obey Maxwell’s equations!). In terms of the gauge-invariant quantities of

momentum and the electric field generated by the switch-off of a magnetic field, the

momentum transfer imparted upon an electron upon switching off the magnetic field

is:

Δp =
𝑒

𝑐

∫︁ 𝜏𝑓

𝜏𝑖

𝑑𝜏 E(𝜏) (3.80)

In general, this changing magnetic field creates an electric field which is related to

the vector potential by, E = −𝜕𝑡A −∇𝜑. In the Coulomb gauge, where ∇ ·A = 0,

the scalar potential is proportional to the integrated charge density, so if the system

is overall charge neutral, 𝜌 = 0, then the scalar potential is also zero, 𝜑 = 0. In

this configuration, the electric field generated by the switch-off of a magnetic field

is determined solely by the vector potential: E = −𝜕𝑡A. As a result, equation 3.80

becomes:

Δp = −𝑒
𝑐

∫︁ 𝜏𝑓

𝜏𝑖

𝑑𝜏 𝜕𝜏A(𝜏)
A(𝜏𝑓 )=0

=
𝑒

𝑐
A(𝜏𝑖), (3.81)

showing an exact relation between the vector potential and the momentum transfer!

Since the electric field and mechanical momentum are gauge-invariant operators, we

interpret this result to indicate that the momentum distribution of the electron seen

in time-of-flight measurements are always that of the Coulomb gauge.

We can further see this relation when we perform a gauge transformation away

from this special Coulomb gauge, A → A + ∇𝜒, and 𝜑 → 𝜑 − 𝜕𝑡𝜒, such that the

electric field generated by the turn-off of a magnetic field becomes:

E → −𝜕𝑡(A+∇𝜒)−∇(−𝜕𝑡𝜒) = −𝜕𝑡A. (3.82)

We see that in this new gauge the momentum transfer is identical to that of the

Coulomb gauge described above. This argument highlights the unique position the

Coulomb gauge plays in such time-of-flight measurements.

One final aspect to note is that within the Coulomb gauge there are multiple

distinct gauges which satisfy the divergence-less definition of the gauge in free space,
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two examples being the Landau gauge and the symmetric gauge describing a uniform

magnetic field. A common misconception is that electron dynamics are independent of

the specific choice of gauge; however, we point out that the divergence-less condition

should hold for all space, including the boundaries of the system. Using the Landau

gauge for a field generated by a solenoid means that at the surface of the solenoid

the gauge will indeed have a non-zero divergence condition, and only the symmetric

gauge will produce zero surface divergence. The same argument holds for using a

symmetric gauge for a field generated by a current sheet compared to the Landau

gauge.

In ultracold atoms, this concept of a "natural" synthetic gauge for time-of-flight

measurement also appears in GPE simulations of the spatial shear of a BEC released in

time-of-flight from a weak synthetic magnetic field [95]. This interpretation highlights

the possibility of observation of this effect in electrically charged systems by possibly

comparing electron momentum distributions in time-of-flight for different "natural"

Coulomb gauges such as the Landau gauge compared to a symmetric gauge.

3.7 The Weakly Interacting Ground State of 𝛼 = 1/2

Due to the indistinguishability of the sites within the unit cell, the single-particle

ground state of the 𝛼 = 1/2 Harper-Hofstadter Hamiltonian shown in figure 3-16 is

two-fold degenerate. At first glance, the simultaneous occupation of the condensate in

different single-particle states should imply some density modulation in real space of

the resulting wavefunction due to interference terms between the two single-particle

Bloch waves. However, given a repulsively interacting background scattering length

of ∼ 100𝑎0 in 87Rb, the BEC that emerges in the effective Hamiltonian should dis-

favor density modulation that arises due to interference between Bloch waves. An

interesting question then is what is the nature of the ground state in the presence of

these weak repulsive interactions?

An interesting result of the gauge-dependence of the ground state wavefunction is

that the nature of the interacting ground state in terms of the single particle states
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depends on the specific gauge implemented. Previously in the literature, the inter-

acting ground state in the Landau gauge is discussed [119, 130], and it is found that

a superposition of the single-particle ground state minimizes interactions and creates

a uniform density ground state. We can understand this intuitively by examining

the single particle ground states in the Landau gauge, up to a normalization factor:

𝜓𝑘1 ∝ {(
√
2−1), 1} and 𝜓𝑘2 ∝ {1, (

√
2−1)}, in the basis of states centered on {𝐴,𝐵}

sites. From these wavefunctions, we see from |𝜓𝑘𝑖 |2 in this gauge that the two sites

do not carry equal population and thus if the condensate forms in either individually

it will result in a density modulation in real space. As a result, the mean-field wave-

function for the interacting state involves a superposition that removes this imbalance

with the form: 𝜓± = 1√
2
(𝜓𝑘1 ± 𝑖𝜓𝑘2). Note that either the positive or negative com-

bination results in an equivalent mean-field wavefunction, indicating that the ground

state degeneracy is preserved in the presence of interactions. More fundamentally, this

is the result of time-reversal symmetry that is restored in the 𝛼 = 1/2 Hamiltonian

by the equivalence of a 𝜋 and a −𝜋 flux in each plaquette.

In contrast, in our experimental gauge the Hamiltonian is purely off-diagonal

so the ground state wavefunction for the individual single-particle states are given

by: 𝜓𝑘1,2 = {(1 ± 𝑖)/2, 1/
√
2}. Examining the weight of the wavefunction on each

sublattice via: |𝜓𝑘𝑖 |2, we see that the single particle eigenstates already host a pair

of time-reversal symmetric states that have no sublattice population imbalance and

therefore no density modulation in the ground state. Therefore, we interpret this as

a gauge-dependent composition of the interacting ground state wavefunction. As a

result, the balanced sublattice populations we observe in figure 3-18 should be the

result of domain formation after a non-adiabatic quench from the condensed ground

state of the Bose-Hubbard model to the condensed state in the Harper-Hofstadter

model rather than an observation of the single-particle ground state superposition

that constitutes the interacting ground-state.
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3.8 Strong Interactions Meet Strong Fluxes

So far, the experiments we have covered have all been performed in a two-dimensional

lattice consisting of elongated tubes of condensate containing with many hundreds of

atoms. We have also seen how even weak interactions can qualitatively change the

nature of the interacting ground state and how our initial state preparation impacts

the first experimental results. To address several of these issues, we wish to prepare

the interacting ground state in a three-dimensional lattice.

As previously mentioned, the existence of a tube of many atoms is crucial for the

appearance of a BEC in the realization of the Harper-Hofstadter Hamiltonian. The

relaxation of the initial condensate to one that occupies degenerate ground states

creates entropy in the system and the large number of degrees of freedom in the 𝑧-

direction in the system provides a reservoir for this entropy to thermalize with on

timescales fast compared to the experimental lifetime. Unfortunately, the timescale

for thermalization increases with increasing lattice depth in the 𝑧-direction, so direct

– what we will call non-adiabatic – preparation of the effective Hamiltonian from the

Bose-Hubbard ground state via an experimental sequence seen in the top of figure

3-21 becomes unpractical.

Examining the Bose-Hubbard model and the Harper-Hofstadter model with inter-

actions we naively see that the two share a ground state for strong interactions and

integer filling, the Mott insulating state. Therefore, we identify an alternative route

to adiabatically load the ground state of the three dimensional lattice with strong

fluxes – seen in the bottom of figure 3-21 – by first entering the three-dimensional

Mott insulator, then switching spatially-uniform tunneling to that which imprints the

synthetic magnetic flux, before ramping out of the Mott insulator into the superfluid

ground state of the three-dimensional lattice. This method of changing the nature

of the superfluid state from the Bose-Hubbard ground state to another ground state

that that does not smoothly connect to the starting configuration of the condensate

has been successfully used to prepare other interesting states, such as a superfluid at

negative temperature for motional degrees of freedom [21], and is a powerful tool for
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Figure 3-21: Lifetime of the 𝛼 = 1/2 ground state prepared in a three dimensional
lattice. A comparison of experimental sequences for a non-adiabatic state preparation
as well as an adiabatic state preparation sequence. The adiabatic scheme utilizes the
many-body gap of the Mott insulating state to protect the system from excitation and
successfully prepare the superfluid ground state of the Harper-Hofstadter Hamiltonian
in a three-dimensional lattice. The resulting lifetimes of the adiabatic versus the non-
adiabatic sequences are indicated in the top right of each panel.

adiabatic state preparation of highly frustrated superfluids.

Applying the experimental sequence in figure 3-21 to our system where we add

a lattice along the 𝑧-direction, also with a lattice constant of 𝜆/2 = 532 nm, we

successfully prepare a superfluid in the ground state of the three dimensional lattice.

The lifetime of this superfluid, measured from the end of the ramp of the 𝑧-lattice

power to zero and the Raman lattice to full strength is indicated in the corner of figure

3-21 and is comparable, and even slightly longer than, the non-adiabatic sequence.

What’s powerful about this success is that the final depth of the 𝑧-lattice can be

varied and at each lattice depth the condensed ground state of the Harper-Hofstadter

Hamiltonian is clearly visible. An even more encouraging result comes from figure

3-22, which shows the lifetime of the superfluid diffraction pattern as a function of the

𝑧-lattice depth. Remarkably, not only is this experimental sequence able to prepare

the superfluid ground state of the effective Hamiltonian, but the superfluid diffraction

is visible and moderately-long lived for varying 𝑧-lattice depths. The 𝑧-lattice here,

as indicated by the upper axis in figure 3-22, controls the interaction energy scale in

the system, the Hubbard 𝑈 parameter, and thus the proximity of the system to the
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Mott insulating transition in our effective Hamiltonian.

The critical value for the 𝑛 = 1 Mott transition in the Harper-Hofstadter Hamil-

tonian happens at lower ratios of 𝑈/𝑡 compared to the superfluid-to-Mott insulating

transition in the Bose-Hubbard model [154]. For our lattice parameters, the Mott

transition in the Harper-Hofstadter Hamiltonian happens close to 12 𝐸𝑟, meaning

the lifetimes recorded at the highest lattice depths in figure 3-22 approach the tran-

sition for those parts of the cloud with average density ∼ 1. The peak density of the

samples used in 3-22 is close to 𝑛 = 5, so the Mott transition for the isotropic lattice

at these occupancies happens between 15-16 𝐸𝑟. The lattice we realize has lattice

depths of 11 𝐸𝑟 in the 𝑥- and 𝑦-directions, and a variable depth in the 𝑧-direction.

In this configuration, we observe weak diffraction peaks in three-dimensional lattices

for 𝑧-lattice depths up to 20 𝐸𝑟, shown in figure 3-23. The images in figure 3-23

represent a selection of shots immediately after the ∼35 ms ramp out of the Mott

insulator state into the 1/2-flux superfluid. The doubling structure is clearly visi-

ble at lattice depths close to the Mott insulating transition for filling factors n >

2. Unfortunately, no systematic studies were done for 𝑧-lattices greater than 11 𝐸𝑟

155



11 Er 14 Er

17 Er 20 Er

Figure 3-23: Time-of-flight images of the interacting 𝛼 = 1/2 state close to the Mott
insulating transition. For these images, the 𝑥- and 𝑦-lattices are at a lattice depth
of 11 𝐸𝑟 and the 𝑧-lattice depth is varied as indicated in the upper left corner of
each image. For the peak density of ∼ 𝑛 = 5 for the samples shown above, the Mott
transition for the isotropic lattice happens between 15-16 𝐸𝑟.

since much larger shot-to-shot fluctuations were encountered, probably due to larger

sensitivity to technical noise sources.

Despite the technical challenges associated with probing the Mott insulating tran-

sition in the Harper-Hofstadter Hamiltonian we realize, it is useful to consider the

qualitative new features predicted to exist in such a system with both strong syn-

thetic magnetic fluxes and strong interactions. The first effect is mentioned above:

the location of the phase transition is predicted to shift towards a lower critical in-

teraction strength with the critical (𝑈/𝑡)𝑐 as a function of the applied flux mapping

out the shape of the lowest eigenvalues in Hofstadter’s butterfly [154]. A second qual-

itatively new feature that appears in numerical studies of small systems that may

extend to larger systems in the strongly interacting state is the existence of a chiral

Mott insulating state [40]. This is a state that appears as an intermediate between
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the Mott state and the superfluid that can be seen as a vortex supersolid with a

small number of crystallized insulating regions coexisting with the staggered fluxes of

the fully-frustrated superfluid. While this has been calculated for small systems with

𝛼 = 1/2, further investigation may reveal whether this is also happens for general

fluxes and larger system sizes.

In systems of coexisting strong fluxes and strong interactions the filling fraction 𝜈

– the ratio between the particle number and the flux number – plays an important role

in determining the resulting nature of the ground state. Most famously, this hierarchy

of states with rational values of the filling fraction label the series of integer and

fractional quantum Hall states found in electronic systems [94, 146, 152]. Although

no experimental measurement of fractional states in ultracold atomic systems exists

to date, many proposals for implementing such a state have been put forward. One

challenging aspect of the realization of fractional systems with ultracold atoms in

optical lattices is avoiding the formation of a Mott insulating state. For example,

when realizing a system with on average one particle per site (regardless of the flux

realized) at sufficiently strong interactions a Mott insulating state will generally form

– seen trivially in the atomic limit (𝑈 ≫ 𝑡) of the microscopic Hamiltonian. As a

result it is advantageous to either realize densities with particle numbers below unity

filling to suppress the Mott transition or to suppress the Mott state with a chemical

potential set between the Mott lobes in the regime: 𝜇 ≈ 𝑛𝑈 . One example of the

interesting states that are realizable in cold atomic systems with synthetic magnetic

fluxes are the 𝜈 = 1/2 bosonic Laughlin state and the 𝜈 = 1 Moore-Read states found

by exact diagonalization in an optical flux lattice [37]. Critically, the particle density

controls which state is the interacting ground states, highlighting the necessary control

over the density required to reach such states.

In summary, the work described in this chapter details how we proposed and im-

plemented a system of strong, uniform magnetic fields in an optical lattice. This

method improves upon many of the limitations of the previous schemes by demon-

strating how to generate any arbitrary, uniform flux with the tools of atomic physics:

a magnetic field gradient and far-detuned lasers. In addition, we have investigated,
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understood, and solved many heating issues for these types of Floquet systems and

along the way realized the superfluid ground state on an effective Hamiltonian cre-

ated with amplitude modulation in order to evaluate the importance of many of the

heating effects. Finally, we demonstrated the superfluid ground state of the 1/2-flux

Harper-Hofstadter Hamiltonian and shown the necessarily lower symmetry of the

vector potential than the lattice, which gives rise to a rich diffraction structure in

time-of-flight measurements. Interestingly, we discovered that we are able to make

gauge-dependent measurements by looking at the symmetry properties of the vec-

tor potential acting on the time-of-flight images, and proposed this is also a feature

in real electron systems. Finally, we demonstrated the superfluid ground state in a

three-dimensional lattice and showed that the superfluid persists for even strong in-

teractions raising the prospect of investigating exotic many-particle states close to the

Mott transition. Moving forward, we look at several new directions for experiments

that this research accomplishment opens.

3.9 Outlook

To conclude this chapter, we discuss some outstanding experimental problems and

present a vision for solving these issues. Imprinting synthetic magnetic fields can

be achieved within the framework of Floquet engineering an effective many-body

Hamiltonian as first derived in chapter 2 earlier in chapter 3. Despite its power

and successes to date, there are several outstanding issues to be addressed with the

practical implementations of effective Hamiltonians. Two of the most prominent

among these issues include: how to adiabatically prepare the ground state of the

Hamiltonian of interest, and: how to detect interesting topological orders. In the

superfluid groundstate of the 𝛼 = 1/2 model, the enlarged translation symmetry and

the subsequent superfluid diffraction pattern served as an effective probe of the new

order in the system; however, in strongly interacting or insulating phases – as in

the superfluid to Mott insulator phase transition – time-of-flight measurements may

not always directly reveal the ordering of the system. In addition, for the Harper-
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Hofstadter system we were not able to reproducibly prepare a pure ground state

consisting of a single superfluid domain. Even in the preparation sequence which

utilizes the Mott insulator to switch between superfluid groundstates, the quantum

phase transition from the Mott state to the superfluid state still features a ground

state degeneracy on the superfluid side of the phase transition which produces domains

of different superfluid order when the transition is crossed at a finite rate [135, 175].

This difficulty loading the ground state highlights a general problem associated

with creating topologically ordered states of matter and loading the ground state with

high fidelity. A topologically ordered state generally contains some level of ground

state degeneracy – defined by the degeneracy of the ground state upon mapping the

system onto a torus [163, 121] – as such, this presents a difficulty in deterministically

preparing pure states in the ground state of the many-body system. Given the ability

to load a topologically ordered ground state, an additional difficulty is to detect this

topological order in a cold-atom system. Since information on the topological state

is encoded non-locally in the many-body state, an important question is what kind

of local observables can we detect, or correlation functions we can measure, that will

reveal this nonlocal ordering?

Both questions are prominent issues to be addressed moving forward in realizing

such topological states in optical lattices. For the states discussed in this chapter,

engineered by laser-assisted tunneling in a tilted lattice, one tool that becomes use-

ful for addressing these two questions is the ability to control site-offsets within the

magnetic unit cell in the laser-assisted tunneling process. This importance is high-

lighted in the all-optical flux rectification scheme implemented in Munich [4], where

a superlattice with the same unit cell as the magnetic unit cell was used to drive

the topological phase transition in the lowest band of the effective Hamiltonian with

𝛼 = 1/4 flux per plaquette. To this end, we propose a new all-optical technique for

flux rectification via a triple-superlattice potential. Shown in figure 3-24, the tripled

superlattice is the minimal geometry superlattice needed for rectification of an ar-

bitrary flux because it breaks the inversion symmetry of the symmetric double-well

superlattice (Note that for the special flux of 𝛼 = 1/4 the rectification scheme used
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Figure 3-24: Proposal for flux rectification with a tripled-superlattice. (a) Proposal
for flux rectification with a tripled superlattice and a Raman modulation which spec-
troscopically resolves upward tunneling links at Δ from downward tunneling links at
2Δ and drives each process but with opposite momentum transfer. (b) This scheme
can also realize the quantum spin Hall effect by using a vector stark shift for the
long-wavelength lattice and the same Raman modulation as (a).

in [4] is possible by spatially-resolving different links of the lattice and driving each

with different momentum transfers). Intuitively, we can understand the triple-well

superlattice as a ratchet mechanism – driving the links separated in energy by Δ with

a Raman modulation allows a particle to move with a constant phase imprinted in

one direction until it runs into the downward link which has a tunneling resonance at

2Δ. The links at this higher resonant frequency are spectroscopically resolved from

the upward links of the lattice, so tunneling on these links can be driven with the

opposite momentum transfer such at to imprint a uniform flux on all links of the lat-

tice. Figure 3-24 shows both a spin-independent 3-24(a) as well as a spin-dependent

3-24(b) implementation of the superlattice geometry.

The proposal to use a tripled-superlattice to imprint uniform fluxes is advanta-

geous when considering the problems presented earlier on adiabatic preparation of

a single many-body groundstate and detection of topological states. First of all, in

contrast to the linear potential gradient, the superlattice has a stable ground state

that does not require working with a metastable excited state of the tilted lattice.

One drawback of the Wannier-Stark ladder is that it is a metastable state which is

prepared non-adiabatically by rapid projection of the initial condensate into the tilted

lattice. As a result, the initial state of the effective Hamiltonian has a phase arising

from the initial kick operator and, in a frame rotating at Δ, the Raman modulation
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does not break the symmetry between the degenerate ground states of the effective

Hamiltonian. In contrast, the triple-period superlattice has a stable ground state, the

lowest Bloch eigenstate of the long-period lattice, which can be adiabatically ramped

into the eigenstates of the superlattice with Raman modulation. As a result, by

varying the Raman detuning from the superlattice offset energies, we can selectively

control a term which breaks the indistinguishability of the different sites in the unit

cell, allowing more robust preparation of a specific ground state before re-establishing

the symmetry.

The triple-superlattice potential also helps probing of the topological state by

providing a sharp edge in a two-leg ladder geometry. Often, the topological nature

of the many-body state can be characterized by the states which propagate along the

surface of the state and its interface with a topologically distinct state. Unfortunately,

optical lattice systems are often trapped in harmonic potentials which lack the sharp

edges of a material system. One method to circumvent such shortcomings has been

to realize systems in geometries of finite width where the edge is set by a detuning

from resonance with adjacent states, effectively providing a sharp edge for states to

propagate along [7, 148, 113, 149, 87]. In the same spirit, the tripled-superlattice with

a two-tone drive allows controllable introduction of sharp edges to the system such

that we can selectively choose to do experiments either in two-leg ladder geometries,

in uniform flux geometries, or dynamically switching between the two.

As we have seen, the realization of the Harper-Hofstadter Hamiltonian in an opti-

cal lattice is an exciting development for realizing exotic states of matter with ultra-

cold atoms in optical lattices. The realization of low entropy states of matter in such

an effective Hamiltonian paves the way for studies of strongly interacting physics,

spin-ful physics, and three-dimensional topological materials at the same time that it

highlights the difficulties that remain to be solved and potential paths towards their

solution.
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Chapter 4

Extensions of the Scheme for Uniform

Fluxes

In this chapter we show how the experimental realization of the uniform flux Harper-

Hofstadter Hamiltonian provides a clear path forward towards realizing several other

paradigmatic models of condensed matter physics in an optical lattice. Namely, we

discuss how the inclusion of both a spin or pseudo-spin degree of freedom as well as

laser-assisted tunneling in higher dimensions can lead to nontrivial extensions of the

model realized in the previous chapter to other areas of physics.

Specifically, we begin by discussing three different theoretical flux configurations

which highlight the unique physics this laser-assisted tunneling configuration allows us

to realize. We start by examining the case where different pseudo-spins feel oppositely

oriented fluxes and we show how this model is an ideal realization of a textbook

case of spin-orbit coupling. Next, we examine the case where one spin state feels a

synthetic magnetic flux that the other does not and show how inter-spin interactions

can qualitatively change the resulting physics. Finally, we examine the case of two spin

states which feel the same synthetic magnetic flux and show how this configuration

may lead to a non-trivial bosonic quantum Hall state.

In addition to controlling the spin and flux configurations of the system, we also

examine how the scheme for uniform fluxes can be extended to realize topologically

nontrivial states in a three-dimensional lattice by realization of the Weyl Hamiltonian.
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Finally, we give an outlook on a new way to realize such states utilizing a triple-period

optical superlattice.

4.1 The Spin-Hall Effect and Spin-Orbit Coupling

Beginning with the case of oppositely oriented fluxes, we gain intuition for these

systems by looking at the underlying mechanisms behind spin-orbit coupling and the

spin-Hall effect in solid state systems. We are especially interested in understanding

these effects at the level of the electromagnetic fields so that we can use the intuition

from the previous section to translate this understanding into the language of the

vector potentials and finally into the framework of Raman drive and laser-assisted

tunneling in an optical lattice.

We being by considering an electron moving through a solid with some crystalline

electric field E arising, for example, from some strain in the crystal. In the frame of

the electron, this electric field appears as a magnetic field, B, through the relativistic

transformation of electric and magnetic fields, which interacts with the electron spin,

𝜎, to produce an effective spin-dependent Zeeman splitting ∝ (p×E) ·𝜎. If we simply

let the crystalline electric field to point in the 𝑧-direction, the resulting magnetic field

in the frame of the electron gives rise to the Rashba spin-orbit coupling, (𝜎 × p)𝑧 =

𝜎𝑥𝑝𝑦 − 𝜎𝑦𝑝𝑥, by cyclic permutation of the triple scalar product. Rashba spin orbit

coupling is one form that the coupling between spin and momentum can possibly take.

