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Abstract
87Rb Bose Einstein Condensate in 3D optical lattice was studied in the regime of weak
interaction(the superfluid phase) and strong interaction(the Mott insulating phase).

The stability of superfluid currents was studied using a moving optical lattice.
The critical momentum for stable superfluid current varies from 0.5 recoil momentum
(shallow lattice) to 0 (the Mott insulator) as the system reaches the Mott insulator
transition. The phase diagram for the disappearance of superfluidity was studied
as a function of momentum and lattice depth. Our phase diagram boundary ex-
trapolates to the critical lattice depth for the superfluid-to-MI transition. When a
one-dimensional gas was loaded into a moving optical lattice a sudden broadening of
the transition between stable and unstable phases was observed.

A new auxiliary vacuum chamber, which is called the science chamber, was de-
signed and installed to improve optical lattice experimental performance and imaging
resolution power. Atoms are transported from the main chamber to the science cham-
ber. By further evaporation cooling, BECs with N ∼ 2-3 × 104 atoms are produced
in a combination trap of two focused IR laser beams. High-resolution imaging was
obtained with a 4-lens stack providing a resolution of ∼ 2µm.

The deep Mott insulator(MI) phase was studied using clock shift spectroscopy.
Individual MI phases with integer occupation numbers could be addressed through
their clock shifts, and their spatial density profile could be imaged (“shell structure”).
With increasing trap depth, MI shells expanded from low to high density regions of
the cloud.
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Chapter 1

Introduction

1.1 Bose-Einstein Condensates

BEC is a quantum mechanical phenomenon occurring at high phase space densities,

generally realized at extremely low temperatures. Below a certain critical tempera-

ture, a large fraction of bosonic atoms occupy the ground state and form (or condense

into) a giant matter wave. In this state, every atom behaves in the same way, and

quantum mechanical effects become manifest on a macroscopic scale. A quantum

world now becomes macroscopically visible to Alice “through the looking-glass of

BEC”.

The idea of Bose-Einstein Condensate (BEC) was first suggested by Bose and

Einstein in 1924[12, 36, 37]. However, experimental realization of BEC had not

been followed for over 70 years. Finally in 1995, the idea of Bose and Einstein

was experimentally realized in a dilute atomic gas system of Rb[4] and Na[29] after

the development of laser cooling techniques[22, 97, 24]. Nowadays BEC is routinely

produced and studied in a number of laboratories over the world.

Since the advent of BEC, the research field of BEC has flourished very rapidly over

the last decade, and BEC has been successful in serving as a unique and important

test bed in exploring the quantum mechanical world. A number of theories and

experiments using BEC have been performed and new possibilities suggested in a

wide range of research topics: for example, atom interferometry, atom optics, precision

17



measurement, quantum computation, low-dimensional physics, quantum simulator of

condensed matter system, etc. At the same time, the number of atoms in the BEC

family has grown. 10 species of atoms have been reported to be condensed into BEC.

The role of BEC is not limited to studying bosons; its role is extended to the

study of fermions. BEC performs as a refrigerator for fermions in achieving low

temperature of fermi gases, and the BEC-BCS crossover has been studied very actively

both theoretically and experimentally

1.2 Bose-Einstein Condensates in Optical Lattices

An optical lattice is a versatile tool for ultracold atomic physicists. It is employed for

sub-recoil cooling [22, 24, 97], atomic clocks [121], atomic lithography [122, 82, 83],

etc. When an optical lattice meets BEC, it makes the physics of BEC more interesting

and richer.

In recent years, a BEC loaded in optical lattices has been extensively studied as a

model system for condensed matter phenomena. Ultracold atomic system in optical

lattice is an ideal implementations of the Bose-Hubbard model and it could serve as a

“quantum simulator” to investigate condensed matter theories. Many open questions

would be challenged and tested with this system. The system of BEC in optical

lattice has major advantages over conventional condensed matter systems.