Notably, with this Hamiltonian the spin-orbit coupling has an intuitive interpretation

as a translation in one direction, for example the 𝑦-direction, accompanied by a spin-

rotation along the 𝑥-axis. This interpretation has motivated some efforts towards

a multi-step Floquet realization of such a Rashba coupling term [25]. A different

interaction, known as Dresselhaus coupling, is also important in the description of

one-dimensional and non-centrosymmetric crystals. In general the spin-orbit coupling

in a material is a combination of Rashba and Dresselhaus couplings.

From the viewpoint of ultracold atoms, the form of the interaction of the electron

with the effective magnetic field provides a useful starting point for generating spin-
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orbit coupling of bosonic and fermionic atoms. Examining the form of the coupling

in the Rashba term we see that this term has a simple interpretation in an ultracold

atomic setting as a physical process which transfers some momentum to an atom and

subsequently rotates the atomic spin. This interpretation leads to a natural under-

standing of the pioneering results from the NIST group realizing a spin-orbit coupled

BEC and the miscible to immiscible transition at low Raman coupling strengths

[104]. In fermionic systems, the same spin-orbit coupling mechanism implemented

in BEC’s was used to map out the spin-orbit coupled bands [160, 33]. Comparing

the form of the spin orbit coupling first achieved in these experiments we see that

the spin-orbit coupling is a combination of Rashba and Dresselhaus that results in a

purely one-dimensional coupling. This is unsurprising given that in the experimental

implementation there is only momentum transfer associated with a spin flip in one di-

rection. More recently, since the publication of the work described in this section, this

one-dimensional spin-orbit coupling has been extended to two-dimensional spin-orbit

coupling in both BEC’s and degenerate Fermi gases [166, 73]. In addition, this type

of spin-orbit coupling has been used with Raman driving of a double-well potential,

which serves as an external pseudo-spin degree of freedom, to observe supersolidity

in the spin-orbit coupled BEC [101, 100].

In the above argument, we arbitrarily assigned the 𝑧-axis for the crystalline field

direction. What happens if instead the electric field is oriented in the plane of our

two-dimensional system? Again, the coupling of the motion of the electron to the

electric field produces a magnetic field in the frame moving with the electron with

the resulting field taking the form: (𝐸𝑦𝑝𝑥 − 𝐸𝑥𝑝𝑦)𝜎𝑧. For the case of a radially

increasing field like that in a strained material or a uniformly charged cylinder this

field takes the form (𝑥𝑝𝑦 − 𝑦𝑝𝑥)𝜎𝑧, or equivalently to 𝜎 · L, where L is the angular

momentum of the electron [14].

This spin-coupling term is identical to the A·p term for the Hamiltonian describing

an electron in a magnetic field. Using the symmetric gauge for the vector potential

A = 𝜎𝑧𝐵(−𝑦𝑒𝑥 + 𝑥𝑒𝑦)/2, one obtains a term in the Hamiltonian proportional to

𝜎𝑧𝐵(𝑥𝑝𝑦 − 𝑦𝑝𝑥). Therefore, this form of spin-orbit coupling is equivalent to a spin-
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Figure 4-1: Creation of a spin-dependent, uniform synthetic magnetic field. Using two
internal hyperfine states of an atom with equal but opposite magnetic moments the
application of a uniform magnetic field gradient and Raman drive results in oppositely
oriented synthetic magnetic fields and is an idealized realization of the quantum spin
Hall Hamiltonian.

dependent magnetic field which exerts opposite Lorentz forces on spin-up and spin-

down atoms. The A2 term constitutes a parabolic spin-independent potential which

is irrelevant for the spin physics discussed here. In the condensed matter context, it

has been shown that this spin-dependent magnetic field leads to the spin Hall effect

which creates a transverse spin current and no charge or mass currents [80, 14].

In the context of generating spin-orbit coupling for ultracold atoms, the spin-

dependent magnetic field, 𝜎𝑧𝐵(𝑥𝑝𝑦 − 𝑦𝑝𝑥), has a clear interpretation as a spin-

dependent synthetic magnetic field. In the framework of the Harper-Hofstadter

Hamiltonian, creating a spin-dependent magnetic field is as simple as either cre-

ating a spin-dependent tilt or a spin-dependent momentum transfer from the Raman

drive. Shown in figure 4-1, a system that uses a single, spin-independent Raman drive

can generate a spin-dependent magnetic field if the tilt is made to be spin dependent.

This can be achieved using two atomic hyperfine ground states with the same absolute

value of the magnetic moment but opposite sign in combination with either a mag-

netic field gradient or a vector AC stark shift at an atomic tune-out wavelength. This

setup was proposed in both [83, 2] and seen experimentally as oppositely-handed cy-

clotron motion of a wavepacket on isolated plaquettes in [2]. This experimental setup
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imprints a spin-dependent spatially-varying phase on the atoms in the lattice:

𝜑𝑚,𝑛;𝜎 = (𝑚𝑘𝑥𝑎+ 𝑛𝑘𝑦𝑎)𝜎̂𝑧. (4.1)

which is equivalent to the following spin-dependent vector potential acting on a

charged particle:

A =
~
𝑎

[︁
𝑘𝑥𝑥+ 𝑘𝑦𝑦

]︁
𝜎̂𝑧. (4.2)

This vector potential is identical, up to a gauge transformation, to the spin-dependent

vector potential derived above for an electron in a radially-strained crystal or in a

uniformly charged cylinder. This model is known to exhibit a spin Hall effect with

finite spin current but vanishing mass currents [80, 14].

In an ultracold atomic realization of this form of spin-orbit coupling, the total

magnetization is fixed and no spin-changing collisions occur so the spin index 𝜎𝑧 is

conserved. In this context, we can intuitively think of this form of spin-orbit coupling

as a simultaneous realization of two oppositely oriented quantum Hall systems. As a

result, we can gain intuition for the origins of the finite spin current with vanishing

mass current by looking at the boundary between the topologically-nontrivial system

with a spin-dependent magnetic field and a topologically trivial state. At the interface

there exist edge-modes associated with the closing of the topological gap. These

modes are chiral with the spin state locked to the direction of propagation. This

spin-momentum locking in a single spin component has been directly observed in later

experiments with uniform fluxes in a synthetic dimension consisting of a manifold of

internal hyperfine states [27, 148, 113] and orbital degrees of freedom in atomic clocks

[156, 87], in addition to real-space ladder systems [7, 149]. Our proposal, summarized

in figure 4-1, with two spin states realizing a spin-dependent synthetic magnetic field

also leads to such chiral edge states as mentioned above which appear simultaneously

in each spin component. This scheme implements spin-orbit coupling both in two and

three dimensions and with bosons and fermions. For fermions in two dimensions, it

realizes the quantized spin Hall effect consisting of two opposite quantum Hall phases.

It is protected by a Z topological index due to the fact that 𝜎𝑧 is conserved [81, 80].
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We can understand this intuitively by considering that since the magnetic field is

oppositely oriented for each spin the edge states associated with each propagate in

reverse directions. As a result, we see that the vanishing mass current is associated

with the mutual cancellation of both left- and right-moving chiral currents associated

with each spin and the resulting spin current is the constructive sum of the two

independent chiral currents. Because this spin-orbit coupling does not mix spins like

Rashba and Dresselhaus coupling do, spin remains a good quantum number and the

total spin current is then the sum of the left- and right-movers. This underlies the

statement that the resulting physics consists of two opposite quantum Hall phases

which do not mix at the single particle level.

Experimentally, realizing this form of spin-orbit coupling has several advantages.

First of all, the tools we used to implement these strong, uniform fluxes are spin-

independent, far-detuned lattices and magnetic field gradients so heating due to

spontaneous emission of near-resonant lasers is eliminated. Secondly, low entropy

states of bosons have been demonstrated in the single-component version of such an

experiment, see [82] in the appendix and above in the previous chapter. So a rea-

sonable extension of this work to probe a spinful system might be to implement this

experimental setup with a degenerate Fermi gas filling the lowest band as in [79] or

via local probing of the edge structure with bosons as done in [7, 148, 113, 149]. And

lastly, verification of the opposite fluxes has been established via cyclotron motion of

wave packets in isolated plaquettes [2].

At the single-particle level, an intriguing possibility is to couple the two states.

This coupling introduces a 𝜎𝑥 or 𝜎𝑦 term which introduces mixing between the spin

states. If this coupling is not done in a time-reversal invariant way Kramers degen-

eracy is lifted and the spin-polarized edge states are not protected against backscat-

tering. However, if this coupling preserves time-reversal symmetry and, since 𝜎𝑧 is

no longer conserved, the Fermi energy lies in the bulk band gap, the system should

become a topological insulator with the Z2 classification [69, 81]. This provides a

path towards studying topological insulators with cold atoms in both the interacting

and non-interacting limits.
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4.2 Imbalanced Fluxes and Superfluid Shielding

As we have seen from the previous section, this dual quantum Hall system of spins in

a spin-dependent synthetic magnetic field is an attractive starting point for breaking

different symmetries and adding interactions. One example of this which particularly

highlights the power of ultracold atomic systems is the configuration where one spin

state feels no synthetic magnetic field when the other feels a strong synthetic magnetic

field. This is easily accomplished by using one spin state which experiences zero tilt

and thus no synthetic magnetic field while the second spin state is strongly tilted and

is thus resonant with a Raman drive.

If the synthetic magnetic field strength is chosen such that the ground state of

the second spin component is a vortex lattice, for example 𝛼 = 1/4, an interesting

question arises: how does the spin component which does not experience a synthetic

magnetic field interact with this density modulation? If we add weak repulsive in-

teractions interactions to the system, mean-field interactions favor a uniform total

density ground state so one might expect different phases based on the hierarchy of

different spin-spin interactions. Similar to a two-component BEC, the system should

exhibit a miscible – immisible transition, and on the miscible side the density of the

untilted component should "fill in" the density depletions of the vortex lattice in the

component that experiences the synthetic magnetic field. This additional density

modulation of the untilted component due to the presence of a vortex lattice in a

second component should be observable in a time-of-flight measurement as an addi-

tional translation symmetry – that of the vortex lattice – spontaneously appearing in

the untilted component.

A similar system – without the second spin component experiencing a synthetic

magnetic field – was implemented experimentally in our lab [24], see appendix. In

this experiment, one component is a superfluid BEC in a normal three-dimensional

lattice. The second component is strongly accelerated by a magnetic field gradient,

but no synthetic magnetic field is imprinted in the sample. In this interacting, two-

component system we observe coherence lifetimes of Bloch oscillations of the tilted
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Figure 4-2: Enhancement of the Bloch oscillation lifetime in a two-component BEC
in an optical lattice. Before applying a tilt, the atoms are in a superfluid, which is
approximately described by a coherent state on each site. The chemical potential is
constant across the cloud. (b) In the limit of a strong tilt (Δ ≫ 4𝑡), the wavefunction
at each lattice site is projected onto the number basis, leading to fluctuations in the
number of atoms and chemical potential from site to site. (c) If the gas has two
components, one which is localized by the tilt, and one which remains superfluid,
the itinerant component can compensate for fluctuations in the localized component.
(d-f) Momentum distribution over the course of a single Bloch oscillation after ten
cycles. (d) Without superfluid shielding, the diffuse cloud indicates decoherence of the
condensate. (e) The itinerant component feels no force and does not Bloch oscillate.
(f) For the shielded component, the Bloch oscillation contrast is high. (g) Exponential
decay of the Bloch oscillation contrast for a one-component (blue dots) and two
component (red squares) gas, for a transverse lattice depth of 11 𝐸𝑟 and ∼ 8 × 103

atoms.
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component longer than the shot-noise limit given by projection noise of the super-

fluid BEC onto the localized basis of states that form the Wannier-Stark ladder. A

schematic representation of the effect along with data showing the visible increase

in the Bloch oscillation lifetime of the two-component system is shown in figure 4-2.

Briefly, the physical mechanism behind this effect we call "superfluid shielding" is

that an excess of density of one component – here the tilted component – on one

site of the lattice is correlated with a lower density of the second component on that

lattice site due to inter-spin repulsive interactions. In essence, the system tries to

minimize density fluctuations of the total particle number density, which produces

the correlation between density maxima of one component with the density minima

of a second component [24].

This result highlights the microscopic mechanism through which inter-spin inter-

actions can cause the vortex cores of the vortex lattice of one spin to attract the

density of a second spin which does not feel a synthetic magnetic field. An analogous

effect exists for unpaired electrons in vortex cores and topological defects in supercon-

ductors where unpaired states can "fill in" the core of the vortex where the superfluid

density necessarily drops to zero. These states are known as Andreev bound states

[26], and have been observed in many vortex lattices [70]. Pulling from the intuition

derived from both the physics of Andreev bound states as well as the initial results

on interacting two-component mixtures in a tilted lattice [24] where the repulsive

inter-spin interaction energy causes the density of one spin component to fill in the

density depletions of a second spin component, we predict that adding a vortex lattice

to the tilted component in figure 4-2 will induce a density-modulation in the untilted

component which does not experience a synthetic magnetic field.

4.3 A Bosonic Quantum Hall Effect

In the previous section we discussed a spin-dependent flux configuration unique to an

ultracold atomic system. Here we discuss another unique feature the ability to realize

these states with not just fermionic particles but also bosonic particles. Motivated

171



by the proposal of ref. [141], we consider a two-component bosonic system with a

spin-independent synthetic magnetic field. If the two systems do not interact, we can

understand them as independent quantum Hall systems which independently have

chiral edge states which propagate in the same directions. However, an interesting

situation arises when we add inter-spin interactions to the system. If each component

individually realizes a 𝜈 = 1 filling fraction – defined by an average density of one

particle per state in the lowest band – then when we add some short-ranged, repulsive

interactions which maintain miscibility the resulting system is a promising candidate

for realizing a bosonic integer quantum Hall effect. Although [141] does not provide

a specific hierarchy of interaction energy scales between intra-spin interactions, 𝑈𝑖,𝑖,

and inter-spin interactions, 𝑈𝑖,𝑗 (for spin components labeled by the index 𝑖 ∈ {1, 2})
necessary for realization of these phases, the hierarchy of interactions in the hyperfine

ground states of 87Rb, 𝑈1,1 ≈ 𝑈2,2 ≤ 𝑈1,2, are of the right hierarchy, range, and

magnitude for consideration of such a ground state in the two-component system with

each realizing 𝜈 = 1 phases. A specific implementation might utilize the |𝐹,𝑚𝐹 ⟩ =
|1,−1⟩ and |2,−2⟩ hyperfine states in a spin independent tilt generated by AC Stark

shift. To realize a 𝜈 = 1 phase, one might choose a flux of 𝛼 = 1/3 and load an

average density of 1/3 atom per site, per spin state, into the lowest band of the

resulting Hofstadter spectrum.

In contrast to the fermionic case, understood via its connection to Landau levels

which are understood in the non-interacting limit, the resulting interacting bosonic

system is a realization of a symmetry-protected topological (SPT) phase – a general-

ization of topological insulators to interacting systems that do not necessarily have a

non-interacting fermion counterpart. In the condensed ground state, the system ex-

hibits a Hall conductance of the mass of +2 and a spin Hall conductance of −2 [141],

which distinguishes this insulting state from a topologically trivial Mott insulating

phase.

An interesting problem arises when we try to construct a wavefunction for this

integer quantum Hall state of bosons: creating a properly symmetric state akin to

a Laughlin wavefunction is nontrivial, and we must either take absolute values or
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squares of the Jastrow factors which encode the relative wavefunction of any two-

particles in the system in order to satisfy particle exchange symmetry. Physically, we

can examine the states offered in [141] as competing ground state wavefunctions by

the effective energy function given by the analogy to a two-dimensional plasma first

discussed in chapter 2, equation 1.49. This analogy offers a few simple interpretations

of what this state physically looks like. For example, one trial wavefunction takes the

form:

Ψ = 𝑃𝐿𝐿𝐿

∏︁
𝑖<𝑗

(𝑧𝑖,1 − 𝑧𝑗,1)
2
∏︁
𝑖<𝑗

(𝑧𝑖,2 − 𝑧𝑗,2)
2
∏︁
𝑖,𝑗

(𝑧𝑖,1 − 𝑧𝑗,2) 𝑒
−

∑︀
𝑖,𝜎 |𝑧𝑖,𝜎 |2/2, (4.3)

where 𝑧𝑖,𝜎 are the dimensionless complex coordinates of the 𝑖-th particle of the spin-

component, 𝜎. By inspection of the wavefunction and by constructing an analogy with

a classical, two-dimensional electron gas via the plasma energy: |Ψ|2 = 𝑒−𝛽Φ = 𝑒−
2
𝑚
Φ

(where 𝑚 is the "charge" of the vortex), we see that this wavefunction corresponds

to a system where the individual components pair into doubly-charged composite

particles and the relative motion of the two components corresponds to the pairing

of a singly-charged vortex of one component with a particle of the second, and vice-

versa. This is one of several possible ground states for this system of two spins which

experience the same synthetic magnetic field [141], illustrating the richness of the

physics which results when we extend the current state-of-the-art realization of the

Harper-Hofstadter model to include interacting spins.

To summarize, we have discussed how a simple extension of the experimental setup

realized in [118] and first implemented in [2] yields a rich variety of new physics to be

observed with ultracold atoms. By choosing the synthetic magnetic field to change

direction with the spin state, this system provides an exact realization of a paradig-

matic model of spin-orbit coupling arising from radial strain in a two-dimensional

electron gas. This system is time-reversal symmetric and therefore exhibits a quan-

tum spin Hall effect consisting of dual quantum Hall phases. Time-reversal invariant

coupling of these spins yields a straightforward realization of an ultracold atom topo-

logical insulator for fermionic atomic species. We have also discussed additional ways
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in which different choices of spins in 87Rb can realize mixtures where one component

feels no synthetic magnetic field and may act similarly to Andeev states in supercon-

duting vortex cores, or choosing two spins to have the same synthetic magnetic field

may produce a simple realization of a bosonic quantum Hall effect and a symmetry

protected topological state.

4.4 The Weyl Hamiltonian

So far, the topological physics we have discussed has been heavily influenced by

the paradigmatic system of two-dimensional electronic systems in a magnetic field.

However, in reality, the world has more spatial dimensions and we can realize the

Harper-Hofstadter Hamiltonian in both two- and three-dimensional lattices. It is

worthwhile to ask then, what kind of topological states can exist in three-dimensions?

One example comes to us from high energy physics where, in relativistic quantum field

theory, there are three types of fermions: Dirac, Majorana, and Weyl fermions [164].

Theoretically, Weyl fermions constitute "half" a Dirac fermion in the sense that two

Weyl fermions coupled by a mass term constitute the Dirac spinor. As a result, Weyl

fermions are massless particles in three-dimensional space, which, until recently, had

not been observed. It was conjectured that neutrinos could be Weyl fermions before

the discovery of neutrino oscillations, and corresponding non-vanishing neutrino mass,

ruled out such a possibility.

Recently, the possibility of realizing Weyl fermions as collective excitations in

condensed matter systems [157, 23] or as engineered dispersions in photonic systems

[107] has received much attention. These systems realize analog Weyl fermions as

band-touching points in three-dimensional space with linear dispersion such that the

effective low-energy Hamiltonian can be expressed in the form: 𝐻 = ~v · k. Such

a system acts like a magnetic monopole in momentum space where a sphere enclos-

ing the band touching point counts the effective magnetic charge of the magnetic

monopole. Recently there has been much activity towards realizing Weyl semimet-

als – gapless topological states of matter with bulk low-energy electrons behaving as
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Weyl fermions, with Fermi arc topological surface states [157, 153, 80] – culminating

with the recent observation of both in TaAs and NiAs [170, 169, 171, 111, 110] and

in three-dimensional photonic crystals [108].

In the work we describe in this chapter, we propose a novel realization of Weyl

points in a three-dimensional optical lattice with ultracold atoms. Importantly, this

proposal builds on the success of the previous chapter in realizing the ground state of

the two-dimensional 𝛼 = 1/2 Harper-Hofstadter Hamiltonian in both two- and three-

dimensional optical lattice. It uses the same tools of far-detuned lattices, magnetic

field gradients, and far-detuned Raman drive, so in principle, it is a useful scheme for

realizing strongly interacting, many-body states in the topological state defined by

the single particle spectrum.

We begin by understanding how such a state can emerge from the previous results

on the Harper-Hofstadter Hamiltonian in three-dimensions by considering the energy

spectrum of the 1/2-flux model in a three-dimensional lattice composed of a tunnel-

coupled array of two-dimensional Harper-Hofstadter systems. The Hamiltonian and

resulting energy spectrum are given by:

𝐻3𝐷 = 𝐻HH − 𝑡𝑧
∑︁
𝑖

(𝑎̂†𝑖+1𝑎̂𝑖 + 𝑎̂†𝑖 𝑎̂𝑖+1) (4.4)

𝐸3𝐷 = ±2
√︁
𝐾2 sin2(𝑘𝑥𝑎) + 𝑡2 cos2(𝑘𝑦𝑎)− 2 cos(𝑘𝑧𝑎), (4.5)

where the subscript 𝐻𝐻𝐻 is the two-dimensional Harper-Hofstadter Hamiltonian with

tunneling strengths in 𝑥- and 𝑦-directions, 𝐾 and 𝑡, respectively, and 𝑡𝑧 is the tunnel-

ing strength in the 𝑧-direction. When plotted, the energy spectrum of this model con-

sists of nodal lines along the axes given by coordinates: k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = (0,±𝜋
2
, 𝑘𝑧).

Despite the fact that the model describes an electron in a strong magnetic field (which

normally breaks time-reversal symmetry), the 1/2-flux model is, in fact, protected by

time-reversal symmetry due to the equivalence of the tunneling phase imprinted by

a 𝜋-flux and a −𝜋-flux both realizing a staggered, real tunneling phase of (−1)𝑖𝐾.

In addition, the system is also inversion symmetric about the center of the bond in

the 𝑥-direction. As a result of these two symmetries, the nodal line in the spectrum
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Figure 4-3: Configuration of tunneling phases for realization of Weyl points. (a)
Breaking inversion symmetry is accomplished by stacking layers of 1/2-flux models
with tunneling phases on the 𝑧-bonds which alternate sign with the same symmetry
as the tunneling phases in the 𝑥 − 𝑦 plane. To accomplish this task, an gradient is
applied to the 𝑥- and 𝑧-directions of the lattice which produces an equal energy offset
per site in both directions. The Raman drive is introduced at angles shown by the
large, red arrows and imparts a momentum transfer of 𝛿k = 𝜋(1, 1, 2) driving laser-
assisted tunneling processes. We can understand inversion symmetry breaking in an
alternative picture looking at the stacking in the 𝑥 − 𝑧 plane (b),(c) and noticing
the alternatively shifted patterns connected by normal tunneling phases along the
𝑦-direction.

in equation 4.5 is protected by symmetry. In order to break this degeneracy and

establish a topological state with Weyl points, we must either break time-reversal

symmetry or break inversion symmetry.

This proposal relies on breaking inversion symmetry of the tunneling in the 𝑧-

direction by driving a laser-assisted tunneling process on these bonds using the same

Raman drive field used to drive the laser-assisted tunneling transitions in the 𝑥 −
𝑦 plane. To accomplish this, a gradient is now applied to the 𝑒𝑥 + 𝑒𝑧 direction,

producing an uniform energy offset between adjacent sites along both the 𝑥- and 𝑧-

directions, assuming equal lattice constants in these two lattice axes for simplicity.

Next, resonant tunneling is re-established along these directions with a Raman drive

which produces a momentum transfer in all three directions according to: 𝛿k =

𝜋(1, 1, 2). Figure 4-3 shows the angle of the Raman drive which produces laser-assisted

tunneling simultaneously on both 𝑥- and 𝑧-bonds. Assuming that the underlying

static lattice has the same lattice constant in all three directions, the corresponding

tunneling phases induced by the light field are indicated on each bond. An alternate

way to view this breaking of inversion symmetry can be seen in figure 4-3(b), (c)
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looking at alternating planes in the 𝑥− 𝑧 plane. Comparing 4-3(b) to 4-3(c), we see

that both layers have the same pattern of tunneling links but shifted by one lattice

constant, 𝑎, in the 𝑥-direction. Each plane is connected in the 𝑦-direction with normal

tunneling which is both time-reversal and inversion symmetric.

More formally, the tilt and laser configuration in figure 4-3 produce the following

Hamiltonian:

𝐻Weyl =
∑︁
𝑚,𝑛,𝑙

(︁
𝐾𝑥𝑒

−𝑖𝜃𝑚,𝑛,𝑙 𝑎̂†𝑚+1,𝑛,𝑙𝑎̂𝑚,𝑛,𝑙 + 𝑡 𝑎̂†𝑚,𝑛+1,𝑙𝑎̂𝑚,𝑛,𝑙 . . .

. . .+𝐾𝑧𝑒
−𝑖𝜃𝑚,𝑛,𝑙 𝑎̂†𝑚,𝑛,𝑙+1𝑎̂𝑚,𝑛,𝑙 + H.c.

)︁
, (4.6)

with momentum transfer, 𝜑𝑚,𝑛,𝑙 = 𝜋(𝑚+𝑛+2𝑙). Examining the translation symmetry

dictated by this choice of gauge, we see that the unit cell has two atoms per site and

has translation symmetry vectors of R = {𝑎𝑒𝑥+𝑎𝑒𝑦, 𝑎𝑒𝑥−𝑎𝑒𝑦, 𝑎𝑒𝑧}. We can therefore

diagonalize the Hamiltonian in momentum space and find the following dispersion

relation:

𝐸± = ±
√︁
𝐾2

𝑥 sin
2(𝑘𝑥𝑎) + 𝑡2 cos2(𝑘𝑦𝑎) +𝐾2

𝑧 cos
2(𝑘𝑧𝑎) (4.7)

Taking a cut through the spectrum along the 𝑘𝑥 = 0 plane, we see the dispersion

shown in figure 4-4(b) with four locations in which the upper and lower bands touch

with a linear dispersion at (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = (0,±𝜋
2
,±𝜋

2
). Plotting similar cuts through

the first magnetic Brillouin zone for other values of 𝑘𝑥, one finds that away from the

𝑘𝑥 = 0 plane the bands are isolated and do not touch at any other locations within the

first magnetic Brillouin zone. Expanding the dispersion in equation 4.7 around the

four locations the upper and lower band touch, (0,±𝜋
2
,±𝜋

2
), we see the dispersion is

linear at zero energy in all three directions with a slope set by the tunneling strengths.

If we expand the dispersion to first order in the deviation of the momentum from the

Weyl point momentum, q = k = k𝑊 , we can define an effective Hamiltonian:

𝐻 =
3∑︁

𝑖,𝑗=1

~𝑘𝑖𝑣𝑖𝑗𝜎𝑗 (4.8)
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Figure 4-4: Energy spectrum of the Weyl Hamiltonian, shown for a cut through the
three-dimensional Brillouin zone on the 𝑘𝑥 = 0 plane (a,b). Note the four band-
touching points with linear dispersion between the upper and lower bands and the
synthetic magnetic flux associated with each shown in the circled insets (a). The
topological charge of each Weyl point is indicated by a plus of minus in (a). The
addition of a 𝜎𝑧 symmetry-breaking term moves the Weyl points along the dashed
lines, without opening a gap, until Weyl points of opposite chirality annihilate.
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with the velocities, 𝑣12 = −2𝐾𝑥𝑎, 𝑣21 = −2𝑡𝑎, 𝑣33 = −2𝐾𝑧𝑎, and zero otherwise.

This Hamiltonian is linear in all three dimensions and as such, for a Fermi energy at

𝐸 = 0, is exactly analogous to a massless Weyl fermion in three-dimensional space.

One hallmark of the Weyl point is that these points carry topological charge and

only appear in oppositely charged pairs – if we sum all the topological charges in

the Brillouin zone the result should add up to zero. We can calculate the topological

charge for each point by calculating the Berry connection at each point in the Brillouin

zone, A(k) = 𝑖⟨𝑢(k)|∇k|𝑢(k)⟩, and then the Berry curvature, B = ∇k ×A(k). The

Berry curvature for a positive and negative charge within the first Brillouin zone is

shown in figure 4-4(a), confirming that these linear band-touching points do, in fact,

carry topological charge. We also see from figure 4-4(a) that these four points arise

from two pairs, each of which carry opposite topological charges.

One qualitatively different feature of Weyl points compared to Dirac points in a

two-dimensional system – or Dirac points in a three-dimensional system composed

of two Weyl points which overlap – is their robustness to external perturbations.

Any small perturbation of the form 𝜖𝜎𝑖, where 𝑖 runs over all three dimensions and

𝜖 is some arbitrarily small parameter, will not destroy the Weyl point by opening a

gap in the spectrum, but instead only cause a small deviation in the location of the

Weyl point in momentum space. Weyl points can only be destroyed – therefore

opening a gap and destroying the topological charges associated with each Weyl

point – when two oppositely charged points are brought together and annihilated.

To demonstrate this principle, we add an 𝐴 − 𝐵 sublattice offset, resulting in a

𝜎𝑧 perturbation with amplitude given by the offset energy, 𝜖. Experimentally, this

can be implemented by adding a two-dimensional superlattice to the uniform lattice.

Increasing the amplitude of the superlattice increases the symmetry breaking term,

𝜖, and subsequently moves the weyl points along the dotted line in the 𝑧-direction

shown in figure 4-4(a), confirming the robustness of the spectrum to perturbative

symmetry breaking terms.

As the amplitude of the symmetry breaking term is increased, and the Weyl points

are moved through the first Brillouin zone, at some critical value of the site-offset,

179



𝜖, Weyl points of opposite chirality meet and annihilate. At this point the spectrum

becomes gapped and Weyl points disappear. In the case of the 𝐴 − 𝐵 sublattice

offset, this happens at a critical value of 𝜖 = ±2𝐾𝑧. In figure 4-4(a), this critical

value happens at the locations indicated by white stars. Above this critical value, the

system makes a transition to a topologically trivial band.

Additional checks can be performed on this system to probe the topology of the

Weyl points, such as verify the presence of Fermi arcs on the surface of a slab as

seen in [43]. In total, the presence of linear band-crossing points in three-dimensional

space, the existence of topological charge associated with each such that they act

as magnetic monopoles in momentum space, their robustness to perturbation, and

finally the presence of Fermi arcs on the surface presents a compelling case for the

existence of Weyl points in this system created with laser-assisted tunneling in an op-

tical lattice. Given that this experimental setup is based on, and represents a simple

extension of, the techniques used to implement the Harper-Hofstadter Hamiltonian

with far-detuned lattices and magnetic field gradients, its experimental implementa-

tion is technically within reach and represents an exciting direction for ultracold atom

research. It is worthwhile to highlight that, without phase engineered hopping meth-

ods, the creation of Weyl points is more demanding, and its creation is possible only

for a reduced number of space groups and points of symmetry in the Brillouin zone

[114]. However, with the ability to phase-engineer the tunneling links, its realization

is possible in a simple cubic lattice.

4.4.1 The Chiral Anomaly

As an outlook, we point out that this system is an ideal platform for realizing the

Adler-Bell-Jackiw chiral anomaly in a cold atom system [122, 134]. In short, in the

condensed matter context we have seen that Weyl points show up only in pairs, with

a positively charged Weyl point is always accompanying a negatively charged one.

The chiral anomaly refers to the apparent non-conservation of the number of chiral

charges in the system, i.e. the number of fermions associated with a Weyl point that

has either a positive or negative topological charge is not conserved. Ref. [134] aptly
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makes the analogy between the chiral charge in a Weyl semimetal and the valley

degree of freedom in graphene. The non-conservation of chiral charge is seen clearly

under simultaneous, parallel application of electric and magnetic fields which results

in a pumping of charge from one Weyl node to another and generates a change in the

chiral charge [122]:

𝑄̇5 =
𝑒2

ℎ2
E ·B. (4.9)

We can develop an intuitive understanding of the chiral anomaly by contrasting

the material with Weyl points to a topologically trivial three-dimensional semimetal.

In a trivial semimetal, when we apply a magnetic field the system forms a series

of Landau levels in the directions transverse to the field direction and remains free

in the direction parallel to the field. If we then also apply an electric field, current

flows normally in this direction. In a Weyl semimetal when we apply a magnetic

field, the system again forms the Landau level structure of a relativistic particle in

the transverse directions to the applied field direction. However, when we apply an

electric field in the longitudinal direction, current now flows away from one Weyl point,

down into the bulk of the band either above or below the Fermi surface. Because the

band is continuously connected to both Weyl points at high energy, these charges can

continue to flow directly to the oppositely handed Weyl point where they annihilate,

thus breaking the conservation law for chiral charges. This process is depicted very

clearly in figure six of ref. [122]. In a longitudinal transport measurement, the current

is flowing between Weyl nodes is flowing opposite to the direction of the applied field,

so this appears in a experiment as a negative magnetoresistance observed in recent

experiments [74, 168].

This effect is particularly straightforward to implement in the proposed lattice

setup with ultracold atoms and laser-assisted tunneling. In this system, an effective

magnetic field oriented in the 𝑧-direction is introduced by tuning the flux enclosed in

the 𝑥−𝑦 plane away from 𝛼 = 1/2 as discussed in the context of the two-dimensional

Harper-Hofstadter system and pictured in figure 3-3 of chapter 3. Adding an addi-

tional acceleration, analogous to an electric field, can be achieved along any direction
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by rotating the direction of the applied magnetic field gradient, effectively tuning the

electric field direction relative to the magnetic field axis by changing the detuning

from Raman resonance. Recent work has highlighted that this longitudinal current

should also exhibit a fractal, Hofstadter-like spectrum [134], and the ability to imprint

arbitrarily large tunneling phases in the system highlights the power of cold atomic

systems to achieve such strong-field regimes. In conclusion, exploring transport dy-

namics in the effective Weyl Hamiltonian created with laser-assisted tunneling is an

exact realization of the chiral anomaly in an ultracold atom system and represents

an exciting direction for future experiments with Weyl semimetals in optical lattices.
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Chapter 5

The Spin-1 Heisenberg Hamiltonian

If we take a two-component BEC in an optical lattice and drive the phase transition

to the Mott insulating phase, what is the configuration of spins in the ground state?

This is an important question in many different contexts from electrons in condensed

matter physics, atoms and molecules in atomic physics, and ions and other spin-

qubit systems in quantum information science platforms. This important question is

approached in this chapter in the context of 87Rb atoms in optical lattices.

We first approached this question in the introduction where the exponential scal-

ing of the basis size with particle number was highlighted with a particular emphasis

on the intractability of the general problem on a classical computer. However, as we

will find, mean field theory provides a good qualitative, if not quantitative, under-

standing of the quantum system from which to start. In this chapter we provide a

precise mapping of the dynamics of different spin configurations to an effective spin

model, and show how this spin model is implemented with ultracold atoms in op-

tical lattices. Here we show how a gapped ground state of such a spin model can

be robustly prepared and used to create, detect, and characterize an extremely low

entropy state. This highly gapped, low entropy spin state thus represents an excellent

starting point for adiabatic ramping to a magnetic state of matter across a quantum

phase transition and for potential realization of a long-range ordered spin system at

picokelvin temperature scales.
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5.1 A Mott Insulator with Spin

In chapter 2.3.1 we discussed the nature of the superfluid to Mott insulating transition

for a single spin component in an optical lattice. In principle, we can add more spin

components to the system such that the the single-band Hamiltonian gains a spin

index:

𝐻 = −
∑︁
𝑖𝑗,𝜎

(︀
𝑡𝜎𝑎

†
𝑖,𝜎𝑎𝑗,𝜎 + H.c.

)︀
+

1

2

∑︁
𝑖,𝜎,𝜎′

𝑈𝑖𝑗,𝜎𝑎
†
𝑖,𝜎𝑎

†
𝑗,𝜎′𝑎𝑗,𝜎′𝑎𝑖,𝜎. (5.1)

Examining the Bose-Hubbard Hamiltonian with the spin degree of freedom, we see

that the inclusion of a new index creates new energy scales associated with spin-

dependent tunneling: 𝑡↑ and 𝑡↓, and spin-dependent interaction energies: 𝑈↑↑, 𝑈↑↓, and

𝑈↓↓. With these new energy scales it is not immediately obvious that the transition

to the Mott state for both spin components is preserved; however, in a far detuned

lattice the tunneling is spin-independent and in 87Rb the interaction energy scales are

all similar such that both components enter the Mott phase. The interesting question

is then: what is the ground state arrangement of spins in the Mott insulating state?

The exact solution to the general problem is intractable due to the exponen-

tial complexity of the quantum system; however, in three-dimensions and in certain

regimes of lower-dimensional systems we can write down nice mean-field solutions

in the limit where either the kinetic energy dominates over the interaction energy,

𝑡 ≫ 𝑈 , or in what we will call the the atomic limit, where the interaction energy

dominates over the kinetic energy, 𝑡≪ 𝑈 . Since we wish to analyze the configuration

of spins in the Mott insulating state, we begin by examining the action of the spin

degree of freedom in the atomic limit. This limit is visualized schematically in figure

5-1(a) as different manifolds of local site occupation numbers with a ground state

that is uniformly occupied and gapped by some large energy scale to manifolds of

excited states that contain one excitation, two excitations, and so on and so forth.

Restricting ourselves the the inter-spin interaction hierarchy that exists in 87Rb, there

is only a small difference between the three different interaction energy scales in a
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Figure 5-1: Nearly degenerate spin configurations within the Mott insulating state.
(a) Manifolds of different occupation number states of both | ↑⟩ and | ↓⟩ in the Mott
insulating phase are gapped by some large energy scale, 𝑈 . Within each manifold,
the energy of each different spin configuration is nearly degenerate. (b) Leading order
terms which are responsible from breaking the macroscopic spin degeneracy of the
ground state manifold. The energy of multiple particles on a lattice site can differ
because the scattering lengths, 𝑎↓↓, 𝑎↑↓, and 𝑎↑↑ are not necessarily equivalent. This
effect also leads to superexchange terms which depend on the initial and final spin
configurations.

spin-independent trapping potential since,

𝑈𝜎,𝜎′ =
4𝜋~2𝑎𝜎,𝜎′

𝑚

∫︁ ∞

−∞
𝑑x|𝜓𝜎(x)|2|𝜓𝜎′(x)|2, (5.2)

and 𝑎↑↑ ≈ 𝑎↓↓ ≈ 𝑎↑↓. As a result, within the ground state manifold of 𝑁 sites occupied

two-component bosons of density 𝑛 – such that there are 𝑛𝑁 particles in the system

– there is a combinatorically large near-degeneracy of different spin configurations.

Figure 5-1(a) emphasizes this point by depicting different configurations of doubly-

occupied sites which, in the atomic limit with all three scattering lengths equal, are

all degenerate.

Beyond this zeroth order treatment in the atomic limit, there are two qualitatively

different ways that we will discuss in which the system will break this large degeneracy.

Shown in figure 5-1(b), for states with occupation numbers 𝑛 > 1 there is a local, on-

site symmetry breaking term which arises due to the deviations of the intra-spin and
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inter-spin scattering lengths from degeneracy. Second, virtual tunneling of a particle

from one site to an adjacent one enables particles of different spin to swap sites in

the lattice in a way which depends on the spin-composition in the adjacent site. In

a formal derivation, we find that this corresponds to both a spin-exchange term and

an Ising-like spin-spin interaction.

Previous work has also realized spin-dependent tunneling, and as a result, a spin-

dependent transition to the Mott state [51, 116]. However, in this thesis we will stay

within the regime where the tunneling is spin-independent: 𝑡↑ = 𝑡↓ = 𝑡, and therefore

both spins enter the Mott phase at similar lattice depths given that both 𝑈↑↑ ≈ 𝑈↓↓

to the percent level.

5.2 Spins and Effective Spins in the Mott Insulator

Building on the intuition of the previous section, we develop an effective low energy

theory within the lowest manifold of states which can account for the symmetry-

breaking terms introduced in the previous section and shown in figure 5-1(b), which

become responsible for lifting the degeneracy of spin configurations and determining

a unique ground state. We will show in the following subsections how to represent

the symmetry breaking terms between different "real" spin configurations in terms

of effective spins which formally map onto a Heisenberg model which describes the

action of these effective spins. To develop a complete picture of the mapping from

a two-component Bose-Hubbard model with real spins to a Heisenberg model with

effective spins, we examine two distinct cases: one for mapping the 𝑛 = 1 Mott state

to a spin-1/2 Heisenberg model and a second mapping the 𝑛 = 2 Mott state to a spin-1

Heisenberg model. Examining their qualitative similarities and differences, we’ll aim

to develop an intuitive understanding of how the distinct ways the symmetry of the

atomic limit is broken can help us more effectively prepare the ground state of this

effective spin Hamiltonian.
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5.2.1 The 𝑛 = 1 Mott State

We begin with the simplest case, a two-component Mott insulator consisting on one

particle per site, in order to develop some intuition for the formal mathematics of

our spin-mapping. In the Mott state with a single atom per site, the local state of a

particle on a site is described by an effective spin-1/2 state, shown in figure 5-2(a),

where we associate the 𝑚𝑠 = +1/2 state with an atom in one hyperfine state ("up")

occupying a site or the 𝑚𝑠 = −1/2 state with an atom in another hyperfine state

("down") occupying the site. Since there is only one atom per site, there is no on-site

interaction energy to break the symmetry locally as shown in figure 5-1(b). As a

result the primary mechanism for lifting the ground state degeneracy in the 𝑛 = 1

Mott state is the movement of spins via the superexchange interaction.

We can understand the superexchange interaction in second-order perturbation

theory as the effect of finite tunneling strength virtually admixing states of higher oc-

cupation number, which are gapped from the ground state manifold by a large energy

scale, 𝑈 , into the ground state wavefunction. This process is depicted schematically

as well in figure 5-1(b). The different interaction energies of two particles on one

site are thus responsible for lifting the degeneracy of the various ground state spin

configurations. More formally, perturbing the uniformly occupied ground state with

the tunneling part of the Hamiltonian couples the local state with 𝑛 particles per site

to one with 𝑛± 1 particles per site:

−𝑡 ⟨𝑛′
𝑖, 𝑛

′
𝑖+1|𝑎̂†𝑖 𝑎̂𝑖+1|𝑛𝑖, 𝑛𝑖+1⟩ = −𝑡 𝛿𝑛𝑖+1−1,𝑛′

𝑖+1
𝛿𝑛𝑖+1,𝑛′

𝑖
(5.3)

at an energy cost of 𝑈 . Since 𝑡≪ 𝑈 in the Mott regime, this process is energetically

forbidden to first order. Because tunneling is short ranged, we hope to capture the

essential physics by looking at a two-site model perturbed by some finite tunneling am-

plitude. The singly occupied basis states that describe the ground state on the 𝑖th link

of the lattice by |𝑛𝑖,↑, 𝑛𝑖,↓, 𝑛𝑖+1,↑, 𝑛𝑖+1,↓⟩ = {|1, 0, 1, 0⟩, |1, 0, 0, 1⟩, |0, 1, 1, 0⟩, |0, 1, 0, 1⟩}
are degenerate, so we move forward by constructing a matrix to perform degenerate

perturbation theory. To second order, each ground state couples first to a doubly
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Figure 5-2: Mapping from a two-component, 𝑛 = 1 Mott insulator to an effective
spin-1/2. Elements of the sum over all configurations performed to second-order in
the tunneling perturbation of the Mott state.

occupied excited state – for example starting from |1, 0, 0, 1⟩ we can couple to both

|1, 1, 0, 0⟩ or |0, 0, 1, 1⟩ state – and then either back to the original spin configuration

(the diagonal terms), or to another spin configuration (the off-diagonal elements). For

each term, a factor of two arises due to the two possible pathways for each process:

first tunneling right and then left or first tunneling left and then right. An additional

factor of two appears for the spin polarized terms due to bosonic statistics.

Figure 5-2 shows a table of all the possible initial spin configurations and all the

resulting terms in the sum over final states to second order in the tunneling. Note

that the small parameter used to truncate this series at second order is the ratio
𝑡
𝑈

≪ 1. We now attempt to establish a correspondence between this perturbation

series and the anisotropic spin-1/2 Heisenberg model:

𝐻Spin =
∑︁
⟨𝑖𝑗⟩

(︁𝐽⊥
2
𝑆+
𝑖 𝑆

−
𝑗 + 𝐽𝑧𝑆

𝑧
𝑖 𝑆

𝑧
𝑗 + H.c.

)︁
+ ℎ𝑧

∑︁
𝑖

𝑆𝑧
𝑖 , (5.4)

where we define the exchange operators 𝑆±
𝑖 = 1

2
𝑎̂†𝑖,↑(↓)𝑎̂𝑖,↓(↑) and the usual 𝑆𝑧 operator:

𝑆𝑧
𝑖 = 1

2
𝑎̂†𝑖,↑(↓)𝑎̂𝑖,↑(↓). Formally, we take matrix elements of 5.4 with the states listed in

the table of figure 5-2 and establish a system of equations whose solution yields the

Heisenberg parameters, 𝐽⊥, 𝐽𝑧, and ℎ. For the case of spin-1/2 this is particularly
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simple, yielding the system of equations:

1

2
𝐽⊥ = − 2𝑡2

𝑈↑↓
(5.5)

𝑐− 1

4
𝐽𝑧 + ℎ𝑧 = − 4𝑡2

𝑈↑↑
(5.6)

𝑐− 1

4
𝐽𝑧 − ℎ𝑧 = − 4𝑡2

𝑈↓↓
(5.7)

𝑐+
1

4
𝐽𝑧 + 0 · ℎ𝑧 = − 2𝑡2

𝑈↑↓
. (5.8)

The constant 𝑐 here is a spin-independent potential which also ensures self-consistency

of the equations. Solving this system yields the parameters of the effective Heisenberg

model in terms of the microscopic parameters of the Bose-Hubbard model:

𝐽⊥ = − 4𝑡2

𝑈↑↓
(5.9)

𝐽𝑧 =
4𝑡2

𝑈↑↓
− 4𝑡2

𝑈↑↑
− 4𝑡2

𝑈↓↓
(5.10)

ℎ𝑧 =
2𝑡2

𝑈↓↓
− 2𝑡2

𝑈↑↑
+ ℎext. (5.11)

If we include the chemical potentials of up and down spins in the Hamiltonian, the

imbalance between up and down potentials acts as an external magnetic field applied

to the system, ℎext = 𝜇↑ − 𝜇↓, and appears in addition to the effective field arising

from the mapping. As a result, we have derived exactly how the parameters of the

Heisenberg Hamiltonian scale with respect to the Bose-Hubbard energy scales which

we have direct control over in an ultracold atom experiment.