1. The system is defect-free.

2. The interaction is not as complicated as in conventional condensed matter sys-

tem. The interaction is mainly due to s-wave collisions. (p-wave collisions could

be manipulated)

3. The experimental parameters can be controlled easily, precisely and dynami-

cally. This is usually carried out by controlling the optical power of optical

lattice laser beams

4. Various optical lattice geometries can be implemented (i.e. simple cubic, trian-

gular, or kagomè lattice geometries[105])

18



5. Lower dimensional system (1D, 2D) can be achieved

A number of topics in condensed matter theory could be investigated in optical

lattice. The quantum phase transition between the superfluid and Mott insulator

phase[52, 65, 42], and low-dimensional systems (1D [94, 86, 116, 71], 2D[58]) have

been achieved and studied in optical lattices. Various topics have been proposed by

theoretical works and wait to be experimentally realized using ultracold atoms and

optical lattices: ferro and anti-ferromagnetism[47, 32, 99, 100], disordered systems [45,

79, 109, 23] (Bose glass, Anderson localization), spinor system in optical lattice[31, 56],

quantum information[64, 91, 92, 112], frustrated antiferromagnetism[27, 28], dipolar

gas system[54, 7], etc.

1.3 The Superfluid to Mott Insulator Transition

A BEC in an optical lattice realizes a nearly ideal system for Bose-Hubbard model.

Bose-Hubbard model describes interacting atoms in a periodic potential with only

two terms: a kinetic energy term for a hopping process between lattice sites and an

interaction energy term for an on-site interaction between atoms in a same lattice

site. The transition between the superfluid(SF) phase and the Mott insulator(MI)

phase, which is an important paradigm of strongly correlated system where transport

is suppressed by particle correlations, is described using this model.

This thesis focuses on the experimental realization and study of the SF-MI phase

transition using a 87Rb BEC in 3D simple cubic optical lattice. Transport property

and number statistics have been experimentally investigated.

• Transport property: In general, one of the basic characterization experiments for

typical condensed matter materials is to measure their conductivities (transport

properties) by applying voltage. The transport properties of ultracold atomic

system in optical lattice were studied across the SF-MI phase transition by

using a moving optical lattice. The critical point for the phase transition is

determined from the transport properties.
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• Number statistics: Particle-particle correlations, which lead to the suppression

of superfluid current in the MI phase, also modifies the number statistics of

the system. Utilizing the clock shift in hyperfine transition of 87Rb atoms, the

density profile can be measured across the phase transition.

1.4 Outline

The outline of this thesis is as follows. In chapter 2, I discuss basic theory of BEC

and the effect of the atom-atom interaction on the excitation spectrum of BEC.

The excitation spectrum is modified to have a phonon mode by the presence of the

atom-atom interaction leading to the superfluidity. The superfluidity in BEC is also

discussed. In chapter 3, I discuss the dynamics of BEC loaded in optical lattice. A

introduction to Bose-Hubbard Model and two quantum phases, the superfluid phase

and the Mott insulator phase is given. Chapter 4 describes a new experimental setup,

the science chamber. The science chamber is designed for optical lattice experiment

and high resolution imaging. The experimental procedures such as optical tweezer

transport, optical trapping of BEC, and the production of BEC are discussed. A new

high resolution imaging lens setup is also described. In chapter 5, optical lattices are

discussed as engineering tools of a BEC. Two experiments performed with optical

lattices are briefly introduced. In chapter 6, transport property of superfluid in a

regime of weak interaction to strong interaction is discussed. The critical point for

the quantum phase transition between the superfluid and the Mott insulator phases

could be measured from this transport measurement. The transport measurement

in 1-D system is also discussed. In Chapter 7, clock shift spectroscopy of the Mott

insulator phase is discussed as a density probe. Using two-photon pulse (µwave +

rf), each Mott insulator shell could be addressed and imaged. The spatial profile of a

Mott insulator could be obtained. Chapter 8 presents experimental demonstration of

the quantum Zeno effect using a Rb BEC where the two-photon transition was used

to create a coherently driven two-level system.
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Chapter 2

Basic Theory

In this chapter, I present a short review of the basic properties of BEC. Since there

have been already a number of good review papers, I simply refer to review papers[26,

77, 69, 70, 25], earlier theses[114], and books[96, 55, 107] for a more detailed and

general review of BEC. In the following section, interactions in BEC are discussed.