From this we can tell several things about the ordering of spins in the ground

state of the two-component Mott state. First, we see that, assuming positive inter-

action energies (and therefore a condensate stable to collapse), the model describes a

ferromagnetic ground state since both exchange and Ising energies are negative, fa-

voring alignment of adjacent spins. In the regime described by the interaction energy

hierarchy of 87Rb, 𝑈↑↑ ≈ 𝑈↓↓ ≈ 𝑈↑↓, the exchange and Ising terms are nearly the
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same:
𝐽𝑧
𝐽⊥

=
𝑈↑↓

𝑈↑↑
+
𝑈↑↓

𝑈↓↓
− 1. (5.12)

For miscible spins, 𝑈2
↑↓ < 𝑈↑↑𝑈↓↓, the 𝐽⊥ term dominates and the ground state should

be an easy-plane ferromagnet – also known as a 𝑥𝑦-ferromagnet [92]. For immiscible

spins, the system makes a transition to an easy-axis ferromagnet – commonly known

as a 𝑧-ferromagnet. At exactly the point where 𝑈↑↑ = 𝑈↓↓ = 𝑈↑↓, the system realizes

the isotropic Heisenberg model.

In addition to the exchange terms, examining the effective applied magnetic field

we see that if the interaction energies 𝑈↑↑ and 𝑈↓↓ are different the resulting difference

in the self-energy terms of the second-order perturbation expansion act like an effective

magnetic field. For 87Rb, these interaction energies are identical to the percent level,

so the effective magnetic field which acts on the system is largely controlled by the

chemical potential imbalance, 𝜇↑−𝜇↓. In our cold atom system, we normally operate

with balanced, or nearly balanced mixtures, so the external field is close to zero.

However, we do note that the application of an external magnetic field favors a spin

orientation in the 𝑧-axis, so we expect that the chemical potential imbalance can drive

a transition to a phase where all spins are polarized along the field direction [42].

So far, we have qualitatively discussed the different phases we expect to be present

in the phase diagram at zero temperature. However, one issue for experimental real-

izations of this system with ultracold atoms has been that the temperatures realized

in the lattice are still too high to access these low temperature phases. In 87Rb, we

will assume symmetric intra-spin interactions, 𝑊 = 𝑈↑↓ = 𝑈↓↓, such that the relevant

energy scale to compare the temperature to is the exchange energy scale at lattice

depths which correspond to Mott insulating states in a 532 nm lattice constant:

4𝑡2

𝑈↑↓
≈ 4𝑡2

𝑊
∼ 1 - 10 Hz = 50 - 500 pK. (5.13)

In order to realize long range ordered states where the correlation length, 𝜉 ∝
𝑓(𝐽⊥/𝑘𝐵𝑇 ), exceeds the system size, 𝐿, we need to prepare atoms in the lattice at

temperatures lower than those determined by this exchange energy scale – a challeng-
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ing task given the state-of-the-art temperatures in optical lattices. Some progress has

been made in shaping the local chemical potential in order to realize lower tempera-

ture [117], however long range magnetic ordering in the bosonic Heisenberg mapping

remains elusive. Next, we will look at the 𝑛 = 2 Mott insulator and see that the map-

ping to the spin-1 Heisenberg model provides a promising alternative route towards

low temperatures in this lattice system.

5.2.2 The 𝑛 = 2 Mott State

The mapping from a Mott insulator with two particles per site to a Heisenberg model

proceeds in a manner which is similar to that of the 𝑛 = 1 case, however, due to the

presence of different intra-spin and inter-spin interaction energies we must account for

these additional on-site degeneracy-lifting terms. Shown in figure 5-3(a), the state of

two particles – also called a "doublon" – composed of two possible hyperfine pseudo-

spin states occupying the lowest band on a lattice site is described by a spin triplet.

The three possible projections of this effective spin-1 consist of 𝑚𝑠 = ±1 states which

are pseudo-spin polarized and an 𝑚𝑠 = 0 state which is a symmetric superposition

of a hyperfine spin up and a hyperfine spin down particle, |0⟩ = 1√
2
(| ↑, ↓⟩ + | ↓, ↑⟩),

which we will refer to as a "spin-paired doublon". Due to the symmetry requirement

of bosonic particles, only the triplet state is populated in the lowest band of the

lattice, whereas the antisymmetric singlet state necessarily involves population in a

higher band and, as such, is suppressed at low temperature.

As shown in figure 5-1, now that the effective spin-1 particles consist of multiply

occupied sites, an additional symmetry-breaking mechanism – in addition to superex-

change – can lift the degeneracy of spin configurations in the ground state manifold

of the Mott state. These on-site interaction energy differences between each spin pro-

jections are parameterized by the scattering lengths and corresponding interaction

parameters: 𝑈↑↑, 𝑈↓↓, and 𝑈↑↓. To simplify the mathematics and notation of the

derivation presented here, and to mirror the hierarchy of scattering lengths in 87Rb,

we set the intra-spin interactions to be equal, 𝑊 = 𝑈↑↑ = 𝑈↓↓, and parameterized by

𝑊 .
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Figure 5-3: Mapping from a two-component, 𝑛 = 2 Mott insulator to an effective spin-
1. (a) Comparing the spin-1/2 mapping to the spin-1 mapping, the on-site energy
of the spin-1 state directly breaks the symmetry of the local states. (b) The on-site
energies of the three projections of the spin-1 state for 87Rb in a spin-dependent
optical lattice. Repulsive interactions raise the energy of all sites relative to singly
occupied sites, but, for 𝑈↑↓ < 𝑊 , the |0⟩ state is less repulsive than either |±⟩ states.

Shown in figure 5-3(b), the different interactions of the spin polarized doublons,

|±1⟩, and the spin-paired doublons, |0⟩, cause a shifting of the on-site energy that acts

like a (𝑆𝑧
𝑖 )

2 term, plus a constant energy offset, 𝑈↑↓, in a Heisenberg Hamiltonian.

This term is qualitatively new to the higher-spin Heisenberg model composed of

multiply-occupied lattice sites, and will be responsible for a qualitatively different

phase diagram moving forward. In the big picture, these on-site terms mean that

we are no longer performing strictly degenerate perturbation theory to construct an

effective low-energy theory of spin ordering, and instead have some diagonal entries

we must include to capture the low-energy theory. In the regime where 𝑊 ≈ 𝑈↑↓,

the on-site interaction energies will be nearly spin-independent, so we expect in this

regime the spin-ordering to be largely driven by second-order processes similar to

those derived for the spin-1/2 Heisenberg mapping. To include these terms in our

low energy effective theory, we write out a table of all the terms in the second-order

perturbation series for each possible spin configuration on one link of the lattice. The

resulting terms are shown in figure 5-4.

To find the parameters of our effective Hamiltonian, we compare the terms of this

perturbation series and the on-site interaction energies to the matrix elements of the

192



|−1 , −1

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0

0

0

0

0

00 0 0 0

0

0 0 0

0 0

0

0

0

0

00

0

00

0

-12t2

W

-5t2

U↑↓

3t2

2W-U↑↓

-

-4t2

2U↑↓-W

-8t2

W

-4t2

2U↑↓-W

-4t2

U↑↓

|ms i , m s j

|−1 , −1

|−1 , 0

|−1 , 1

| , −10

| ,0 0

| , 10

| −1 , 1

| ,1 0

| ,1 1

|−1 , 0 |−1 , 1 | , −10 | ,0 0 | , 10 | −1 , 1 | ,1 0 | ,1 1

-5t2

U↑↓

3t2

2W-U↑↓

-

-5t2

U↑↓

3t2

2W-U↑↓

-

-5t2

U↑↓

3t2

2W-U↑↓

-

-12t2

W

-4t2

U↑↓

-4t2

U↑↓

-4t2

U↑↓

-4t2

U↑↓

-4t2

U↑↓

-4t2

U↑↓

-4t2

U↑↓

Figure 5-4: Matrix elements for the mapping from a two-component, 𝑛 = 2 Mott
insulator to an effective spin-1. Elements of the sum over all configurations performed
to second-order in the tunneling perturbation of the Mott state. For simplicity, we
have set 𝑈↑↑ = 𝑈↓↓ = 𝑊 .
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spin-1 Heisenberg model:

𝐻 =
∑︁
⟨𝑖𝑗⟩

(︁𝐽⊥
2
𝑆+
𝑖 𝑆

−
𝑗 + 𝐽𝑧𝑆

𝑧
𝑖 𝑆

𝑧
𝑗 + H.c.

)︁
+ 𝑢

∑︁
𝑖

(𝑆𝑧
𝑖 )

2 + ℎ𝑧
∑︁
𝑖

𝑆𝑧
𝑖 . (5.14)

In order to properly constrain the problem and reach a closed-form solution, we must

add a higher-order term to the Hamiltonian of the form, 𝛾
∑︀

𝑖(𝑆
𝑧
𝑖 )

2(𝑆𝑧
𝑖+1)

2, which

accounts for a higher-order Ising interaction generated by the energetic difference

between states with both combinations of | ± 1⟩ states on a link compared to ones

with |0⟩ states on a link. To simplify the resulting math, we initially restrict ourselves

to a spin-balanced cloud with 𝜇↑ = 𝜇↓ such that ℎ𝑧 = 0. This will not affect the spin

mapping since we have set 𝑈↑↑ = 𝑈↓↓ = 𝑊 and thus the underlying Hamiltonian is

symmetric between exchange of up- and down-spins.

As a result of adding the higher-order Ising term while sending ℎ𝑧 to zero, the

Heisenberg Hamiltonian we use to compare to degenerate perturbation theory of the

𝑛 = 2 Mott state becomes:

𝐻ℎ𝑧=0 =
∑︁
⟨𝑖𝑗⟩

(︁𝐽⊥
2
𝑆+
𝑖 𝑆

−
𝑗 + 𝐽𝑧𝑆

𝑧
𝑖 𝑆

𝑧
𝑗 + H.c.

)︁
+ 𝑢

∑︁
𝑖

(𝑆𝑧
𝑖 )

2 + 𝛾
∑︁
𝑖

(𝑆𝑧
𝑖 )

2(𝑆𝑧
𝑖+1)

2. (5.15)

Equating matrix elements of this Hamiltonian to the matrix elements in figure 5-4 we

can write a system of equations to determine the Heisenberg parameters:

𝐽⊥ = − 4𝑡2

𝑈↑↓
(5.16)

𝑐+ 𝐽𝑧 + 2𝑢+ 𝛾 = −12𝑡2

𝑊
+ 2𝑊 (5.17)

𝑐+ 𝑢 = − 5𝑡2

𝑈↑↓
− 3𝑡2

2𝑊 − 𝑈↑↓
+𝑊 + 𝑈↑↓ (5.18)

𝑐− 𝐽𝑧 + 2𝑢+ 𝛾 = − 4𝑡2

2𝑈↑↓ −𝑊
+ 2𝑊 (5.19)

𝑐 = −8𝑡2

𝑊
+ 2𝑈↑↓. (5.20)

Solving this system of equations we get the Heisenberg parameters for the effective
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spin-1 model:

𝐽⊥ = − 4𝑡2

𝑈↑↓
(5.21)

𝐽𝑧 = −6𝑡2

𝑊
+

2𝑡2

2𝑈↑↓ −𝑊
(5.22)

𝑢 = (𝑊 − 𝑈↑↓) +
8𝑡2

𝑊
− 5𝑡2

𝑈↑↓
− 3𝑡2

2𝑊 − 𝑈↑↓
(5.23)

𝛾 = −14𝑡2

𝑊
+

10𝑡2

𝑈↑↓
+

6𝑡2

2𝑊 − 𝑈↑↓
− 2𝑡2

2𝑈↑↓ −𝑊
. (5.24)

So far this result is exact assuming equal intra-spin interactions. To reach an simple,

intuitive result we can make an additional approximation that 𝑈↑↓ ≈ 𝑊 – the regime

of interest for understanding the 𝑥𝑦-ferromagnet. Intuitively, this limit is reasonable

because in the perturbation of the Mott phase we are ignoring terms which are gapped

from the ground state by an energy ∼ 𝑊 . Therefore, if 𝑈↑↓ gets too small and

approaches zero, these states are now gapped from the rest of the Mott states by an

energy ∼𝑊 , and the underlying assumptions of the spin-mapping break down.

Working in the limit where 𝑊−𝑈↑↓
𝑊

≪ 1, the denominator for terms in the spin-

mapping can be approximated by expanding the fractions, 1
(2𝑊−𝑈↑↓)

≈ 1
𝑊
(1−𝑊−𝑈↑↓

𝑊
+

. . .), and 1
(2𝑈↑↓−𝑊 )

≈ 1
𝑊
(1 +

2(𝑊−𝑈↑↓)
𝑊

+ . . .) and dropping terms of order 𝑊−𝑈↑↓
𝑊

and

higher. As a useful check, if we make the additional assumption that 𝑈↑↓ = 𝑊 ,

then the parameters of the spin-1 Heisenberg mapping become particularly simple

expressions for the isotropic Heisenberg point.

𝐽⊥ = − 4𝑡2

𝑈↑↓
(5.25)

𝐽𝑧 ≈ −4𝑡2

𝑊
(5.26)

𝑢 ≈ (𝑊 − 𝑈↑↓) (5.27)

𝛾 ≈ 10𝑡2

𝑈↑↓

(︂
𝑊 − 𝑈↑↓

𝑊

)︂
≈ 0. (5.28)

We can also re-introduce an effective magnetic field ℎ𝑧 by introducing a chemical

potential imbalance which in turn defines the field: ℎ𝑧 = 𝜇↑ − 𝜇↓. Also note that
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the first non-vanishing term in the higher-order Ising parameter is first order in the

expansion parameter, 𝑊−𝑈↑↓
𝑊

, and is therefore small compared to all other parameters

in the Hamiltonian, and can be effectively ignored moving forward.

We see that the resulting effective spin-1 mapping is similar to that of the effective

spin-1/2 model, with a few key differences. Most prominently, we note the presence

of an additional term in the Hamiltonian, the 𝑢(𝑆𝑧
𝑖 )

2 term, that is diagonal in our

spin occupation number basis. As a result, we anticipate a qualitative difference in

the ground state phase diagram with the appearance of states for which this term

dominates the other terms in the Hamiltonian. As the interaction energy difference

between spin projections becomes small, the system becomes qualitatively more sim-

ilar to the spin-1/2 model with the repulsively interacting insulator displaying both

an easy-axis ferromagnetic ground state controlled by the Ising term or an easy-plane

ferromagnetic ground state controlled by the exchange term.

Much work has been done numerically examining this spin-1 Hamiltonian [5, 90]

and its generalizations in one-dimension [133, 39]. From such systems we see the

existence of a 𝑧-ferromagnetic and 𝑥𝑦-ferromagnetic ground state in addition to a

ground state determined by the large 𝑢 term in the 𝐽 < 0 regime. In the 𝐽 > 0

regime, a 𝑧- and 𝑥𝑦-antiferromagnetic state appear. For our system of 87Rb where all

the scattering lengths are nearly equal, the system is near-isotropic and, depending

on the choice of hyperfine spin state, should either be weakly 𝑥𝑦-ferromagnetic if we

use the |𝐹,𝑚𝑓⟩ = |1,−1⟩ + |2,−2⟩ mixture [71], or weakly 𝑧-ferromagnetic if we use

the |1,−1⟩+ |1, 1⟩ mixture [28].

5.2.3 The Case of a "Real" Spin-1

An alternative realization of a spin-1 Heisenberg model which has been featured in

some proposals [133, 39] is realized with three-component bosons in an 𝑛 = 1 Mott

insulator. In this case, the three spin projections of the effective spin-1 model is

composed of one particle per site with one of the three hyperfine pseudo-spins, more

similar to the spin-1/2 mapping of the two-component 𝑛 = 1 mapping. If we now fol-

low the procedure for generating matrix elements and creating a correspondence with
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an effective Heisenberg spin model, the resulting spin-1 Hamiltonian – alternatively

known as the bilinear-biquadratic Heisenberg model – is written as:

𝐻 =
∑︁
⟨𝑖𝑗⟩

𝐽1Ŝ𝑖 · Ŝ𝑗 +
∑︁
⟨𝑖𝑗⟩

𝐽2(Ŝ𝑖 · Ŝ𝑗)
2 + ℎ𝑧

∑︁
𝑖

𝑆𝑧
𝑖 . (5.29)

For simplicity, we have assumed isotropic tunneling and interactions. Most impor-

tantly, we see that the effective spin-1 Heisenberg Hamiltonian for a two-component

gas in an 𝑛 = 2 Mott state is qualitatively different than the effective spin-1 Heisen-

berg mapping for three-component bosons in an 𝑛 = 1 Mott state. First, the local

symmetry-breaking given by the different inter-spin interactions in the 𝑛 = 2 case

provides access to a novel spin-insulating phase in the ground state that does not

appear in the 𝑛 = 1 case. In addition, the 𝑛 = 1 case contains both a bilinear

and biquadratic term which allows spin fluctuations of both ±1 as well as ±2. Intu-

itively, this enables matrix elements between different states on a link the look like

{1, 0} → {0, 1} as well as {1,−1} → {−1, 1}, the latter of which is zero in the 𝑛 = 2

mapping. This additional term for spin hopping, which changes the spin index by ±2

for each hopping event, contributes to the appearance of a dimer phase in the 𝑛 = 1

spin-1 chain that does not exist for the 𝑛 = 2 spin-1 chain [39].

Both realizations of the spin-1 chain contain a Haldane phase on the antiferro-

magnetic side of the phase diagram. The Haldane phase is a paradigmatic example of

a short-range entangled state which hosts topologically protected states at the ends

of the chain. These effective spin-1/2 states which terminate the chain are of interest

for use as qubits for topologically protected quantum information processing. There-

fore, the realization of a Haldane phase in an ultracold atomic setting is an attractive

direction for experimental realizations of this spin-1 mapping.

5.2.4 Why Spin-1?

As mentioned previously, one of the most important outstanding challenges in the

field of ultracold atoms is to prepare even colder samples in an optical lattice such as

to realize ultralow entropy magnetic ground states in the Mott insulator. As the two-
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component superfluid is driven across the superfluid-Mott insulator quantum phase

transition, the system is simultaneously forming a Mott state as well as magnetic

order. One question is how these two states form and how 𝑥𝑦-order evolves across the

quantum phase transition. One challenge faced in 87Rb is that since the native scat-

tering lengths are nearly degenerate the Heisenberg model realized is nearly isotropic.

At the isotropic Heisenberg point, the linear dispersion of spin waves disappears and

the spin-superfluid Landau critical velocity goes to zero. Therefore, any perturbation

of the system such as magnetic field gradients can produce spin excitation.

The greatest advantage of realizing the spin-1 model – in addition to the presence

of interesting phases not present in the spin-1/2 model – is the presence of the "large

u" state, a state we will call the spin Mott, which allows the ground state of the

Heisenberg model to be prepared in the Mott insulator with high fidelity. The reason

for this is that the spin Mott state, dominated by the 𝑢(𝑆𝑧
𝑖 )

2 term in the Hamiltonian,

is a gapped state which does not break any symmetries and as a result does not have a

low-energy Goldstone mode at the exchange energy scale, 𝐽⊥ or 𝐽𝑧. In the spin Mott,

the excitation gap in the system is controlled by the splitting between the on-site

energies of the respective spins, 𝑢 = 𝑊 −𝑈↑↓, and can easily be controlled by varying

the inter-spin scattering length.

The spin Mott is a local state, without long-range ordering, in contrast to both

ferromagnetic and anti-ferromagnetic states which break rotational symmetry on the

system. As a result, the spin Mott state lacks a low-energy Goldstone mode and

remains fully gapped and rotationally invariant. Practically speaking, the spin Mott

should thus be an easy to prepare, robust state in the ground state phase diagram of

the Heisenberg model and is directly connected to both the 𝑥𝑦- and 𝑧-ferromagnetic

states as well as the Haldane and Neél states of the phase diagram of the spin-1 chain

by variation of easily controlled experimental parameters.

With this picture, we come to the main message of this chapter laid out in the

introduction: creating a low entropy state in the spin-1 Heisenberg model by preparing

the spin Mott phase represents an excellent starting point for adiabatic ramping

to a magnetic state of matter across a quantum phase transition and for potential
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realization of a long-range ordered spin system at picokelvin temperature scales.

Now that we have covered the basics of the Heisenberg spin-1 mapping and its pre-

dicted ground state phases in addition to the qualitative advantages of the spin Mott

state, the rest of this chapter will cover the experimental aspects of the realization of

the spin Mott and 𝑥𝑦-ferromagnetic phase transition in an optical lattice.

5.3 The Spin-Dependent Lattice

In order to realize and control the transition between the spin Mott and the 𝑥𝑦-

ferromagnet in 87Rb, we need to control the inter-spin interactions, 𝑈↑↓, relative to the

intra-spin interactions, 𝑊 . Normally, this is trivial in an ultracold atoms experiment

because the interactions are proportional to the 𝑠-wave scattering length which can

be directly controlled by use of a Feshbach resonance:

𝑈𝜎𝜎′ =
4𝜋~2𝑎𝜎𝜎′

𝑚

∫︁ ∞

−∞
𝑑x |𝑤𝜎(x− x0𝜎)|2|𝑤𝜎(x− x0𝜎′)|2. (5.30)

Unfortunately, in 87Rb, the series of low-field (< 1000 Gauss) Feshbach resonances

between the |𝐹,𝑚𝐹 ⟩ = |1, 1⟩ state and the 𝐹 = 2 manifold of states are accompanied

by strong spin-relaxation losses especially detrimental in the doubly-occupied sites of

an 𝑛 = 2 Mott insulator. Therefore, for realizing ultralow entropy states of matter,

tuning the inter-spin scattering length by ramping close to a Feshbach resonance is

not favorable.

If we examine equation 5.30 more closely, another option becomes immediately

obvious – the interactions can also be tuned by manipulating the overlap integral

between the density of the two species! If we change the locations of the Wannier

functions, x0𝜎, by moving the center of the trapping potential, the value of the integral

can be reduced from its maximal value where the two wavefunctions experience a spin-

independent trapping potential to almost zero. To accomplish this displacement of the

relative centers of the two lattice potentials, we will need to apply a spin-dependent

force to the atoms. This can be accomplished by using spin states with different
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Figure 5-5: Optical setup for generation of a dynamically-tunable spin-dependent
lattice. (a) A laser beam is incident upon the atomic cloud with a linear polarization
aligned to the optical axis of a quarter-waveplate (QWP) which is in turn aligned at
45∘ to the axes of a liquid crystal retarder. Upon retroreflection, the beam passing
back through the liquid crystal and QWP is transformed into a linear polarization
oriented at a voltage tunable angle, 𝜃, with respect to the input polarization. The
angle is tuned by changing the amplitude of a 2 kHz square wave driving the liquid
crystal retarder. (b) The resulting spin-dependent potential for the |1,±1⟩ hyperfine
states at a wavelength of 810 nm.

magnetic moments and either applying a magnetic field gradient or a polarization

gradient of an optical field, thus utilizing the vector Stark shift as discussed in section

2.2. For the work described here we will use the vector stark shift of an optical lattice

to accomplish this task.

We can create a spatially-distinct optical potential for different spin states in an

optical lattice where 𝜎+ and 𝜎− polarizations see different interference patterns. One

classic implementation of such a configuration is used in optical molasses cooling

where two laser beams counter-propagate with polarizations aligned perpendicular to

each other – an optical setup that we will refer to as a lin⊥lin configuration. Figure

5-5 depicts an optical setup which realizes an optical lattice with a tunable polariza-

tion between the extreme limits of a fully-spin-dependent lattice composed solely of

vector stark shifts in lin⊥lin configuration to a spin-independent lattice where all spin

states occupy the same spatial mode in lin‖lin configuration. Polarization rotation of

the retroreflected beam is achieved using the setup outlined in figure 5-5. The input

beam is linearly polarized and aligned to an optical axis of the quarter waveplate.