Excitation spectrum of BEC and its effect on superfluidity are presented. In the last

section, the hierarchy of energy scales relevant to the BEC experiment is discussed.

2.1 Bose–Einstein Condensate

In a system of bosonic particle, as the temperature decreases the number of particles in

a ground state increases according to the Bose-Einstein distribution. Below a critical

temperature, the occupation number N0 of the ground state becomes comparable to

the total number N of atoms in the system. Such macroscopic occupation in a ground

state is called Bose-Einstein condensation. As a quick estimate of critical temperature,

dimensional calculation can be done in the following way. A macroscopic matter wave

forms when the wave packet of atoms starts to overlap with each other. The thermal

de Broglie wavelength of an atom is λdB =
√

2π~2/mkBT , and the distance between

atoms is n−1/3 (n : density). The condition for the formation of a macroscopic matter

wave is imposed by
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λdB ∼ n−1/3 (2.1)

providing the critical temperature kBTc ∼ 2π~2n2/3

m
. In a system of gas in a har-

monic trap, for example, the density n is given by N/R3 (N : total number of atoms,

R : the size of the system). R can be estimated kT ∼ mω2R2 (ω : trapping fre-

quency). The critical temperature is then determined by the condition in Eq. (2.1)

kBTc ∼ ~ωN1/3 (2.2)

This dimensional estimation is already very close to the calculation of Tc in a

system of non-interacting gas in a harmonic trap (see Eq. 2.8).

2.1.1 Non-interacting Atoms

Let us first consider a non-interacting Bose gas in a harmonic trap with trap frequen-

cies ωx, ωy, ωz. The energy spectrum of this system is given by

Enx,ny ,nz = (nx + 1/2)~ωx + (ny + 1/2)~ωy + (nz + 1/2)~ωz (2.3)

The number N and energy E at temperature T are derived from the partition

function and Bose-Einstein statistics.

N =
∑
nx,y,z

1

exp[β(Enx,ny ,nz − µ)]− 1
(2.4)

E =
∑
nx,y,z

Enx,ny ,nz

1

exp[β(Enx,ny ,nz − µ)]− 1
(2.5)

where µ is chemical potential, and β = (kBT )−1. As the temperature T approaches

zero, the occupation number of a ground state N0 becomes O(N) and chemical po-

tential µ→ E0,0,0. The number of atoms in this system is
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N = N0 +
∑

nx,y,z 6={0,0,0}

1

exp[β(Enx,ny ,nz − E0,0,0)]− 1
(2.6)

In the limit of large number N → ∞, the summation can be replaced by the

integral (
∑

nx,y,z
→
∫∞

0
dnxdnydnz). One gets the atom number in excited states

Nex = N −N0,

Nex = N −N0 = 1.202

(
kBT

~ωho

)3

(2.7)

with ωho = (ωxωyωz)
1/3. The critical temperature for BEC can be determined

from this equation by letting N0 → 0. The critical temperature Tc and the condensate

fraction N0/N are

kBTc = 0.94~ωhoN
1/3 (2.8)

N0/N = 1− (T/Tc)
3 (2.9)

2.1.2 Interacting Atoms

The effective interaction between atoms in BEC is due to s-wave scattering process.