The optical axes of the liquid crystal are then aligned at a 45∘ angle with respect
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to the optical axes of the quarter waveplate. The lattice beam is then retroreflected

and, after a second pass through the liquid crystal where the optical axes pick up an

additional retardance, the beam is elliptically polarized. The final pass through the

quarter waveplate converts this elliptical polarization back into a linear polarization

rotated away from the input axis by an angle equal to twice the retardance of the

liquid crystal. It is important to note here an important difference between a liquid

crystal polarization rotator and a liquid crystal optical retarder. The liquid crystal

polarization rotator has an integrated waveplate such that the output wavelength is

always linearly polarized whereas a liquid crystal variable retarder produces elliptical

polarization and must be paired with an appropriate quarter waveplate in order to

produce a linear polarization. The liquid crystal device we utilize in the lab is an

LCR-1-NIR half-wave polarization retarder from Thorlabs, which produces a contin-

uously variable polarization retardance of the slow optical axis compared to the fast

axis by varying the amplitude of a 2 kHz square wave drive, depicted in figure 5-5.

Importantly, this optical retardance device is a zero-order device – that is the phase

delay of the fast and slow axes are varied from some integer number of wavelengths

𝑚𝜆, at zero phase delay to exactly 𝑚𝜆 + 𝜆/4 at maximal phase delay. In the cata-

log of optical components, "zero-order" typically means that 𝑚 is non-zero, whereas

"true-zero-order" typically means that 𝑚 = 0. This is important because changing

the index of refraction changes the optical path length between the retroreflection

mirror and the atoms resulting in a translation of the lattice sites with respect to

the external trapping potential. In addition, this liquid crystal device produces no

detectable beam deflection and has a flatness better than 𝜆/4 such that the beam

quality is preserved, in contrast to some cheaper EOM options.

Several practical concerns often associated with using a liquid crystal for polar-

ization rotation include the noise imprinted on the intensity and polarization by the

AC drive voltage, as well as the slow switching times from one retardance to another.

Figure 5-6 shows two tests of the liquid crystal performance. First, the polarization

and intensity noise imprinted on a laser beam passing through the liquid crystal de-

vice and subsequently a polarizer is seen in figure 5-6(a). Following the calculation

201



Figure 5-6: Characterization of the liquid crystal retarder. (a) The intensity noise
spectrum of the liquid crystal device driven with both a 2 kHz square wave, as rec-
ommended by the manufacturer, and a 100 kHz square wave, which moves the noise
peaks above the trap frequencies of the harmonic oscillator. (b) Interference fringe in
the output port of a Michelson interferometer shows minimal wavefront distortion as
well as zero-order retardation important for optical lattice applications.

of intensity noise scattering rate from chapter 2, this residual noise at typical trap

frequencies is approximately equal to the native noise in the servo loop, corresponding

to excitation rates of 10−2 to 10−4 s−1 (depending on the trap frequency), negligible

compared to expected light scattering rates of ∼1 s−1. Next, figure, 5-6(b) shows

the interference of two beams in the exit port of a Michelson interferometer with one

arm of the interferometer passing through the liquid crystal device. The two beams

are aligned at a slight angle to produce a fringe and check that the optical device is

indeed a zero-order device – changing the optical path length by only a fraction of one

wavelength and not many wavelengths – as well as to verify the uniformity of phase

retardance. Finally, it was verified in figure 5-6 that if the intensity and polarization

noise of the liquid crystal is detrimental to the lattice lifetime, the device can also

be driven at higher frequencies, here shown to be a 100 kHz square wave, and still

perform similarly, albeit with reduced dynamic range and switching time.

5.3.1 Which Wavelength is the Best?

In section 2.2 we discussed the implications of using the vector stark shift on inelastic

light scattering: the ratio of the vector Stark shift to the scattering rate scales does
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Figure 5-7: Comparison of optical pumping rates in a 𝜆 = 810 nm versus a 785 nm
lattice. Number of atoms appearing in the 𝐹 = 2 manifold of states starting from
atoms in either the |1,−1⟩ state (blue) or a |1,±1⟩ mixture (red) as a function of
hold time in a 20𝐸𝑟, 𝑛 = 2, Mott insulator in the lin‖lin configuration. A linear fit to
early times, 𝑡 ≤ 200 ms, is shown for the 810 nm lattice. For comparison, the fraction
of atoms optically pumped in 66 ms hold in a 785 nm lattice is shown (green).

not improve with far-detuning but instead is fixed by the ratio of the fine-structure

splitting to the linewidth of the excited state. In theory, this means that using a near-

detuned lattice will produce just as much heating via light scattering as a far-detuned

lattice producing the same total vector stark shift. Practically, there are several key

differences between the two limiting cases which indicate that the optimal detuning

is an intermediate detuning between the limiting cases.

To begin, if we choose a near-detuning for the spin-dependent lattice there are two

main drawbacks to consider: optical pumping to other hyperfine states and resonant

photons from amplified spontaneous emission. At first glance, working near the tune-

out potential for the scalar stark shift seems like a good choice. For example, working

with the |1,±1⟩ hyperfine mixture in a spin-dependent lattice at 785 nm gives roughly

equal scalar and vector contributions to the potential such that one can easily tune in

between the two configurations. However, a strong lattice with such close-detuning
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from both excited states produces an appreciable population in the excited state

and as such can optically pump atoms from the states we define to be within our

state space to other hyperfine states in an uncontrolled manner. For example, in a

|1,±1⟩ mixture in a spin-dependent lattice the circularly polarized light can excite

atoms to the 𝑚𝐹 = 0 states in either of the excited state manifolds which can then

decay either back into the original state or into the |1, 0⟩ state or into the 𝐹 = 2

manifold. For detunings between the D1 and D2 lines, the scattering rates interfere

destructively whereas the population in the excited state does not interfere. As a

result, the relative importance of optical pumping of atoms out of the target states

can be tuned by detuning away from between the two excited state lines. This effect

is demonstrated in figure 5-7 which shows a comparison of the number of atoms

optically pumped into the F=2 hyperfine states as a function of hold time in two

different lattices wavelengths: one at 785 nm compared to a second at 810 nm. In an

incoherent light scattering model, the optical pumping rate should be constant and

would fit a straight line; however, from figure 5-7, it is clear that the rate at short

times when the cloud is colder is higher than that at later times when the cloud is

more thermal and therefore more dilute. This interesting behavior seems to indicate

that there is some multi-particle or collective nature to the optical pumping rate

which is not captured in the single-particle light scattering model.

An additional negative impact of a close-detuned lattice is the impact of resonant

photons on the spontaneous scattering lifetime. In the first experimental attempts, an

external-cavity diode laser with nominal center wavelength of 782 nm was operated

at 785 nm to provide power for the optical lattice laser. In this case, the wavelength

tunability offered by a diode laser and its broad gain profile is detrimental to the

atomic lifetime due to the presence of near resonant photons generated by the high

gain of the diode laser and amplified spontaneous emission (ASE). Figure 5-8, shows

an optical spectrum analysis of the diode laser used to generate a near-resonant lattice

at 785 nm wavelength. Clearly visible is the line of the laser (off-scale) and at lower

power a > 5 nm wide spectral pedestal of light generated by amplified spontaneous

emission. Consequent filtering of the lattice light with narrowband interference filters
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Figure 5-8: Broadband amplified spontaneous emission from a diode laser. Resonant
photons emitted spontaneously, and subsequently amplified, by the high gain of the
diode laser are a strong source of heating when used as the laser source for an optical
lattice experiment.

and by passing through a heated Rb vapor cell led to a marked increase in the atomic

population lifetime in the lin⊥lin lattice up to the 100 ms scale. This result highlights

another complication of working with a close-detuning to the excited atomic states,

the generation of resonant photons either by the laser source itself, or by nonlinear

processes such as Stokes scattering of high intensity light propagating through an

optical fiber. One final concern is the effects of re-scattering of near-detuned photons

since the high optical density of the condensate, OD ≫ 1. To avoid all the above

issues, we examine the opposite limit for a spin-dependent lattice, the far-detuned

limit.

In contrast to the close-detuned case, we see that an additional set of constraints

arise in the limit of far-detuning due to the finite available power and the confinement

coming from the finite size of the lattice laser beam. Spin-dependent potentials can

be created at the 1064.2 nm wavelength which composes our normal lattice setup.

However, one limitation of using such a far-detuned lattice is that the power needed

becomes large, on the order of 10 W in a several hundred 𝜇m 1/𝑒2diameter beam

in order to reach up to 20 Er of vector Stark shift. In principle, this power is avail-
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able in the lab; however, due to the power requirements of the other lattices and

dipole traps for which the 1064 nm light is also used, designating this power to a

lattice is impractical. Regardless, there are more fundamental limitations to using

a far-detuned wavelength as a spin-dependent lattice. One is the sensitivity of the

spin-dependent potential to polarization impurity. The liquid crystal device used

to dynamically rotate the polarization has a polarization purity of ∼150:1. If we

consider that a small misalignment of the incoming and retroreflected polarization

vectors from the ideal lin⊥lin configuration results in a small scalar shift, then there

is a maximum amount of polarization impurity we can tolerate before the scalar shift

arising from impurity polarizations dominates over the weak residual vector Stark

potential. Practically, this means that the separation of the potentials for up and

down spins as a function of polarization angle is mostly flat as a function of angle

before dropping sharply around 90∘. In addition, if we wish to maintain a constant

lattice depth as a function of polarization angle, then the power used in the lin⊥lin

versus lin‖lin configurations will be drastically different. Therefore, we will need to

ramp the optical power over a few orders of magnitude to maintain constant lattice

depth. If the beam is large, then the confining potential will be determined solely by

the dipole traps. However, since we are already marginal on power for the lin⊥lin

configuration at such a large detuning, we need a smaller lattice beam to create deep

enough vector Stark potentials. Unfortunately, this means that the high power used

will also create a strong transverse confining potential which compresses the Mott

insulator at its deepest lattice depths. Taking the ratio of the scalar lattice potential

to the vector lattice potential, at 1064 nm we expect a factor of ∼90, meaning the

confining potential will be ∼9.5 times greater in the lin⊥lin configuration than the

lin‖lin configuration, an undesirable result for maintaining low temperatures in the

Mott state.

As a result, we see that the optimal detuning for our spin-dependent lattice is

at an intermediate detuning. An improved realization of the experiment utilizes an

M Squared SolsTiS laser to generate the lattice potential that can be detuned below

both D1 and D2 transitions. In this way the optical pumping rate is reduced relative
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to the close-detuning and resonant light generated by ASE is eliminated, at the same

time that we gain a greater degree of tunability over the lattice wavelength and the

lattice phase noise is reduced by use of a narrower optical linewidth laser source. At

a wavelength of 810 nm the ratio of the scalar lattice potential to the vector lattice

potential is ∼8, so the difference in trapping potential added by the optical lattice

will be a factor of
√
8 ≈ 2.8 between lin⊥lin and lin‖lin configurations, meaning as

long as the potential is largely dominated by the dipole trapping lasers, the changing

external confinement of the optical lattice beam plays a diminished role. Finally, at

this 15 nm detuning from the D1 line, the power requirements are modest, simply

requiring ∼ 100 mW, a power easily deliverable with a Ti:sapphire laser.

As we will see in the next section, for detecting spin correlations in our Heisenberg

mapping we will make use of the lin‖lin configuration, so in our experiment it is

advantageous to go to larger detunings for longer lifetimes in the detection sequence.

Practically, 810 nm is the farthest we can detune before becoming power limited in

the lin⊥lin configuration, but in principle with more power one might continue to

increase the detuning to increase the lifetime in the lin‖lin configuration until the

compression of the cloud due to the finite size of the beam becomes the dominant

heating mechanism.

With the lattice wavelength chosen, we can calculate the resulting spin-dependent

potentials and the corresponding inter-spin interaction integral from equation 5.30.

The resulting interaction energy as a function of the angle of the retroreflected lattice

polarization relative to the input lattice polarization is shown in figure 5-9. From this

curve we see that separating the spin-up and spin-down wavefunctions spatially has

a profound effect on the inter-spin interactions, and can tune the effective interaction

from nearly non-interacting over more than 5 orders of magnitude to as strongly

interacting as a spin-independent lattice. In many ways this has the same effect as a

Feshbach resonance tuning the inter-spin scattering length, 𝑎↑↓, with the limitation of

not being able to increase the scattering length above its value in the lin‖lin lattice.

Nevertheless, the spin-dependent lattice gives us precisely the control necessary in

the correct parameter regime to prepare the spin Mott ground state and drive the
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Interspin Interaction: 2 x 35 Er 1064 nm Lattice + 20 Er 810 nm Lattice
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Figure 5-9: The inter-spin interaction as a function of polarization angle. Calculation
of the inter-spin interaction in the lowest band of the optical lattice with two, 1064
nm lattices of 35 𝐸𝑟 depth, in the 𝑦- and 𝑧-directions in addition to a spin-dependent,
20 𝐸𝑟, 810 nm lattice in the 𝑥-direction.

quantum phase transition to a magnetic state of matter.

One final piece of intuition we can gather from the curve in figure 5-9 is that

the lattice does not necessarily need to be in full lin⊥lin polarization in order to

suppress the inter-spin interactions sufficiently to prepare the spin Mott state. For

polarization angles > 45∘, 𝑈↑↓ is the smallest energy scale in the problem, even smaller

than tunneling, 𝑡, and as such we can think of the system as two independent Mott

insulators spaced one-half a lattice constant away from each other. This has the

additional advantage that away from full lin⊥lin the amount of laser power needed

to produce a deep lattice is reduced, so the amount of spontaneous scattering can be

reduced as well. For polarization angles ∼ 45∘, 𝑈↑↓ becomes comparable to 𝑡 and the

system becomes qualitatively less like two independent, interlaced Mott insulators

and more similar to the spin-1 Heisenberg mapping described previously. These two

different regimes will become important in understanding several non-idealities of the

system that will be discussed in section 5.6.3.

Now that we have developed an understanding of the spin-dependent lattice, un-
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derstood the relevant physics for tuning the interaction energy, 𝑈↑↓, and understood

how to achieve long lattice lifetime, we wish to demonstrate the ability to load, with

high fidelity, the charge and spin ground states of the spin Mott, detect spin correla-

tions, and drive the transition to a magnetic ground state.

5.4 The Spin-Mott Insulator

With 87Rb in a spin-dependent optical lattice there are three parts of the spin-1

Heisenberg phase diagram that we can access: the spin Mott, the 𝑥𝑦-ferromagnet,

and the near-isotropic 𝑧-ferromagnet. We begin by discussing the spin Mott state

with the goal of understanding the Heisenberg model in this limit and subsequently

demonstrating and characterizing this ground state in our spin-dependent optical

lattice.

As a reminder, the form of the spin-1 Heisenberg we realize is:

𝐻 =
∑︁
⟨𝑖𝑗⟩

(︁𝐽⊥
2
𝑆+
𝑖 𝑆

−
𝑗 + 𝐽𝑧𝑆

𝑧
𝑖 𝑆

𝑧
𝑗 + H.c.

)︁
+ 𝑢

∑︁
𝑖

(𝑆𝑧
𝑖 )

2 + ℎ
∑︁
𝑖

𝑆𝑧
𝑖 , (5.31)

assuming that, as is the case with 87Rb, the intra-spin interactions are nearly equal,

𝑊 = 𝑈↑↑ = 𝑈↓↓, and that the deviations from isotropic are not large, 𝑊−𝑈↑↓
𝑊

≪ 1,

such that the parameters of the effective Hamiltonian are:

𝐽⊥ = − 4𝑡2

𝑈↑↓
(5.32)

𝐽𝑧 ≈ −14𝑡2

𝑊
+

10𝑡2

𝑈↑↓
(5.33)

𝑢 ≈ (𝑊 − 𝑈↑↓)−
5𝑡2

𝑊
+

5𝑡2

𝑈↑↓
(5.34)

ℎ𝑧 ≈ −10𝑡2

𝑊
+

10𝑡2

𝑈↑↓
+ ℎext (5.35)

For the remainder of this chapter, we will work solely in the regime of a balanced

Bose gas, such that 𝜇↑ = 𝜇↓ and therefore ℎ𝑧 = 0.

In the limit that 𝑢 is large compared to all other energy scales in the system,
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corresponding to 𝑈↑↓ < 𝑊 , the Hamiltonian is dominated by the 𝑢(𝑆𝑧
𝑖 )

2 term. Anal-

ogous to a Mott insulating state of a single spin component, we can write down a

wavefunction which corresponds to a product state of all particles in the lowest energy

state of this term:

|Ψ⟩SM =
𝑁∏︁
𝑖

|𝑚𝑠 = 0⟩𝑖 (5.36)

where 𝑁 is the number of spins in the system or half of the total number of particles

in the 𝑛 = 2 Mott state. Intuitively, we can understand this state as a purely local

state of exactly one spin up and one spin down per state. The spin Mott has no long

range order and does not break any symmetries of the Hamiltonian.

Experimentally, we implement this system with the | ↑⟩ = |1,−1⟩ and | ↓⟩ = |1, 1⟩
mixture of 87Rb hyperfine ground states. To make this mixture, we begin with ∼ 103

atoms in the |1,−1⟩ state whose atom number is easily adjusted by varying the

evaporation knife in a tightly confining dimple potential with a horizontally applied

gradient. In a series of two fast RF frequency sweeps we quickly make a 50:50 mixture

of the |1,−1⟩ and |2, 0⟩ states and then quickly transfer the |2, 0⟩ atoms to the |1, 1⟩
state. At the end of this sequence we produce a two-component BEC with no visible

thermal fraction and no detectable residual |2, 0⟩ atoms. We work at a finite bias

field of ∼9.09 G, so this spin mixture is stable to spin-changing collisions due to the

quadratic Zeeman shift of the |1, 0⟩ state, and is stable to spin-relaxation due to the

use of the lowest hyperfine manifold. The mixture can decay via dipolar relaxation,

but this process is slower than the background gas collisions. The | ↑⟩ = |1,−1⟩ and

| ↓⟩ = |1, 1⟩ mixture is weakly immiscible, so we turn on a weak ∼1 𝐸𝑟 spin-dependent

lattice to maintain miscibility. After a short hold to reset the integrator of the lattice

intensity servo, the atoms are loaded into a three dimensional optical lattice where

two directions of the lattice have a wavelength of 1064 nm and one direction is a spin-

dependent lattice operating at a wavelength of 810 nm with a liquid crystal variable

retarder controlling the polarization rotation of the retroreflected beam.

To begin, we probe the separation between spin-up and spin-down wavefunctions

to demonstrate the power of the spin-dependent lattice to tune the inter-spin inter-
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Figure 5-10: Using two-body loss to detect the wavefunction overlap between different
spins. (a) Starting in the |1,±1⟩ states, atoms are transferred to the |2,±2⟩ mixture.
(b) Collisions between |2, 2⟩ atoms and |2,−2⟩ atoms are stable whereas collisions
between |2, 2⟩ and |2,−2⟩ atoms are unstable to spin relaxation. (c) The suppression
of two-body decay by rotating the lattice polarization from lin‖lin to lin⊥lin indicates
the suppression of the density overlap integral which appears in both the loss rate as
well as the inter-spin interaction parameter.

action energy via the wavefunction overlap integral. To measure this, we work in a

one-dimensional lattice where the two 1064 nm lattices are turned to zero intensity

and the 810 nm spin-dependent lattice is tuned to 10 𝐸𝑟. To measure the overlap, we

will induce two-body loss in a spin-selective way such that the loss rate is proportional

to the same matrix element as the inter-spin interactions. Practically, this is accom-

plished by transferring both spin states |1,±1⟩ to the |2,±2⟩ states with a fast RF

frequency sweep as depicted in 5-10(a). In this mixture, intra-spin collisions are stable

because the collision partners are of maximal angular momentum projection whereas

inter-spin collisions can lead to decay by spin relaxation as depicted in 5-10(b). As

a result, the corresponding two-body loss rate, shown in 5-10(c) is proportional to

the density overlap of inter-spin wavefunction, the same as that which appears in the

inter-spin interaction energy. The resulting two-body loss curve for the total atom

number is shown in figure 5-10(c) and clearly shows that the spin-dependent lattice

suppresses the overlap of the up- and down-spin wavefunctions. The residual decay

of the atom number in the lin⊥lin polarization configuration is likely due to the light
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Figure 5-11: Reversible loading of the two-component superfluid into a Mott insulat-
ing state. The first two panels show the initial two-component superfluid – separated
by a Stern-Gerlach pulse in time-of-flight – entering the Mott transition as the lattice
is ramped from 10𝐸𝑟 to 20𝐸𝑟. The last panel shows the reversibility of the Mott state
upon ramping back to 10𝐸𝑟, indirectly showing the preparation of the Mott state of
the two-component system.

scattering lifetime of atoms in the lattice.

With the ability to tune the spin-dependent interactions now demonstrated, the

spin Mott insulating state can now be prepared in the lattice by increasing the lattice

depths in all three dimensions to 20 𝐸𝑟. With the waveplate in lin⊥lin configuration,

we can tune the inter-spin interactions to be less than the intra-spin interactions,

𝑈↑↓ ≪ 𝑊 , and realize the spin Mott insulating groundstate of the spin-1 Heisenberg

model. To prove this, we will demonstrate five different aspects of this spin Mott state.

To begin, we demonstrate that this loading of the condensate into the Mott state

happens in a reversible manner and does not add excessive entropy. Qualitatively,

this is demonstrated in the images shown in figure 5-11. All three images are taken

in 15 ms time-of-flight where a large magnetic field gradient is applied for the first 3

ms of the free evolution to spatially separate spin components. Arranged from left to

right, the images in figure 5-11 are taken before the two-component superfluid enters

the Mott insulating regime, in the Mott regime, and upon adiabatically reversing

the Mott state back to the superfluid. Note that these images are taken with the

camera oriented along an axis which is at 45∘ to the 𝑥- and 𝑦-axis of the lattice, so

the diffraction orders of the 810 nm lattice in the 𝑥-direction and the 1064 nm lattice

in the 𝑦-direction do not overlap when viewed from the 𝑥 + 𝑦 direction, hence the
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Figure 5-12: Measurement of the BEC condensate fraction after reversible loading of
the spin Mott. (Left) After ramping all three lattice directions to 10 𝐸𝑟 depth, the
condensate fraction retrieved upon return to the BEC state is plotted as a function
of polarization angle. (Right) The same sequence as the left panel, but ramping to a
higher lattice depths of 20𝐸𝑟. After crossing the Mott transition, the BEC retrieved
from the spin mixture has a lower condensate fraction than that where only a single
component, at the same total density, is subjected to the same ramp reversal.

doubling of the diffraction orders in the horizontal direction in the first and third

panels as well as the different apparent length scales for the vertical and horizontal

diffraction orders.

The ability to adiabatically retrieve a superfluid diffraction pattern from the fea-

tureless time-of-flight image of the Mott state is indirect evidence for the preparation

of the Mott insulating ground state in the second panel. If, instead of taking a super-

fluid diffraction image, we ramp back to BEC, we can measure the condensate fraction

more reliably and infer some bounds on the entropy of the state in the Mott regime.

This method only allows us to set a bound on the entropy, since as we dynamically

ramp across the quantum phase transition the system does not generally follow adi-

abatically, but instead sees some domain formation from crossing the transition at a

finite rate. Regardless, the result of changing the waveplate angle, and adjusting the

intensity to compensate for the different potential depth at each waveplate angle, and

ramping into and out of the spin Mott state is shown in figure 5-12. For lattice ramps

not limited by light scattering, we expect the fidelity of the ramp to the Mott state
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and back to be independent of polarization angle. For small deviations this is true,

but for polarization angles approaching lin⊥lin the condensate fraction gets worse,

approaching a minimum at fully lin⊥lin of 25%. Using a model of entropy creation

in the lattice ramp which is symmetric for the ramp in and the ramp out of the su-

perfluid, we can calculate the entropy of the BEC and determine the trap-averaged

entropy of the cloud in the Mott state. Next, using the model of frozen particle-hole

excitations in the Mott state that we developed in chapter 2, we can estimate the

number of thermally-driven particle and hole excitations in the Mott state. For con-

densate fractions of ∼ 70% after ramping back to the two-component BEC, we can

infer that the hole population is about 10% and the same for the particle fraction.

As a result, we expect that in a typical chain of 10 𝑛 = 2 sites in the Mott state, we

should have approximately one particle and hole excitation if we can achieve a ∼ 70%

round-trip condensate fraction. Realization of the Heisenberg mapping requires us

to ramp beyond the one-dimensional Mott transition, so a typical experimental cycle

requires us to ramp the lattice depth of the spin-dependent lattice anywhere from 10

to 20 𝐸𝑟, two limits shown in figure 5-12, while the two transverse lattices are at a

high depth of 20 𝐸𝑟. The difference between the condensate fraction of a single spin

component and two spin components in the deepest lattice depths at 20 𝐸𝑟 is not

currently understood experimentally.

Particle and hole excitations lie outside of the Hilbert space of the mapping to the

spin-1 Heisenberg model we developed earlier, but we can understand how they can

create spin excitations by considering that they move dominantly via direct, spin-

independent tunneling in the lattice – the Mott state can be considered a particle

or a hole vacuum such that these excitations move freely to first approximation –

and as such can destroy an 𝑥𝑦- or anti-ferromagnetically ordered state. Similar phe-

nomenology is seen by doping the fermionic Mott insulator which quickly destroys

antiferromagnetic order. In such systems, doping on the order of 10% typically de-

stroys magnetic order, highlighting the need for high fidelity preparation of cold Mott

insulators.

Given the ability to adiabatically prepare the spin Mott groundstate in a spin-
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dependent lattice and estimate the charge entropy, we next aim to demonstrate a long

coherence lifetime of this state such that we can begin to manipulate the spins in this

lattice in order to directly detect microscopic spin correlations as well as to drive the

phase transition between the spin Mott and the 𝑥𝑦-ferromagnet. In order to measure

the lifetime of the Mott state we either measure the visibility of the matter wave

diffraction pattern from the lattice in time-of-flight or we measure the condensate

fraction after ramping the Mott state back to a bulk condensate. In the lin⊥lin

configuration we have between 100 and 200 ms lifetime and the lifetime increases up

to 1.5 seconds in the lin‖lin configuration. No appreciable particle loss is detected

on these timescales. These lifetimes are the 1/𝑒 times for an exponential fit, so in

a hand-waving sense we can say that we maintain high fidelity for some 10% of this

total time. The complex interplay of light scattering effects and adiabatic ramps

from the spin Mott have been studied in [137], indicating that 100 ms is sufficiently

long to see algebraically decaying correlations over a finite spin-1 chain. Most of the

ramp time in this picture is spent close to the lin‖lin configuration so over the 100

ms timescale we should maintain appreciable state fidelity. These lattice lifetimes

are shorter than the theoretically predicted light scattering lifetimes; however, as

discussed in chapter 2, the heating and thermalization mechanisms in the lattice are

complex and nevertheless are within an order of magnitude of what is predicted by a

single particle calculation. In addition, during the hold, the number of atoms optically

pumped to other spins states remain at maximum 1% of the total atom number.

5.5 Detecting Local Spin Correlations

Although the reversibility of the spin Mott state to a two-component superfluid sug-

gests the successful loading of the ground state of the spin Hamiltonian, it does not

constitute proof of preparing this state. Spin excitations may be long-lived and might

relax without creating much excitation energy in the final state so that the measure-

ment of condensate fraction is not sensitive to spin excitations. As a result, we develop

a detection technique in order to directly probe the local composition of the spins and
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show the existence of the spin Mott.

The spin Mott is a special state in the ground state of the Heisenberg phase

diagram because it does not break any symmetries and thus features a large gap. In

the limit of large 𝑢 = 𝑊 −𝑈↑↓, the wavefunction can be written as a product state of

pairs of up- and down-spin atoms localized on each site – a perfect array of exactly

two particles, one up- and one down-spin, on each site. A clear prediction emerging

from this picture is that the on-site correlation function between spin-up and spin-

down atoms should feature a 100% probability of finding this pair of spins localized

on a site. Taking a lesson from the success of using two-body spin relaxation losses as

a measure of the overlap between up- and down-spins, we have developed a detection

method to detect spin correlations within the 𝑛 = 2 subspace of the two-component

Mott insulator in order to probe the local spin correlations in the Mott insulator.

A schematic of the technique we developed to measure local spin correlations is

shown in figure 5-13. The measurement involves taking the starting state of interest

and merging sites within the unit cell to create a spin-independent potential at the

same time that the lattice depth is ramped into a deep, 35 𝐸𝑟 lattice in order to

freeze all tunneling dynamics on the ∼200 ms timescale. The detection sequence is

then composed of three independent measurements: counting the total atom number,

𝑁all, the atom number remaining after removing all doublons (doubly occupied sites),

𝑁dbl, and finally the atom number remaining after removing all spin-paired doublons

composed of one spin-up and one spin-down atom localized on a site, 𝑁pair. From

these three measurements we can construct the fraction of doublons in the sample

which occupy the |𝑚𝑠 = 0⟩ state:

𝑓 =
Number of spin-pairs
Total doublon number

=
𝑁all −𝑁pair

𝑁all −𝑁dbl
. (5.37)

Due to the presence of the harmonic trap, in the lin‖lin configuration only up to

approximately half of the atoms in the sample exist in the 𝑛 = 2 Mott insulating

shell. As a result, we need a method to normalize the signal in the spin-dependent

channel by a measure of the total number of doublons in the sample. Starting with the
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Figure 5-13: Detection scheme utilizing spin-dependent losses as a probe of local spin-
spin correlations. Starting from an arbitrary state of interest, the local spin state is
frozen in by quickly ramping the lattice to 35 𝐸𝑟 in all three directions at the same
time the spins are merged by ramping to the lin‖lin configuration. Losses are induced
by RF transfer to the unstable states indicated in which either all doublons are lost
or only spin-up and spin-down pairs are lost due to the presence of a lossy low-field
Feshbach resonance.
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|1,±1⟩ mixture, we can accomplish this normalization by transferring both spin states

to the collisionally unstable states |2,±1⟩. After transfer, lattice sites which contain

a single particle have no collision partner and thus remain trapped in the sample.

However, lattice sites which contain two particles can collide with each other and are

subsequently lost – independent of the on-site spin composition of the doublon – from

the lattice due to spin relaxation collisions after a 200 ms hold in the lattice. The

difference between counting the total atom number and the atom number remaining

after removing all doublons in a spin-independent way yields the total atom number

within the 𝑛 = 2 subspace.

Next, we determine the spin composition of the doublons by transferring only

the |1,−1⟩ spins to the |2,−2⟩ state with a fast RF frequency sweep. In this con-

figuration collisions between spin-polarized doublons, |𝑚𝑠 = ±1⟩ – corresponding to

collisions between two |1, 1⟩ atoms or two |2,−2⟩ atoms – are stable. However, rapid

loss in the inter-spin collision channel can be induced by ramping the magnetic field

to the ∼9.095 gauss a Feshbach resonance between |1, 1⟩ and |2,−2⟩ atoms. Measur-

ing the number of atoms remaining after a 200 ms hold on the Feshbach resonance

and subtracting this result from the total atom number reveals the total number of

spin-paired doublons in the sample. Unfortunately, the |2,±2⟩ mixture used to detect

microscopic separation between the spin states in the previous section proved unsuit-

able for this detection channel since spin relaxation happened too slowly compared

to the total lattice lifetime.

With a measure of the total number of spin-paired doublons normalized by a

measurement of the total number of 𝑛 = 2 atoms, we can finally construct the quantity

we call the spin-paired doublon fraction, 𝑓 . Figure 5-14(a) shows the result of these

three different measurements as a function of the polarization angle of the spin-

dependent lattice during the ramp to the Mott insulating state. The corresponding

spin-paired doublon fraction, 𝑓 , is shown in figure 5-14(b). There are three different

regions to note within figure 5-14. Most importantly, at large polarization angle,

> 45∘, the majority of spins are in the paired |0⟩ state with the maximum occurring at

exactly 90∘ polarization angle with more than 95% of spins in the paired channel. This
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Doublon Loss Channels: Spin Mott vs. Thermal State
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Figure 5-14: Spin correlations in the two-component Mott as a function of the retrore-
flected polarization angle. Loading a balanced spin mixture into a 20𝐸𝑟 deep lattice
with varying retroflection polarization angle and measuring the projection of the local
spin onto the spin-paired |0⟩ state of doublons. (Top) the final signal is composed of
three independent measurements at each polarization angle of the total atom num-
ber, the atom number remaining after removing all doublons, and the atom number
remaining after removing all spin-paired doublons. (Bottom) The resulting fraction
of doublons in the |0⟩ state, showing the high fidelity preparation of the spin Mott in
the lin⊥lin configuration.
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Figure 5-15: Temperature and entropy in the spin Mott as a function of the spin-
paired doublon fraction. (Left) Assuming a balanced mixture, the spin entropy can be
determined from the spin-paired doublon fraction in the limit of vanishing exchange,
𝐽⊥ = 𝐽𝑧 = 0. (Right) From the entropy the dimensionless spin temperature, 𝑢/𝑘𝐵𝑇
can be determined.

decreases slowly but remains high as the polarization crosses 45∘ before the population

enters a second regime where it slowly decreases – consistent with a decreasing spin

gap – down to the third regime where the spin-paired doublon fraction reaches its

thermal value of 1/3, which corresponds to an incoherent mixture of all three spin

states within the lowest band of the optical lattice.

From the values of the spin-paired doublon fraction in the first region we conclude

that, by tuning the spin-dependent interaction energy, we have successfully loaded

the spin Mott insulating ground state of the spin-1 Heisenberg model. To develop a

sense of the residual spin entropy in the spin Mott, we can use the local triplet basis of

states to construct an estimate of the spin entropy via Boltzmann’s formula, 𝑆/𝑘𝐵 =∑︀
𝑖 𝑝𝑖 ln 𝑝𝑖. The resulting entropy as a function of the spin-paired doublon fraction

is shown in figure 5-15. In addition, using this local basis of states, and assuming

spin excitations remain localized and are not itinerant, we can make an estimate of

the partition function of our effective spin Hamiltonian to be, 𝑍 = (1 + 2𝑒−𝛽𝑢)𝑁 ,

which comes simply from the (𝑆𝑧
𝑖 )

2 term of the Hamiltonian, where 𝑢 is the spin

interaction, 𝛽 is the inverse spin temperature in the 𝑛 = 2 Hilbert space, and 𝑁 is

the number of spins in the sample. Using this information we can derive an estimate of

the relation between the entropy and the normalized temperature/interaction energy,

𝛽𝑢 = 𝑢/𝑘𝐵𝑇 , seen plotted on the right side of figure 5-15. From these plots, we
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can estimate that at a 95% spin-paired doublon fraction that the corresponding spin

entropy is ∼0.2 𝑘𝐵 per spin. At a maximum interaction energy of ∼1 kHz, this then

corresponds to a temperature of ∼10 nK. This highlights the power of the spin Mott

to allow us to prepare a Heisenberg ground state at higher initial temperatures than

that set by the ∼10 pK superexchange energy scale. The power of the spin Mott

is that this highly gapped state is adiabatically connected to the magnetic ground

states with a gap, set by the frequency of the lowest spin wave in the system which

is ∼1000 times lower energy. As a result, a ramp at constant entropy can produce a

temperature which is ∼1000 times lower, providing direct access to the temperature

scales needed to observe long-range magnetic ordering in the system.

One caveat to note here, which will become important in the next section, is that

our detection channel can only observe spins that are within the 𝑛 = 2 Hilbert space.

As a result, hole excitations only appear as a reduction in the total contrast of the

total number of doublons relative to the total number of atoms, but do not impact

the difference between the total number of doublons and the number of spin-paired

doublons, and therefore do not impact the spin-paired doublon fraction. Our earlier

estimate of the entropy in this sector found that on average we have one particle and

hole excitation in a chain of ten sites.

In contrast to region close to the lin⊥lin polarization configuration shown in figure

5-14, when the lattice is raised in the region close to the lin‖lin configuration, the

system is ramped into a state with either a low spin gap, or across the quantum phase

transition directly into the magnetic part of the phase diagram. For understanding

this state, it is useful to consider the limiting cases of thermal spins and a perfectly

ordered 𝑥𝑦-ferromagnet. In the limit of infinite spin temperature, the spin occupation

in any site is random, as depicted in the upper left inset in figure 5-14(b), and the

population in the |𝑚 = 0⟩ state is 1/3. As we will see in the next section, in a perfectly

ordered 𝑥𝑦-ferromagnet, the spin state can be thought of as an equal superposition of

up and down spins, so the spin-paired doublon fraction would go to 1/2 in this limit.

Therefore, for polarizations close to lin‖lin, the spin-paired doublon fraction of ∼1/3

indicates the thermal nature of the resulting spin state produced by a typical ramp

221



Figure 5-16: Amplitude modulation spectroscopy of the spin Mott. (Top) In the
lin⊥lin configuration, modulation of the amplitude can couple to the three final states
with the lowest lying excitation being a charged excitation to a particle-hole excitation
in either the | ↑⟩ or the | ↓⟩ Mott component. (Bottom) Response of the spin-paired
doublon fraction in the spin Mott to a 12% amplitude modulation of the lattice
depth for 30 ms. Consistent with the picture of a gapped state, the system exhibits
no response at low frequencies.

into the two-component Mott insulator, and highlights the difficulty in observing spin

correlations to date in spin-independent lattices with a system close to the isotropic

point of the Heisenberg model.

One important feature of the spin Mott is the existence of a finite excitation gap

in both the spin and charge degrees of freedom. The gapped nature of the ground

state is what enables the high fidelity preparation of the spin ground state of the

effective Heisenberg model. Two different types of excitations which compose the

first excited states are shown in figure 5-16(a). One reflects an excitation in the

charge sector of the Mott state, depicted schematically in the top and bottom final
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states on the righthand side of 5-16(a). The second reflects an excitation in the

spin sector but not the charge sector, depicted in the central frame of 5-16(a). In

the limit of 𝑈↑↓ → 0, the charge gap is the lowest lying mode, and in the limit of

finite 𝑈↑↓ > 𝑊/2, the spin gap becomes the lowest lying mode. The existence of

this finite excitation gap in the spin Mott state is probed in the lin⊥lin configuration

by amplitude-modulation spectroscopy. Experimentally, after loading the spin-Mott

state into a three dimensional optical lattice of depth 20 𝐸𝑟 in the spin-independent

directions and 12 𝐸𝑟 in the spin-dependent direction, the amplitude of the lattice laser

intensity is modulated by ∼10% for 20 ms, after which the modulation is stopped and

the lattice depth is increased to enter the doublon detection sequence. The resulting

spectrum of the spin-paired doublon fraction is shown in figure 5-16(b). Examining

the spectrum we see a clear resonance at a frequency corresponding to 𝑊 in the

system. More importantly, below this frequency the system does not respond to the

modulation, consistent with the presence of a gap in the ground state.

So far, we have discussed the nature of the spin Mott insulating state in the

spin-1 Heisenberg mapping, its realization with two-component bosons in an optical

lattice, and how to detect and characterize this state. Most importantly, we have

highlighted how this state enables the preparation of a low spin-entropy state in

the Mott insulator. This state, which is perfectly ordered in both the charge and

spin degrees of freedom, now is perfectly situated to perform an adiabatic ramp to

a magnetic phase of matter where the low spin and charge entropies should allow

preparation of a long-range ordered state.

5.6 The 𝑥𝑦-Ferromagnet

The power of the low spin entropy of the spin Mott state comes from the ability to

controllably ramp from this highly gapped state to a magnetic state with a small gap.

Given the initial spin entropy of 0.2 𝑘𝐵 per spin, such an adiabatic ramp would give

access to physics in the regime of temperatures as low as ∼10 pK where long-range

spin-ordering should occur. In this chapter we present some initial attempts at such
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an adiabatic ramp and describe challenges for the experiment moving forward.

5.6.1 The Groundstate Phase Diagram

The ability use the low entropy of the spin Mott in order to adiabatically connect

to the 𝑥𝑦-ferromagnetic state was first highlighted in the context of two-component

bosons in an 𝑛 = 2 state in the proposal and numerical work of ref [137]. Experi-

ments exploring this transition will be described in the following subsection, but for

context and interpretation we first present a theoretical framework in which we want

to understand the resulting state. Following the arguments of ref. [5], the ground

state wavefunction of the spin-1 chain can be approximated by the following ansatz

wavefunction for variational calculations:

|Ψ⟩𝑆=1 =
𝑁∏︁
𝑖=1

(︃
cos

𝜃

2
|0⟩𝑖 + 𝑒𝑖𝜂 sin

𝜃

2

(︂
𝑒𝑖𝜑 cos

𝜒

2
|1⟩𝑖 + 𝑒−𝑖𝜑 sin

𝜒

2
| − 1⟩𝑖

)︂)︃
. (5.38)

The transition from the spin Mott to a magnetic state is controlled by the param-

eter, 𝜃, which accounts for the amplitude of the wavefunction in the |±1⟩ states, and

has phase of the superposition, 𝜑. Using the intuition of a coherent state of bosons

to formulate an order parameter, the average value of the spin annihilation operator

is used to formulate the spin-order parameter, 𝜓:

⟨𝑆−
𝑖 ⟩ =

1√
2
𝑒𝑖𝜂 sin 𝜃

(︂
𝑒−𝑖𝜑 sin

𝜒

2
+ 𝑒𝑖𝜑 cos

𝜒

2

)︂
∝ sin 𝜃 ≡ 𝜓. (5.39)

The spin-order parameter, 𝜓 is a real number and is multiplied by a phase which

encodes the phase of the superposition state, 𝜑 at each point in space.

Using the general ansatz wavefunction in equation 5.38, we can gain intuition

for the ground state and phase diagram by calculating a variational energy function

for the spin-1 Heisenberg Hamiltonian seen in equation 5.31. Assuming that the

amplitude order parameter, 𝜓 is small near the phase boundary we can expand to
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second order near the transition point:

𝐸 = −𝐽⊥
2

sin2 𝜃
(︀
1 + sin𝜒 cos 2𝜂

)︀
− 𝐽𝑧 sin

4 𝜃

2
cos2 𝜒+ 𝑢 sin2 𝜃

2
− ℎ sin2 𝜃

2
cos𝜒

= −𝐽⊥
2
𝜓2
(︀
1 + sin𝜒 cos 2𝜂

)︀
− 𝐽𝑧(1−

√︀
1− 𝜓2)2 cos2 𝜒+ . . .

. . . (𝑢− ℎ cos𝜒)(1−
√︀

1− 𝜓2) (5.40)

≈
[︂
− 𝐽⊥

2

(︀
1 + sin𝜒 cos 2𝜂

)︀
+
𝑢

4
− ℎ

4
cos𝜒

]︂
𝜓2. (5.41)

Note that the Ising term, proportional to 𝐽𝑧, appears first in the second term, at the

order of 𝜓4, in the expansion of the energy functional. Assuming that the spins are

miscible and 𝐽𝑧 < 𝐽⊥, the fourth order term is always positive and the system makes

the transition to the 𝑥𝑦-ferromagnetic phase. Past the isotropic point where 𝐽𝑧 ≥ 𝐽⊥,

this assumption breaks down and the system makes a transition to a 𝑧-ferromagnetic

phase. Here, we restrict the treatment to the 𝑥𝑦-regime.

We can now extract variational solutions for the spin-1 𝑥𝑦-ferromagnet by mini-

mizing the energy functional. We see by inspection that this will happen for 𝜂 = 0, 𝜋,

which then allows us to extract the critical point for the spin Mott to 𝑥𝑦 transition by

looking at the point where the 𝑥𝑦 order parameter picks up a finite value. This point

occurs when the coefficient of the quadratic term in 𝜓2 in equation 5.41 switches from

positive to negative, so the transition point happens when this prefactor is zero. From

equation 5.41 we can also see that the phase transition point depends on the varia-

tional parameter 𝜒 as well. If we also minimize the energy functional with respect to

𝜒, we get a minimization relation for 𝜒:

𝜕𝐸

𝜕𝜒
=

[︂
− 𝐽⊥

2
cos𝜒+

ℎ

4
sin𝜒

]︂
𝜓2 = 0

sin𝜒 =
2𝐽⊥
ℎ

cos𝜒, or: tan𝜒 =
2𝐽⊥
ℎ
. (5.42)

Looking back at the expression for the phase transition point, we can use the infor-

mation from the minimization procedure with respect to 𝜒 to simplify the expression
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for the phase boundary:

2𝐽⊥
ℎ

(︀
1 + sin𝜒

)︀
− 𝑢

ℎ
+ cos𝜒 = 0 (5.43)(︁

tan𝜒+ tan𝜒 sin𝜒+ cos𝜒 =
𝑢

ℎ

)︁
× cos𝜒 (5.44)

sin𝜒+ 1 =
𝑢

ℎ
cos𝜒. (5.45)

Together with equation 5.42, this expression can be used to solve for the angles

sin𝜒 = 2𝐽⊥
𝑢−2𝐽⊥

and cos𝜒 = ℎ
𝑢−2𝐽⊥

. Plugging this back into the phase boundary

expression, we get a critical value for the mean field phase transition point given by:

𝐽⊥
𝑢

⃒⃒⃒⃒
𝑐

=
1

4

(︂
1−

(︂
ℎ

𝑢

)︂2)︂
. (5.46)

In the absence of an externally applied magnetic field (𝜇↑ = 𝜇↓ and 𝑈↑↓ ≈ 𝑊 ) the

external magnetic field, ℎ𝑧, goes to zero and we find that this mean-field variational

treatment predicts a phase boundary of 𝐽⊥
𝑢

⃒⃒
𝑐
= 1

4
. This prediction for the phase

boundary is shown in figure 5-17(a) as a black curve overlayed on a numerically

calculated phase diagram. Because this is a one-dimensional system, we can expect

quantum fluctuations to strongly modify the physics from the mean-field predictions

and this can be seen in the deviation of the shape of the numerically calculated gap

shown in figure 5-17 from the mean-field boundary.

Nevertheless, the mean-field wavefunction is useful for gaining intuition about the

𝑥𝑦 phase and the relations between the variational parameters and Heisenberg model

parameters can be used to calculate other quantities, such as the wavefunction or the

expectation value of any operator. For example, the wavefunction has a particularly

simple form in the limit of no effective magnetic field, ℎ = 0. In this limit tan𝜒→ ∞
such that 𝜒→ 𝜋

2
the wavefunction takes a particularly simple form:

|Ψ⟩ ℎ→0
=

𝑁∏︁
𝑖

(︃
cos

𝜃

2
|0⟩𝑖 + sin

𝜃

2

(︂
𝑒𝑖𝜑√
2
|1⟩𝑖 +

𝑒−𝑖𝜑

√
2
| − 1⟩𝑖

)︂)︃
. (5.47)

This limit makes intuitive sense when we look at the angle of the magnetization
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vector and see that it is not canted out of the 𝑥𝑦 plane; the wavefunction instead

contains equal |1⟩ and | − 1⟩ amplitudes. As a result, we understand that the action

of a small magnetic field due to mismatch between 𝑊 and 𝑈↑↓ does not destroy

magnetic ordering, but instead suppresses the transition point quadratically in the

parameter 1−
(︀
ℎ
𝑢

)︀2. Examining the wavefunction for small ℎ or equivalently 𝜒 < 𝜋
2
,

this corresponds to a tipping of the magnetization vector out of plane – a canted

𝑥𝑦-ferromagnet.