The effective two-body interaction may be written as a short range interaction po-

tential U(r1, r2) = gδ(r1 − r2) with interaction strength g = 4π~2as/m (as: s-wave

scattering length, m: atomic mass). Including this atom-atom interaction term, the

many-body Hamiltonian for interacting bose gas in a trap potential Vtrap(r) is [41]

Ĥ =

∫
drΨ̂†(r)

(
− ~2

2m
∇2 + Vtrap(r)

)
Ψ̂(r)+

1

2

∫
dr1dr2Ψ̂

†(r1)Ψ̂
†(r2)U(r1, r2)Ψ̂(r2)Ψ̂(r1)

(2.10)

with the boson field operators Ψ̂†(r), Ψ̂(r). When the temperature T is near the criti-

cal temperature Tc, the number of atoms in a ground state is macroscopic (∼ O(N)),

and the field operator can be separated into two parts: one for the condensate part

and the other for the excited state part. The excited state part of the field operator

is small compared to the condensate part and can be treated as a perturbation term.
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The field operator Ψ̂(r) may be written as

Ψ̂(r) = Φ(r) + δΨ̂(r) (2.11)

where a complex function Φ(r) is the expectation value of the operator Ψ̂(r) and

the condensate density n0(r) is given by n0 = |Φ(r)|2.(Bogoliubov approximation)

The classical field Φ(r) = 〈Φ(r)〉 is analogous to the classical electric field E = 〈Ê〉

defined as the expectation value of the operator Ê. The complex function Φ may be

called order parameter of the condensate (or the condensate wavefunction).

Assuming that the perturbation term δΨ̂ is very small and can be ignored, the

field operator may be replaced by a c-number Φ(r). The equation of motion is the

Heisenberg equation ( i~ ∂
∂t

Ψ̂(r, t) = [Ψ̂(r, t), Ĥ] ). If one replaces Ψ̂(r, t) by Φ(r, t),

the Heisenberg equation gives the equation for the condensate wavefunction Φ(r, t)

i~
∂

∂t
Φ(r, t) =

(
~2

2m
∇2 + Vtrap(r) + g |Φ(r, t)|2

)
Φ(r, t) (2.12)

This is Gross-Pitaevskii(G-P) equation. This is a non-linear form of the Schrödinger

equation with a normalization condition
∫
dr|Φ|2 = N . The condensate wavefunc-

tion Φ(r, t) can be decomposed into a spatial and temporal part as in Φ(r, t) =

φ(r) exp(−iµt/~) where µ is chemical potential. Then time independent G-P equa-

tion is

µφ(r) =

(
~2

2m
∇2 + Vtrap(r) + g |φ(r)|2

)
φ(r) (2.13)

where φ can be taken as real. This equation determines the phase of the condensate

as well as the density of the condensate. The phase at a given time t is given by µt/~,

and the density by |φ(r)|2.

When the number of atoms is very large, the kinetic energy term in Eq. (2.13) be-

comes small compared to the interaction energy term and may be neglected (Thomas-

Fermi approximation). Then one gets chemical potential µ and the density profile

n(r)
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µ = Vtrap(r) + g |φ(r)|2 (2.14)

n(r) = |φ(r)|2 =

 (µ− Vtrap(r))/g if µ > Vtrap(r)

0 otherwise
(2.15)

The normalization condition of φ(r) (
∫
dr|φ(r)|2 = N) provides the chemical

potential µ

µ =
152/5

2

(
Nas

aho

)2/5

~ωho (2.16)

with aho =
√

~/mωho

2.1.3 How strongly do atoms interact?

If there is no interaction in a system, the system is identical to a statistical ensemble

of single particle system. Due to lack of interaction, ideal gas atoms do not “see” the

presence of other particles and can not “share” the wave function information such

as the phase and density. As will be covered later in the chapter 2, a non-interacting

system does not show interesting phenomena such as superfluidity, coherence, etc.

In opposite to the non-interacting ideal gas, the presence of interaction makes the

real-life gas more complicated as well as interesting and fun to study. Atom-atom

interaction in dilute gas system leads to many interesting and remarkable phenomena,

one example of which is the superfluidity in BEC.