Finally, looking at the amplitude of the different spin components in the 𝑥𝑦 wave-

function in 5.47 we see that the parameter, 𝜃 encodes the order parameter density, 𝜓

– which we will call the spin superfluid order parameter – and controls the amount

the | ± 1⟩ states are admixed into the |0⟩ state as we ramp from the spin Mott to the

𝑥𝑦 ferromagnet. Rewriting the phase terms as functions of the spin superfluid order

parameter:

cos
𝜃

2
=

√︂
1

2
(1 + cos 𝜃) =

√︂
1

2
(1 +

√︀
1− 𝜓2) (5.48)

sin
𝜃

2
=

√︂
1

2
(1− cos 𝜃) =

√︂
1

2
(1−

√︀
1− 𝜓2), (5.49)

we see that the population in the |0⟩ state decreases quadratically as the state enters

the 𝑥𝑦 phase: 𝑓 = |⟨0|Ψ⟩|2 ≈ 1 − 1
4
𝜓2. Furthermore, as the system goes deep

into the 𝑥𝑦 phase the wavefunction corresponding to the 𝑥𝑦-ferromagnet simplifies

considerably to:

|Ψ⟩𝑥𝑦 =
𝑁∏︁
𝑖=1

(︃
1√
2
|0⟩𝑖 +

1√
2

(︂
𝑒𝑖𝜑√
2
|1⟩𝑖 +

𝑒−𝑖𝜑

√
2
| − 1⟩𝑖

)︂)︃
. (5.50)

The 𝑥𝑦 state in this extreme limit has an intuitive interpretation in terms of the

constituent two-component bosons: it is composed of the product of two symmetric

superpositions of up and down spins on a site:

(︀
𝑒𝑖𝜑/2| ↑1⟩+ 𝑒−𝑖𝜑/2| ↓1⟩

)︀
⊗
(︀
𝑒𝑖𝜑/2| ↑2⟩+ 𝑒−𝑖𝜑/2| ↓2⟩

)︀
/2, (5.51)
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with a phase which indicates the orientation of the magnetization in-plane. This is

in stark contrast to the 𝑧-ferromagnet which consists of up- and down-spins which

phase separate into polarized domains.

From this mean field treatment, we can see that one signature of the 𝑥𝑦 phase

immediately becomes visible in the local spin correlation channel used to detect the

spin-paired doublons in the spin Mott. Deep in the 𝑥𝑦 phase the fraction of spin-

paired doublons goes to 𝑓 = |⟨0|Ψ𝑥𝑦⟩|2 = 1/2 compared to 𝑓 = 1 for the spin Mott

and 𝑓 = 1/3 for a thermal gas. In addition, this treatment shows how the Goldstone

mode shows up in the wavefunction: given a phase 𝜑 for the magnetization vector,

any uniform rotation of this phase changes the state without changing the energy. In

fact, 𝜑 does not show up at all in the energy functional. The lowest contribution of

the magnetization phase to the energy comes from spatial deformations of the phase,

𝜑(𝑥), which in turn become the lowest lying excitations of the ferromagnet, the spin

waves of the 𝑥𝑦 state. In a more realistic treatment of the 𝑥𝑦 state in one dimension,

a situation in which mean field theory is known to be quantitatively incorrect, these

spin waves are admixed into the ground state wavefunction by quantum fluctuations,

and at finite temperature, by thermal excitations.

Such fluctuations can be described by the spin-spin correlation function:

⟨𝑆+
𝑖 𝑆

−
𝑗 ̸=𝑖⟩ = 𝑓

(︂ |𝑥𝑖 − 𝑥𝑗|
𝜉

)︂
(5.52)

which, in one dimension, is some exponentially decaying function above a critical

temperature or a polynomially decaying function below a critical temperature with

characteristic length scale set by the correlation length 𝜉, which is a function of the

Hamiltonian parameters [137]. Ref. [137] shows a calculation of this phase ordering

taking into account quantum and thermal fluctuations. In such a calculation, and in

a realistic experiment, the spatial order of the phase is accounted for by the spin-spin

correlation function discussed earlier in equation 5.52. The mean-field 𝑥𝑦 wavefunc-
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tion deep in the 𝑥𝑦-phase, seen in equation 5.50, predicts a correlation function:

⟨Ψ𝑥𝑦|𝑆+
𝑖 𝑆

−
𝑗 ̸=𝑖|Ψ𝑥𝑦⟩ = 1 (5.53)

compared to 0 in the spin Mott. In [137], this correlation is shown to decay ex-

ponentially above the transition point and algebraically below the transition point.

Fortunately, at short length scales compared to the correlation length, the system

appears to follow closely the mean field prediction and the system appears to have

long-range order. In our cold atom system, the maximum chain length is ∼10 sites,

so these calculations show that, at reasonable entropies, 𝑥𝑦 ordering over the sample

size is within reasonable reach.

5.6.2 Ramping from Spin Mott to the 𝑥𝑦 Regime

All the experiments in this section begin with the sample in the spin Mott insulating

state of the spin-1 Heisenberg Hamiltonian. At this point, the lattice consists of two

1064 nm beams in the 𝑦- and 𝑧-directions at 20 𝐸𝑟 depth and one 810 nm beam in the

𝑥-direction at a variable lattice depth of 10 to 15 𝐸𝑟 and in the lin⊥lin polarization

configuration. To begin, we ramp the system into the 𝑥𝑦 regime of the phase diagram

along an "adiabatic" path given by the ramp trajectory shown by an orange arrow

in figure 5-17(a). The first, and simplest, ramp shape implemented experimentally

was a linear ramp of the liquid crystal voltage from the spin Mott regime to the 𝑥𝑦

regime of the phase diagram in a variable amount of time. Due to the nonlinear

relationship between the liquid crystal voltage and retardance, in addition to the

nonlinear relationship between the polarization angle and 𝑈↑↓, this linear ramp of

voltage is not an optimal ramp which is fast in regions of higher gap and slower in

regions of smaller gaps. Nevertheless, this is a good starting place for optimizing

the system parameters and detection schemes which can be used to characterize and

optimize more complex ramp shapes.

To detect the appearance of an 𝑥𝑦 phase, we begin by measuring the local, on-site

correlations between up- and down-spins by looking at the |0⟩ detection channel used
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Figure 5-17: Probing the reversibility of an Adiabatic ramp to the 𝑥𝑦 regime. (a)
Phase diagram calculated in ref. [137] showing the crossover from the spin Mott to
the 𝑥𝑦-ferromagnet and an idealized ramp trajectory given by the orange and yellow
arrows. (b) Comparison of the state in the 𝑥𝑦-regime projected onto the |0⟩ state
(red squares) versus the state which is adiabatically ramped back to the spin Mott
(blue circles). Dotted lines show the limiting cases of a thermal sample at 1/3 and,
for the diabatic reversal, a long-range ordered 𝑥𝑦 state at 1/2.

to detect the spin Mott insulator. Although seeing a spin-paired doublon fraction

of 1/2 in this signal is suggestive of 𝑥𝑦 order it does not constitute a conclusive

detection of this order. In short, this is because this measurement is probing the

overlap of the wavefunction with the |0⟩ state at zero range, whereas the 𝑥𝑦 phase

is characterized by a spatial ordering of the superposition phase 𝜑(𝑥). An alternate,

although indirect method, to check for the preparation of the 𝑥𝑦 ferromagnetic ground

state is to test the reversibility of the ramp from the spin Mott. If the ramp does not

create any excitations and the system remains in a pure state, then the magnetically

ordered state we ramp into should be fully reversible such that returning to the spin

Mott – where we can quantitatively measure the entropy and temperature – can be

achieved with high fidelity. These two methods form the backbone of the initial set

of experiments towards ramping from the spin Mott to the 𝑥𝑦 ferromagnet.

Practically, these two measurements are accomplished by comparing the results

of two different return ramps. First, after entering the 𝑥𝑦 phase we analyze the spin-

paired doublon fraction of the resulting state by rapidly jumping back to the spin
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Figure 5-18: Adiabatic ramp reversal for different turn-around polarization angles.
(Left) Raw data and (right) spin-paired doublon fraction as a function of different
turn-around polarization angles. The total number of doublons (left, red squares
subtracted from yellow dots) does not change during the ramp, indicating no pair-
breaking is occurring. (Right) Consistent with the gapped spin Mott, the spin-paired
fraction is robust to small rotations of the polarization, but begins to show strong
heating below 30∘, before the expected transition to the 𝑥𝑦-phase. Closer to the 𝑥𝑦-
transition around ∼ 10∘ the system shows a sharp drop in the spin-paired doublon
fraction.

Mott in order to project the local doublon spin composition onto the basis of states

of the spin Mott. The resulting spin-paired doublon fraction is shown by the red

squares in figure 5-17(b). A perfectly ordered 𝑥𝑦 ferromagnet would have a local

fraction of 𝑓 = 1/2 denoted by the upper dotted line in 5-17(b), compared to a

thermal state for which 𝑓 = 1/3 shown by the lower dotted line. Encouragingly, we

observe a spin polarization between these two limits, suggesting the presence of some

correlation in the system. Whether this arises due to a mixed state or a pure state

is probed in by a second adiabatic ramp back to the spin Mott along the entrance

path. The resulting spin polarization recovered with this ramp is shown by the blue

dots in figure 5-17(b). The reduction of the polarization from 100% to 70% indicates

a ramp which produces a nearly four-fold increase in the spin entropy from 0.2 𝑘𝐵 to

0.8 𝑘𝐵 by examining figure 5-15. Nevertheless, figure 5-17(b) possibly indicates that

some part of the state is retrievable upon a ramp reversal.

An interesting question to ask with this setup is where along the adiabatic pathway
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the ramp stops becoming adiabatic and this significant heating shows up? To answer

this question, we use the adiabatic ramp reversal from above, but instead of going

all the way to the 𝑥𝑦 regime of the phase diagram, we stop the ramp at different

polarization angles and reverse back to the spin Mott. The result of these adiabatic

ramp reversals is shown in figure 5-18. From the data we can clearly see that for small

rotations of the retroreflected polarization the spin Mott is robust and maintains near

perfect spin polarization, consistent with the picture of the spin Mott as a highly

gapped state robust to small perturbations. However, in the regime of polarization

angles below 45∘ the spin-paired doublon fraction starts to reduce, dropping to <70%

by the time the polarization gets to ∼20∘. For the calculated exchange rates at 11 𝐸𝑟,

the spin Mott to 𝑥𝑦 ferromagnet transition should happen below 10∘, so in the regime

of larger polarization angles we are still in the spin Mott phase, despite the fact that

we see the spin-paired doublon fraction begin to reduce. Finally, as the polarization

ramp goes fully to lin‖lin the spin-paired doublon population drops even farther to

below 50% consistent with the shorter ramp times seen in figure 5-17(b).

Figure 5-18 clearly shows that we are observing behavior not consistent with

entropy creation at the crossover to the 𝑥𝑦-ferromagnet, but instead happening much

earlier in the ramp of 𝑈↑↓. In the remainder of this chapter, we discuss several possible

mechanisms by which the spin-paired fraction can decay outside of those contained

within the 𝑛 = 2 Hilbert space and the spin-1 mapping.

5.6.3 Particle and Hole Motion in the Mott State

One possible mechanism behind the anomalous decay of the spin-paired doublon

fraction comes from the direct tunneling of particles and/or holes in the Mott state.

Whether these excitations are present in the initial state due to the finite temperature

of the sample or they are dynamically produced by some intrinsic heating mechanism,

in essence they can cause the spin-paired doublon fraction to decay because direct

tunneling, 𝑡, in the spin chain is a large energy scale compared to 𝐽⊥ = 4𝑡2

𝑈↑↓
and

𝑢 = (𝑊 − 𝑈↑↓) in the regime close to the 𝑥𝑦 transition. To illustrate this, consider

a chain of atoms in the |0⟩ state of the spin Mott with one spin-down hole present
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Figure 5-19: Spin flips induced by direct tunneling of holes in the Mott state. Starting
from a spin Mott state with one hole, the hole is able to propagate through the spin
chain with a rate set by the tunneling energy scale, 𝑡. In the regime where the
hole tunneling bandwidth is greater than the energy splitting between spin states,
𝑢 = 𝑊 − 𝑈↑↓, hole propagation can induce spin flips.

shown in figure 5-19. The hole can tunnel through the spin chain at a rate 𝑡 because

its motion is not blocked by the interaction with another hole on adjacent sites. In

this sense, the Mott insulating state can be seen as a hole vacuum – the ground

state of a Mott insulator with one hole is the hole delocalized over the whole sample,

practically destroying the Mott state due to the addition of low-lying excitations of

the hole wavefunction. From the initial state of figure 5-19, direct tunneling of the

hole can couple the system to two possible types of final states: one where the hole

does not produce a spin excitation, and another where the hole flips the local spin

state from a |0⟩ spin to a |1⟩ spin. In the 𝑥𝑦 regime where 𝑈↑↓ ≈ 𝑊 the energetic

difference between these two final states is small compared to the tunneling energy

scale.

For example, at 10 𝐸𝑟 the bandwidth is 4 × 67 = 268 Hz in the 𝜆 = 810 nm

lattice. Compared to the interaction energy, 𝑢 – which changes from 860 Hz at a

polarization angle of 70∘ to 860 - 730 = 130 Hz at a polarization angle of 20∘ –

the bandwidth for single particle tunneling becomes dominant around a polarization

angle of 30∘, consistent with the polarization angles at which the spin-paired doublon

fraction begins decaying in figure 5-18. At the same lattice depth and 30∘ polarization

angle, the exchange term, 𝐽⊥ is 22 Hz so the critical parameter 𝐽⊥
𝑢

≈ 1
12

indicates

that the system should still be well within the spin Mott phase.

While the argument above is formulated for a hole excitation of the spin chain,
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the same argument can be applied to an excess particle excitation of the spin chain

with the addition of an extra bosonic enhancement of the tunneling bandwidth. The

situation becomes more complicated when we consider that in order to destroy all

ordering in the spin chain, particle and hole excitations must travel across the whole

spin chain but in a harmonic trap are largely localized to the edges of the spin chain

close to the superfluid phase that exists on the outside of the Mott state. This

highlights the important role that understanding the harmonic confinement of the

cloud has in understanding heating due to particle and hole excitations.

5.6.4 Effects of the Harmonic Trap

Looking back at figure 5-14(a), note that the total number of doublons in the sample

is decreasing as the polarization is changed from the lin⊥lin polarization to the lin‖lin
polarization. This reflects the fact that in the harmonic trap changing 𝑈↑↓ changes

the equilibrium Thomas-Fermi profile for the two-component BEC, and therefore at

fixed mean atom number the number of doublons in the Mott state changes as well.

When the system is initialized in the spin Mott with lin⊥lin polarization configu-

ration, we can picture the state as two 𝑛 = 1 Mott states for each spin which are

interlaced between each other and as such do not interact. In this regime, the ma-

jority of the cloud is in an 𝑛 = 2 state because the pairing energy of two spins is

very high, set by the intra-spin interaction 𝑊 . However, as we ramp towards the

lin‖lin polarization configuration, the emergence of the inter-spin interaction energy

scale, 𝑈↑↓, means that the ground state intrap density distribution has significant

𝑛 = 1 component. This highlights an issue the harmonically trapped system exhibits

when 𝑈↑↓ is ramped in order to move through the magnetic phase diagram, dynami-

cally ramping the polarization of the spin-dependent lattice creates a non-equilibrium

density distribution.

This non-equilibirum density distribution creates several effects which we will need

to take into account in a harmonic trap. One is that the system, in order to relax

to the ground state distribution, wants to break doublons on the edges of the cloud

into singly occupied sites because the repulsive energy of a doublon is greater than

234



the potential energy added by placing a single particle farther out in the harmonic

trapping potential. The process of breaking a doublon is suppressed in the strongly

interacting regime to first order by energy conservation; the energy of a |0⟩ doublon

is 𝑈↑↓, which, compared to the energy of the two single atom states after breaking the

pair (𝑉trap(𝑥𝑓 )− 𝑉trap(𝑥𝑖)) + 2⟨𝐸bandwidth⟩, can suppress the breaking of a pair [165].

However, in the regime of polarization angles where 𝑈↑↓ ∼ 𝑡, the pairs in the |0⟩ state

are not protected by repulsive energy and can resonantly tunnel and relax into an

𝑛 = 1 state. When 𝑈↑↓ gets large, the relaxation of doublons to a state of two singly

occupied sites happens at second order on a time scale set by the amplitude 𝑡2/𝑈↑↓.

As a result, this decay mechanism is assumed to be slow [165] and only effects a few

doublons on the edge of the 𝑛 = 2 state.

Therefore, with this mechanism of pair breaking in mind, we have two options for

avoiding the regime where 𝑈↑↓ ∼ 𝑡, we can either ramp up into the spin Mott in a

regime where 𝑡 < 𝑈↑↓ < 𝑊 , or we can ramp into the spin Mott where 𝑈↑↓ ≈ 0, and

quickly jump into the regime where 𝑡 < 𝑈↑↓ < 𝑊 , in order to protect those pairs

on the edge of the could from decaying. Experimentally, we have implemented both

and choose to work with the former configuration purely for technical reasons: the

rotation rate of the liquid crystal device is rather slow compared to tunneling rates.

Unfortunately, initializing the spin Mott in a polarization configurations away from

lin⊥lin does not significantly change the results of figures 5-17 and 5-18.

Another effect which arises due to the harmonic trap is the equilibration of spin

temperatures in the 𝑛 = 1 shell with the temperatures in the 𝑛 = 2 shell. The 𝑛 = 1

state does not have a spin Mott ground state, so the spins here remain unordered, and

the spin entropy and temperature correspondingly high, as a function of 𝑈↑↓. As the

spin Mott is ramped into the 𝑥𝑦 state particles from the 𝑛 = 1 shell can either tunnel

into the core of the Mott state via the distillation of holes [167], or high temperature

spins can enter from the boundary of the 𝑛 = 1 and 𝑛 = 2 states by spin exchange,

𝐽⊥. These two processes will cause the spin temperature in the core of the Mott

state to equilibrate, after sufficient hold times, with the charge degree of freedom.

The regime necessary for the observation for 𝑥𝑦 ordering is that the equilibration
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Figure 5-20: False doublon signal arising from the 𝑛 = 1 Mott. In the 𝑛 = 1 regions
outside of the central core of 𝑛 = 2 states, a spin-paired doublon signal can arise in
the polarization ramp from the 𝑥𝑦-regime to the spin Mott regime when ramping 𝑈↑↓
to zero removes the interaction blockade for a | ↓⟩ atom to tunnel onto a site with an
| ↑⟩ atoms.

time happens primarily with the exchange time times the size of the spin chain,

𝜏exch. ∼ 2𝜋𝑁/𝐽⊥ ∼ 100 ms for a 10-site chain, instead of driven by direct tunneling

of holes happening on timescales, 𝜏tun. ∼ 2𝜋𝑁/𝑡 ∼ 10 ms. In the experiment, this

means that the entropy per particle we observe after a ramp into the Mott state and

then reversing back to BEC should be sufficiently low such that we expect less than

one hole per one-dimensional chain in the core of the Mott plateau.

One final effect of the presence of a harmonic trap that can effect our measurements

in the doublon channel is a false spin-correlation signal that can arise from the 𝑛 = 1

plateau. Beginning with an infinite spin temperature 𝑛 = 1 Mott insulator in a spin

independent lattice – the regime the 𝑛 = 1 shell around the 𝑛 = 2 atoms should be in

with the lin‖lin polarization corresponding to the 𝑥𝑦 regime – if we then adiabatically

ramp the lattice polarization to lin⊥lin and then freeze the atoms in place in order

to enter the detection sequence as shown in figure 5-13 we can end up with a fake

doublon signal. This false signal arises due to tunneling events occurring in the regime

where 𝑈↑↓ ≈ 0 as depicted in figure 5-20. If the initial state contains an up atom in a

site adjacent to a down atom and the up or down atom tunnels to the adjacent site

as 𝑈↑↓ → 0, then in the doublon detection sequence, when these sites are merged the

two atoms will be lost, mimicking a doublon signal that did not exist in the initial

state. As a result, one interpretation of the spin revival seen in figure 5-17 is that

the experiment does not discriminate which part of the cloud the revival signal arose

from and as a result we cannot tell whether it comes from the cold inner part of the

cloud or is a fake signal from the 𝑛 = 1 wings of the cloud.

This effect can be eliminated if the atoms occupy a uniform box potential instead
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of a harmonic trap. Recent progress in this direction raises the possibility of such a

solution [52, 120, 34, 115], and will be discussed in more detail in the next chapter.

In summary, looking back at figure 5-18, we hypothesize that this finite hole

occupation probability is one major contributing factor to the reduction of the spin-

paired doublon fraction in the spin Mott phase of the adiabatic ramp reversal. The

combination of all the factors discussed above suggests the following comprehensive

picture: a finite hole occupation probability per spin chain, combined with the non-

equilibrium density profile created by tuning 𝑈↑↓ and the natural equilibration of the

spin temperatures of the 𝑛 = 1 and 𝑛 = 2 Mott shells, provides a mechanism shown in

figure 5-19 by which a hole propagating through the spin chain can flip the doublon

spin state, driving the low temperature 𝑥𝑦 state towards higher temperatures and

correspondingly lower spin-paired doublon fraction.

5.6.5 Effects of Magnetic Field Gradients

A final complication that we need to account for arises from the effect of a magnetic

field gradient on the phase of the 𝑥𝑦-state. A magnetic field gradient causes the spin

precession frequency on each site of the lattice to be different, causing dephasing

of the spin-up and spin-down superposition phase across the spin chain, effectively

imprinting an unwanted spatially-varying phase 𝜑(𝑥). In the limit of a large field

gradient per lattice site, 𝛿ℎ𝑧, the spin state is localized by the addition of a large

term: 𝛿ℎ𝑧
∑︀

𝑖 𝑖𝑆
𝑧
𝑖 to the Hamiltonian. As such, we wish to eliminate any such terms

competing with the spin-exchange process.

Such magnetic field gradients can be detected by looking at the intrap density

distribution of a two-component BEC, without applying a lattice, and varying a gra-

dient compensation field [161]. Such a measurement of the magnetic field gradient is

shown in figure 5-21. The current in the compensation coil which produces a reversal

of the relative positions of the different atomic spins signals the compensation current

for which the gradient is zeroed. This procedure is repeated to compensate for mag-

netic field gradients along the ∼9 G bias field direction as well as to compensate for

field curvature in the other, transverse, directions. We can then evaluate the success
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Figure 5-21: Minimizing residual magnetic field gradients. Magnetic field gradients
along the bias direction and magnetic field curvature in the transverse directions is
measured and compensated for by active cancellation. The effect of residual gradients
and curvature is measured by finding the cross-over point where the two spins in a
two-component BEC change position in the harmonic trap in response to an externally
applied field.

of such a scheme in extending the coherence time of a superposition of spin states

by performing Ramsey spectroscopy on the cloud. Figure 5-22 shows the evolution

of the contrast of Ramsey fringes before (a) and after (b) the compensation of the

gradient and curvature fields in the system. Without compensation, the coherence

time of a spin superposition is short, ∼5 ms, comparable to the fastest exchange rate

in a one-dimensional chain. This is alleviated by three dimensional compensation of

the gradient and curvature, resulting in a spin coherence time exceeding 60 ms, much

slower than the exchange rate in our system. As a result, the coherence length of the

𝑥𝑦 state should not be limited by the residual magnetic fields. Note that in figure

5-22 after a short time the Ramsey fringes are not reproducible but fluctuate from

shot-to-shot due to a fluctuating background field of a few mG. For the 𝑥𝑦-state, a

uniform, fluctuating background field does not couple to excitation terms in the spin

Hamiltonian.