The next questions then arise; How strongly do atoms interact in a system of

BEC and how does it affect the physics? The interaction strength of atoms in BEC

is determined by the s-wave scattering length as. In order to estimate the interac-

tion strength, this length scale as could be compared to another length scale: the

interatomic space n−1/3. From Bogoliubov theory, the parameter na3
s determines

the quantum depletion of condensate (nex/n ∼ (na3
s)

1/2), which indicates how much

non-zero momentum states are mixed into the ground state of the condensate by the

presence of interaction. For 87 Rb, the quantum depletion is small na3
s ∼ 10−6− 10−4
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� 1 (as ∼ 5nm, typical density range n ∼ 1013cm−3 − 1015cm−3). Under the condi-

tion of na3
s � 1, the condensate number N0 should be close to the total number N .

This condition validates the approximation used in the Eq.(2.11) that non-condensate

part is neglected.

Another quantity that we can consider is the ratio of two energy scales : ki-

netic energy and interaction energy. The kinetic energy scale in the condensate is

∼ N~ωho = N [~2/ma2
ho]. The interaction energy scale is ∼ gn2V = N [g(N/V )] with

a volume V ∼ a3
ho. The ratio of kinetic energy to interaction energy is given by

Eint

Ekin

∼ N [g(N/V )]

N [~2/ma2
ho]

∼ Nas

aho

(2.17)

Typically the trapping frequency ωho ∼ 2π × 100Hz (aho ∼ 1µm), and as/aho ∼

0.005. For typical number of the condensate N ∼ 105 − 106, the ratio of Eint/Ekin is

∼ 500 − 5000. In large N limit, the interaction energy dominates since the kinetic

energy is proportional to N but the interaction energy to N2. This condition validates

the assumption that the kinetic energy term may be neglected in Thomas-Fermi

approximation (Eq.2.15)

When BEC is loaded in an optical lattice potential, the kinetic energy is described

by hopping matrix element J and the interaction energy is described by on-site inter-

action element U . The ratio of these two energy scales also plays an important role.

When the hopping matrix element dominates (J � U), tunneling of atoms between

adjacent sites keeps the phase of system coherent, and the system shows the superflu-

idity. On the other hand, when the on-site interaction dominates (U � J), tunneling

process is suppressed(“communication” of atoms between adjacent sites stops ), and

this prevents the system from establishing the phase coherence over long range. This

state is called the Mott insulator phase. The ratio of interaction energy to kinetic

energy (U/J) determines the quantum phase of the system. The quantum phase

transition between the superfluid and the Mott insulator phase will be discussed later

in the chapter 3
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2.2 Interactions in Bose-Einstein condensates

Atom-atom interactions arise from scattering process between atoms. Scattering pro-

cess falls in two categories: inelastic process and elastic process. In inelastic scatter-

ing, there are several processes: spin exchange process, dipolar process, three-body

process. These inelastic collision processes are “bad” collisions for BEC experimen-

talists since inelastic processes lead to loss of atoms in BEC. In experiments, inelastic

scattering rate is generally low enough so that atom loss is not significant on experi-

mental time scales. More details on the ultracold scattering processes and atom loss

processes are discussed in Ref. [128, 127, 66, 120]

In elastic process, only s-wave scattering occurs at a very low temperature (“head-

on collision”). The temperature is so low that higher partial waves(l ≥ 1) are highly

suppressed and do not contribute. The cross section for the elastic scattering is given

by σ = 8πa2
s, which is independent of energy of colliding atoms (as: s-wave scattering

length). This elastic process provides the effective interaction, two-body interaction

potential energy, which is given by a delta function interaction

U(r1, r2) = gδ(r1 − r2) (2.18)

with g = 4π~2as

m
.

In this chapter, I review the basic theory of excitation in an interacting system

with U(r1, r2). The interaction [Eq. (2.18)] modifies the excitation spectrum from

non-interacting free particle type (ε = p2/2m) to the one with linear phonon branch

(ε = sp). This phonon branch leads to the superfluidity.

2.3 Excitation Spectrum

We shall consider the system of interacting Bose gas with no external trapping Vtrap =

0. The many-body Hamiltonian is given by Eq. (2.10). With field operators Ψ̂(x) =∑
k(1/

√
V )e−ik·xak, the Hamiltonian is[41]
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Ĥ =
∑
k

ε0ka
†
kak +

g

2V

∑
k1,k2,k3,k4

a†k1
a†k2

ak3
ak4

δk1+k2,k3+k4
(2.19)

with free particle energy ε0k = ~2k2

2m
.

As seen in chapter 2.1.3, the parameter na3
s is very small in our experimental sys-

tem, and it may be assumed that the condensate number N0 is close to the total num-

ber N(N − N0 � N). Under this assumption, the contribution of high-order terms

containing non-condensate part(ak, k 6= 0) becomes small, and the terms containing

more than two non-condensate operators ak6=0 may be neglected. The interaction part

of the Hamiltonian can be truncated up to second order:

Ĥint ≈
g

2V

{
a†0a

†
0a0a0 +

∑
k 6=0

(
4a†kaka

†
0a0 + a†ka

†
−ka0a0 + a†0a

†
0aka−k

)}
(2.20)

a0 (or a†0) can be replaced by c number
√
N0, since N0 ∼ N . The Hamiltonian in Eq.

(2.20) is

Ĥint =
g

2V

{
N2

0 +
∑
k 6=0

(
4N0a

†
kak +N0(a

†
ka

†
−k + aka−k)

)}
(2.21)

In a system of fixed atom number N = 〈N̂〉, N0 can be replaced using the number

operator N . The number operator is given by

N̂ = N0 +
∑
k6=0

a†kak (2.22)

Substitution of Eq. (2.22) into the interaction Hamiltonian (Eq. (2.21)) yields

the final Hamiltonian (kinetic energy + interaction energy)

Ĥ =
1

2
gn2V +

1

2

∑
k6=0

(
2(ε0k + ng)a†kak + ng(a†ka

†
−k + aka−k)

)
(2.23)

with n = N/V . In this Hamiltonian, only N and N2 terms are kept.

The Hamiltonian (2.23) may be exactly solved using canonical transformation.
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The diagonalization of this Hamiltonian can be done by defining new creation and

annihilation operators αk, α
†
k.

ak = ukαk − vkα
†
−k, a

†
k = ukα

†
k − vkα−k (2.24)

where the coefficients uk, vk are taken to be real and a function of k = |k|. For this

transformation to be canonical, a new set of operators should obey the commutation

relations([αkα
†
k] = δk,k′ , [αkαk] = [α†kα

†
k] = 0 ). The commutation relations impose

the condition on the coefficients uk, vk. It can be easily checked that

u2
k − v2

k = 1 (2.25)

Substitution of the new operators α’s to the Hamiltonian (Eq. 2.23) yields

Ĥ =
1

2
gn2V +

∑
k6=0

(...) +
∑
k6=0

(...)α†kαk

+
1

2

∑
k6=0

{(
ng(u2

k + v2
k)− 2ukvk(ε

0
k + ng)

)
(α†kα

†
−k + αkα−k)

}
(2.26)

Two conditions are required to determine the two coefficients uk, vk. We have

only one condition in Eq. (2.25). The second condition may be chosen to eliminate

the last term in the Hamiltonian of Eq. (2.26) by setting

ng(u2
k + v2

k)− 2ukvk(ε
0
k + ng) = 0 (2.27)

Using two conditions Eq. (2.25) and Eq. (2.27), the coefficients u and v are given

by

v2
k = u2

k − 1 =
1

2

(
ε0k + ng

εk
− 1

)
(2.28)

where

εk =
√

(ε0k + ng)2 − (ng)2 (2.29)

The Hamiltonian (2.26) is finally diagonalized with the coefficients u and v given
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in Eq. (2.28).

Ĥ =
1

2
gn2V − 1

2

∑
k6=0

(ε0k − εk + ng) +
∑
k6=0

εkα
†
kαk (2.30)

There are several points to note on this Hamiltonian

1. The ground state of this Hamiltonian |0〉α (the ground state of the condensate)

may be defined by

αk|0〉α = 0 ∀k 6= 0 (2.31)

This state is not the same as the ground state of the non-interacting gas since ak|0〉α =

−vkα
†
k|0〉α 6= 0. The atom-atom interaction modifies a non-interacting ground state

to a superposition state of unperturbed states.