After addressing the issues with the harmonic trapping potential and eternal mag-

netic field gradients discussed above, the current state-of-the-art for the experiment is
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Figure 5-22: Increased Ramsey coherence time from gradient compensation. (a)
Field gradients cause Ramsey dephasing times of ∼5 ms, which may be faster than
the superexchange time, leading to a localization of the spin wavefunction in the 𝑥𝑦-
phase. (b) Compensation of inhomogeneous fields leads to a greatly increased Ramsey
coherence time exceeding 60 ms.

to make progress on preparing colder samples with fewer holes in each chain in addi-

tion to optimizing the shape of the ramp from the spin Mott to the 𝑥𝑦 ferromagnetic

state such as to make the coldest final state in a finite time ramp. Progress along

both fronts are ongoing in the lab. A final direction is in developing better probes of

long-range ordering such as to better characterize any magnetic correlations that ap-

pear in the 𝑥𝑦-regime. A promising development in this direction is the construction

of a quantum gas microscope with single-site resolution.
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Chapter 6

Conclusions and Outlook

The work detailed in this thesis is based on the central themes of artificial magnetism

and artificial magnetic fields. Progress in both of these areas is largely enabled by

the clean and controllable potentials created in ultracold atom systems as well as the

isolated nature of the samples from external reservoirs. Two examples of new oppor-

tunities this level of isolation and control affords us include the ability to shape the

single-particle spectrum using Floquet engineering as well as the ability to indepen-

dently control the potentials of different spin states to exert control over parameters

of the many-body Hamiltonian.

In chapter 3, we developed and demonstrated one particularly powerful technique

for creating synthetic magnetic states and topological states of matter using mag-

netic field gradients and far-detuned lasers. Most importantly, we have shown how to

shake a many-body system to order to generate arbitrarily strong, uniform synthetic

gauge potentials while simultaneously maintaining a low entropy state. The excellent

signal-to-noise of measurements in atomic systems, especially with Bose-Einstein con-

densates, highlights the power of this platform no only to realize phases of matter not

accessible to condensed matter systems but also to provide simple, intuitive systems

to teach new physics. A prime example is how the superfluid diffraction pattern in

time-of-flight images reveal the gauge-dependent momenta of the wavefunction. In

addition, the ability to prepare a low entropy state in a three-dimensional lattice

highlights the power of these systems to tune the interactions from a non-interacting
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system to a strongly interacting system in a precisely controllable manner. An addi-

tional power of this system is discussed next in chapter 4, where we show how this

work highlights the power of laser-assisted tunneling as a tool to realize other paradig-

matic effects of condensed matter physics, such as the quantum spin Hall effect and

the Weyl Hamiltonian, or to even engineer flux configurations which are not realizable

in condensed matter contexts.

In chapter 5, we discussed the realization of the spin-1 Heisenberg chain in a

two-component, 𝑛 = 2 state. The unique properties of the 𝑛 = 2 state with an on-

site symmetry breaking term is used in conjunction with a spin-dependent lattice to

prepare the spin Mott insulating ground state of the Heisenberg model with a spin

entropy below 0.2 𝑘𝐵 per spin. The cooling power of the spin Mott state is highlighted

where adiabatically lowering the many-body gap gives access to temperature scales

on the order of 10 pK. Initial experiments exploring the adiabatic preparation of

an 𝑥𝑦-ferromagnetic state from the spin Mott are described, and preliminary results

highlight the various challenges faced in realizing such an adiabatic cooling technique.

Moving forward, we look to exert even higher levels of control over these systems to

move to even lower temperatures and to probe correlations at the single particle level.

6.1 A New Quantum Gas Microscope

The development of the quantum gas microscope for imaging single atoms [9, 143,

127, 32, 124, 66, 44] has led to a revolution in the measurement and control capabili-

ties of ultracold atom systems. This technology enables direct in situ imaging of the

superfluid to Mott insulating phase transition in bosons [10, 143] as well as the band

insulating to Mott insulating crossover in fermions [60, 31]. This detection capability

has enabled experimental achievements such as simulation of an Ising magnet [145],

detection of many-body localization [140], detection of antiferromagnetic correlations

– seen first in bulk measurements [61, 68] but later directly imaged with high res-

olution [18, 30, 41] – and antiferromagnetic ordering [115, 22], among many other

results.
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One powerful aspect of the quantum gas microscope for the purpose of achieving

lower temperatures is the ability to measure temperatures in situ enabling, for exam-

ple, the detection of the superfluid amplitude mode excitation by thermometry in a

deep lattice [46]. This local detection ability can in turn be leveraged to create the

ability to locally control the many-body state by shaping the external potential on the

single-site scale in order to create well-defined potentials important for long-range in-

teracting systems [138], for performing interferometric operations on a many-particle

state in order to measure quantities such as entanglement entropy [75], or for creating

flat bottomed potentials for entropy redistribution schemes [115].

For the new quantum states described in this thesis, the ability to project and

shape the external confining potential in such a way as to realize a uniform box po-

tential in the lattice is an exciting prospect that gives the experiments several key

advantages. First of all, as mentioned in chapter 5, as the inter-spin interaction is

changed – in order to tune the system through the phase diagram – in a harmonic

trap the equilibrium density profile is changes due to the changing repulsive energy

of the system. This creates several unwanted effects such as pair-breaking on the

edges of the sample and inhomogeneous spin temperatures between 𝑛 = 1 and 𝑛 = 2

portions of the trap. Although these two effects are specific to the Mott insulating

phase, generically, any experiment in an inhomogeneously trapped system that calls

for dynamically tuning a large energy scale, such as the inter-spin interaction, faces a

similar challenge since all broken symmetry phases have low-lying excitations (Gold-

stone modes) of the order parameter. Second, the projection capability allows the

realization of effectively lower temperatures since the regions of high entropy outside

of a Mott plateau can be cut away and removed from the sample. In the spin Mott,

cutting out the 𝑛 = 1 shell and the superfluid region between the 𝑛 = 1 and 𝑛 = 2

plateaus means that the remaining array is perfectly ordered in both the spin and

density degrees of freedom effectively removing all entropy from the resulting state

and creating the ideal starting point for ramping to a magnetically ordered state of

matter. Finally, the local detection capabilities enabled by a quantum gas microscope

allow the realization of effectively lower entropies by post-selection techniques select-
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Figure 6-1: A design rendering of the new science chamber.

ing for samples which are free of thermal particle or hole excitations. As a result of

these advantages, we have begun the process of upgrading the science chamber of our

experiment to a new, improved vacuum chamber capable of housing a quantum gas

microscope.

The design of our quantum gas microscope is based around using a long working

distance objective in order to work ∼5 mm away from any window or super-polished

substrate surface. The objective, designed and manufactured by Special Optics, fea-

tures a high numerical aperture (NA= 0.80) at a window thickness of 6 mm and

a vacuum working distance of 5 mm. The vacuum chamber, shown with a cutout

through the chamber in figure 6-1, is designed around this custom objective is meant

to solve a myriad of issues which exist with the current vacuum chamber and optical

setup and should enable the stability and optical access necessary for single-atom

imaging.

First, the design will feature a lower background vacuum pressure by increased

conductance to the ion pump and titanium sublimation pump in order to increase the

background gas collision lifetime of the atoms in the lattice and allow high fidelity

imaging. Next, the side and bottom vacuum windows will be broadband antireflection

coated for all the laser wavelengths we might want to use between 532 and 1596 nm,

and the top window will be highly transmissive for highly angled rays at 780 nm in
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addition to highly reflective at 1064 nm. Seen in figure 6-1, the new chamber features

re-entrant bucket windows on the top and bottom to allow for the insertion of the

microscope objective and magnetic field coils. The field coils will be wound such as to

produce uniform bias and gradient fields in the axis of the microscope in addition to

the two lattice axes as well. Each coil will be securely mounted to prevent movement

during operation. Between the science chamber and the main chamber, the bellows

will be expanded from a 1.33" flange to a 2.75" flange to allow for higher transport

efficiency by reducing beam clipping on the inner bore of the Conflat nipple at the

same time the total transport distance is reduced. This design also allows vertical

transport of the beam from the centerline of the chamber to below the microscope

objective, controlled either by an acousto-optic deflector or a galvo mirror and an

f-theta lens, for vertical transport and transfer to an accordion lattice trap. The

new science chamber design is accompanied by a unibody breadboard design in the

horizontal plane which greatly reduces both thermally driven relative drift as well

as acoustic and seismic position noise of non-unibody designs. Finally, covering the

new setup in an enclosure which blocks ambient air currents and can be temperature

controlled below the <1∘C level eliminates residual thermal drift of the optical setup.

The exact implementation of these design criteria is beyond the scope of this thesis,

and will be addressed in forthcoming theses from the BEC4 lab.

In the big picture, by upgrading our science chamber to a quantum gas micro-

scope, we aim to bring the expertise gained in realizing the Harper-Hofstadter model

and the spin-1 Heisenberg chain to the improved detection and control capabilities

of the microscope. Among the many future directions for the lab, some exciting pos-

sibilities include looking for composite bosons and fermions at low particle densities

due to flux-pinning in the interacting Harper-Hofstadter model. Recent numerical re-

sults for interacting lattice systems [53] indicate the presence of a 𝜈 = 1/2 fractional

quantum Hall effect in precisely such a system. In addition to the single-component

gas, in two-component gases this flux-pinning mechanism underlies proposals for ob-

serving such states as a bosonic integer quantum Hall state [141]. Additionally, by

integrating the spin-dependent lattice with the microscope, local detection and pro-

245



jection capabilities allow the creation of ultra-low entropy samples and enable further

studies of magnetic ordering in the spin-1 chain. An interesting merger of off-resonant

modulation techniques with a spin-dependent lattice might realize antiferromagnetic

exchange couplings and enable a realization of the Haldane phase which exhibits

protected edge modes due to the short-range entangled nature of the bulk states.

6.2 Outlook

From the broader viewpoint of the field of ultracold atoms, one of the most exciting

directions in the field is to create systems with gauge structure that does not, or can

not, exist in traditional condensed matter or high energy contexts. While the work

described here succeeded in creating a static synthetic gauge field – akin to applying

a large magnetic field with a large current in the lab – one interesting prospect is to

create dynamic synthetic gauge fields where the field configuration and the particle

configuration are dynamically coupled to each other via an optical cavity [12, 174, 11].

Such a dynamical coupling has the ability to generate qualitatively new phases of

matter based on the principle of cavity-mediated self-organization – where the intra-

cavity field is generated dynamically by the emission of photons from a transverse

pumping field which in turn exert forces on the atoms via the atomic recoil and AC

Stark shifts – and represents a promising avenue for exploration of new quantum

phases [98, 97]. If a dynamically generated cavity field is used to induce a synthetic

gauge potential, the power of the ultracold atomic platform is then the ability to tune

the coupling of the gauge field to matter, akin to tuning the fine structure constant,

𝛼, freely. In addition, the gauges that are implemented in cold gases are not limited

to Abelian fields, so another exciting direction is to generate non-Abelian gauge fields

and even dynamic, non-Abelian fields.

One last direction that emerges from this work is the possibility to create inter-

acting topological states of matter. To date, theory predicts that there are many

interacting topological states of matter which do not necessarily have an analogue to

non-interacting electrons [109, 29, 158, 159]. Especially for bosonic systems, many
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of these states of matter do not have any physical realizations or understanding of

the microscopic Hamiltonians from which these states of matter emerge. Given the

success of realizing states of matter which are typically inaccessible to condensed

matter systems in cold atom systems, hopes of realizing strongly interacting topolog-

ical states of matter such as a bosonic quantum Hall states lie partly in the flexible

platforms of cold atomic and molecular gases.

Many fundamental questions remain and many challenges stand in the way to

achieving such goals. For example, it remains an open question how to achieve tem-

peratures into the picokelvin regime in optical lattices or Floquet engineered optical

lattices. Also for many dynamic, non-Abelian gauge fields, it remains an open ques-

tion how to physically generate the new types of interactions necessary for realizing

such models [12]. Regardless, cold atoms remains an exciting frontier for such physics

and represents a dynamic test-bed where cutting-edge technology and cutting-edge

physics collide.
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Appendix A

Technical Notes

The BEC4 experiment was originally built in the early 2000’s as a general purpose

ultracold atoms machine that produced large atom number Rb BECs. As a result,

the implementation of the optical lattice was a retrofit to the existing machine. Un-

fortunately, this means that certain aspects of the machine are not optimal for lattice

physics and debugging the setup to reach cold temperatures in the lattice has been

a long-running project in the lab. In this appendix, I share with the reader some

helpful technical notes for designing an optical lattice of your own.

Beginning with basic infrastructure, the first important step is to actively climate

control the lab space. Considering that a typical optical lattice setup has two dipole

traps, six lattice beams, and possibly two different imaging beams means that for the

experiment to run at its most basic level all ten laser beams must stay aligned and

well-calibrated. Typically, the state-of-the-art experiment will also need other novel

optical elements, for example a magnetic field gradient and two additional Raman

lasers which also must stay well-aligned and calibrated, thereby adding additional

levels of complexity to the experiment. For me, the sign of a healthy lattice experiment

is the ability to get a cold BEC in the first shot of the day and a cold, 𝑛 = 1 Mott

insulator in the second shot of the day. This level of experimental stability frees

up the students’ time and energy so that they can explore the physics of interest

rather than spending a significant fraction of the time in each day re-aligning and

re-calibrating lasers.
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One crucial aspect for achieving this goal is to control thermal drifts of the beam

pointing by stabilizing the temperature to a constant value. The easiest way to achieve

this level of thermal control is to work with a small, enclosed area with minimal heat

load. As a result, if we were to rebuild BEC4, a crucial element of the redesign would

be to add an enclosure to avoid dust and air currents, and to install a laminar flow

AC to stabilize the temperature.

A second aspect of a redesigned experimental setup would be the inclusion of

a thick, unibody optical breadboard design. One of the largest contributors to the

phase noise of the Raman drive comes from the relative motion of two different optical

breadboards which hold the retroreflection mirrors for two different lattice directions.

As shown in chapter 2, mounting two mirrors on the same optical breadboard greatly

reduces the relative position noise of the two surfaces when compared to mounting

two mirrors on different breadboards. It is helpful to think of the optical table as

the mechanical "ground plane" setting the absolute spatial position of the lattice

– analogous to an electrical ground plane on a circuit board which determines the

reference voltage for an electrical signal. Just like the quietest analog electrical signals

are derived from a system with only one electrical grounding point, the quietest

mechanical positions are similarly derived from a system with only one breadboard

setting the spatial reference frame for the optical system.

The next time- and frustration-saving aspect of a good lattice experiment is to

properly wind magnetic field coils such that the application of a bias field does not

introduce gradients and the application of the gradient does not introduce field cur-

vature. An easily-avoidable headache, which plagues many of our experiments, is the

fact that the magnetic field coils are wound in such a way that changing the bias field

also changes the gradients and curvatures of the field. Ideally, the coils which produce

the fields for an experiment should, at the very least, have point-symmetry about the

position of the atoms. This ensures that each current element, 𝑑j, in Biot-Savart’s

law which produces a certain field at the position of the atoms, 𝑑B ∝ 𝑑j× r, has an

identical current element located exactly at, −r, by which the transverse components

of the bias cancel. With a properly wound magnetic field coil, it is then important
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Figure A-1: Intensity noise generated by the retroreflected lattice beam. Comparison
of the lattice intensity noise spectrum without any lattice retroreflection (orange)
versus the intensity noise spectrum with the lattice retroreflection properly aligned
to the atoms (blue). The low frequency noise is a result of the reflection of the
retroreflected bean off the fiber tip and interfering with the forward propagating
beam.

to align the coils to be oriented coaxial with each other and then rigidly mounted

so that they don’t move during operation. Note that much of this care can be un-

done by the ferromagnetism of the steel typically used for the chamber. Especially

if the chamber design utilizes welded components, these ferromagnetic components

can cause substantial hysteresis and inhomogeneity in the field at the position of the

atoms.

Moving from the mechanical to the optical setup, it is very useful to sample the

lattice intensity with two independent photodiodes. One photodiode can be used to

generate an error signal and used to provide feedback to the AOM RF power, and

the other photodiode serves as a truly independent measurement of the residual noise

in the transmitted beam. It is good engineering practice to use shot noise limited,

transimpedance amplified photodiodes for this application. The main advantage is

that the amplification of the photocurrent allows the output of high, ∼1 mA, currents

with simultaneously high bandwidth. This dual photodiode setup will then allow one

to successfully debug issues with the feedback highlighted by the next important step:

use an optical isolator to block the retroreflected lattice beam from shining back onto
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the optical fiber tip.

Figure A-1 shows the intensity noise spectrum of a lattice laser beam with and

without the lattice retroreflection. The appearance of excess noise at low frequencies

arises due to the retroreflected beam hitting the fiber tip and the reflection from the

surface of the fiber tip once again propagates in the forward direction. In this case the

fiber tip is angle-cleaved, so there is a small angle between the beam coming out of

the fiber and the one reflected from the surface. However, the angle is small enough,

and the beam is large enough that these two beams overlap after the collimator and

subsequently interfere with each other. Due to the mounting of the retroreflection

mirror on a different optical breadboard from the fiber launch, there is substantial

motion between the two surfaces, the spectrum of which is seem as the excess noise

in figure A-1. To eliminate this low frequency noise, an optical isolator is used to

block the retroreflected lattice beam before it has the chance to enter the intensity

stabilization feedback photodiode. For optical surfaces after the isolator, every optical

back reflection should be intentionally misaligned from the atoms.

Examining the intensity noise spectrum in figure A-1, we see a dense spectrum

of relatively strong noise peaks at high frequencies. Normally, this noise is not a

limiting issue because atoms primarily absorb energy at the low-energy scales of the

lattice band energies. An important exception to this argument arises when we have

multiple lasers beams confining the atoms. Figure A-2 illustrates this effect. In this

experiment, a BEC is confined in a crossed dipole trap and is subsequently loaded

into the Mott insulating phase at a lattice depth of 20 𝐸𝑟. After a 1 second hold, the

lattices are ramped back to the superfluid side of the Mott insulating transition and

the momentum distribution is measured in a time-of-flight image.

All the laser beams used for trapping the atoms are derived from the same laser

source and their frequencies are deliberately offset in order to avoid unwanted in-

terferences between different directions of the lattice or dipole trapping lasers. One

beam that forms part of the dipole trapping potential is offset in frequency from the

main laser source by -30 MHz using an AOM. The offset frequency of another beam

which forms one direction of a three dimensional lattice is then deliberately set to
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Figure A-2: Effect of opposite AOM frequencies. Two beams derived from the same
laser source are passed through two different AOMs. One beam that forms the dipole
trapping potential is offset in frequency by -30 MHz. The frequency of another beam
which forms one direction of a three dimensional lattice is offset in frequency and
changed from +28.8 MHz to +30.2 MHz going from left to right as indicated by the
labels. As a test of the heating rate, the atoms are held in a 20 𝐸𝑟 deep Mott insulating
state for 1 second, before the state is ramped back across the phase transition to the
superfluid state.

be nearly opposite the frequency of the dipole trapping beam and varied from +28.8

MHz to +30.2 MHz. The resulting effect on the recovered condensate fraction is

clearly visible in figure A-2 indicating some heating in the lattice due to interference

between the two beams when they are offset at exactly opposite frequencies.

To understand this result, we note that any modulation of the carrier at 60 MHz

generates frequency sidebands that cannot couple into the optical fiber which carries

the light from one part of the experiment to another part of the experiment. However,

the same acoustic wave that is applied to the AOM crystal in order to generate

the frequency-shifted diffraction orders may reflect from the end of the crystal and

propagate in the opposite direction of the applied wave. This backward propagating

wave can in turn couple light at a frequency of -30 MHz into the mode which ends

up coupled into the fiber. With this picture in mind, we can understand the heating

we see in figure A-2 as the interference of this unwanted frequency sideband with the

carrier of another laser beam offset by an exactly opposite frequency. Therefore, it

is good practice to set the RF frequency driving each AOM to non-opposite values if

269



10
-5

10
-4

10
-3

10
-2

10
-1

Frequency (MHz)

-150

-140

-130

-120

-110

-100

-90
In

te
ns

ity
 N

oi
se

 (d
B

/H
z)

Added noise from
retroreflection

Votlage setpoint noise
and filter corner

RF Amplifier ground
loops and pickup

Lattice RIN

SRS Servo
Homebuilt servo

Figure A-3: Improved noise spectrum from a homebuilt servo controller. Comparison
of a commercial servo controller to a homebuilt servo controller. In the frequency
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ciated with the high power RF amplifier. Known sources of noise are also indicated
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the laser light is derived from a common source.

With this understanding in hand, we look back once again at the intensity noise

spectrum in figure A-1 and consider the dense spectrum of high frequency peaks. In

the simplest three-dimensional lattice setup the presence of five different frequency

components each with a similarly noisy high frequency spectrum how can we guaran-

tee that none of these frequency components can interfere and cause heating processes

as seen in figure A-2?

The noise spectrum can easily be improved by building custom feedback electron-

ics for the noise-critical parts of the experiment. Figure A-3 shows a comparison

of a commercial servo controller compared to a homebuilt servo controller. Noise

floors well below those of the commercial servo controller are shown for the frequency

regimes of interest for direct excitation of the lattice band gap. Another distinct

advantage of the homebuilt servo controller is that the board ground can be easily

floated and referenced to the ground defined by the RF amplifier, which in turn can

be referenced to the ground of the optical table, such that all ground loops in in the

feedback and control network are removed. Removal of all ground loops results in
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Figure A-4: Precise atom number control using a tightly confining dimple trap. At
the highest atom numbers of ∼10000 the relative atom number fluctuations are at
the few percent level, limited by detection noise and close to the atomic shot noise
limit.

a significant reduction in the number of high frequency peaks visible in the inten-

sity noise spectrum. In addition to lowering the overall intensity noise, the homebuilt

servo electronics have the added benefit of reducing the probability of unwanted inter-

ferences between different lattice and dipole trapping beams on during an experiment.

Now that we have covered the mechanical, optical, and electronic aspects of a

great optical lattice. We turn to the best ways to exert control over the atoms we

want to load into our lattice. As we have explored in this thesis, the density of

atoms in the lattice is a very important parameter which can qualitatively change

the physics of the Mott insulator. Therefore, in order to precisely control the density

and thus the location in the superfluid-to Mott insulating phase diagram, we use a

tightly confining dimple trap in conjunction with a strong gradient to vary the atom

number in our BEC as shown in figure A-4.

Practically, we begin by preparing a large-atom number (∼105) BEC in the |1,−1⟩
hyperfine state in a loosely-confining crossed dipole trap. A tightly confining beam of
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Figure A-5: Spectrum of the superluminescent diode used for the dimple trap. (Left)
Superluminescent diode spectrum without any filtering. (Right) Superluminescent
diode spectrum with band pass filtering to remove near-resonant photons at 780 nm
and 795 nm.

temporally-incoherent light propagating along the vertical direction is then focused

with a ∼5 𝜇m spot size onto the center of the condensate and the intensity is ramped

to some variable value. A large magnetic field gradient is ramped on in the horizontal

direction, removing all residual thermal atoms from the trap. Finally, the magnetic

field gradient is ramped off and the tightly confining dimple trap is ramped down

to transfer the condensate, with a precisely controllable atom number and no visible

thermal fraction, back into the loosely confining crossed dipole trap. The resulting

atom number control and stability is shown in figure A-4.

The light source used for the dimple trap is a high-power superluminescent diode

with a 50 nm spectrum centered at a wavelength of 840 nm (Superlum SLD-37-HP).

The spectrum is filtered to remove all resonant light as shown in figure A-5.
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