2. The contribution of unperturbed state of momentum k to the ground state of

the condensate may be calculated from

nk = 〈a†kak〉α = v2
k〈αkα

†
k〉α = v2

k (2.32)

The total contribution of non-zero momentum state to the condensate is calculated

as following
1

N

∑
k6=0

nk =
1

N

∑
k6=0

v2
k =

8

3
√
π

(na3
s)

1/2 (2.33)

This defines the “depletion” of the condensate. In dilute atomic gas system, the

depletion of the condensate is very low. However, it could be raised by changing

the interaction strength using Feshbach resonances or optical lattices. Experimental

study on quantum depletion was done in optical lattices[132].

3. This Hamiltonian may be understood in a quasi-particle picture. An excited

state of the condensate is created by applying a quasi-particle creation operator α†k

to |0〉α. A quasi-particle with k is a superposition of two states (Eq. 2.24); one

state where a particle with momentum k is added by removing one particle in the

condensate and the other state where a particle with momentum −k is removed and

it is added to the condensate.

4. The excitation spectrum of the condensate is simply given by εk =
√
ε0k(ε

0
k + 2ng)
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Figure 2-1: Excitation spectrum of BEC. For long wavelength (~k < mc, c: speed
of sound), the excitation energy is linear to the momentum (phonon mode). The
excitation energy becomes free particle spectrum for higher momentum ~k > mc.

(Eq. (2.29)). There are two regimes, long wavelength (phonon mode) and short wave-

length(free particle mode)

εk =

 c(~k) for k → 0

ε0k + ng for k →∞
(2.34)

In the regime of long wavelength, the spectrum becomes linear with a sound velocity

c = ∂ωk/∂k =
√
ng/m =

√
4π~2asn/m2. The quasi-particle operator becomes

α†k → a†k − a−k k → 0 (2.35)

A long wave length quasi-particle has equal contribution from momentum k and −k,

and its wave function has a asymptotic form of sin(k · r)

In the opposite limit, short wavelength, the spectrum becomes free particle-like
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with energy offset ng. The quasi-particle operator becomes

α†k → a†k k →∞ (2.36)

with an asymptotic wavefunction ∼ exp(−ik · r)

The excitation spectrum of the condensate is plotted in Fig. 2-1

2.4 Superfluidity in Bose–Einstein Condensate

The superfluidity is one of the most remarkable phenomena of BEC. For instance,

circulating flows are quantized in superfluid matter to form quntized vortices, which

were observed in rotating BEC[1, 81]. Superconductivity is also explained in terms

of a condensate of fermion-pairs and its superfluidity.

However, BEC does not necessarily imply superfluidity. Superfluidity does not

occur in the case of a non-interacting BEC. It is the atom-atom interaction that leads

to superfluidity in a dilute gas BEC as shall be discussed in the following section.

The condition for superfluidity and the effect of interaction on the superfluidity are

discussed.

2.4.1 Landau Critical Velocity

Let us consider the situation where an obstacle object moves with a constant speed

in a condensate [Fig. 2-2]. If the object moves very fast, it exerts pressure on the

atoms around it and creates flow of atoms (excitations). However, as the speed of the

object decreases, the object ceases to create excitations below a certain speed since

the energy scale associated with the movement of the object becomes lower than the

excitation energy of a condensate.

To be more specific, let us assume that an obstacle object moving with velocity

v has a potential energy Vo(r) on atoms in a condensate and the position of an

obstacle is given by Ro(t) = vt + Ro(0) at time t. In the frame of a condensate,

the potential energy Vo is given by Vo(r−Ro(t)), which is time-dependent potential
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v

Figure 2-2: An obstacle object moving with the velocity v in the condensate creates
excitations if it moves faster than the critical velocity vc

energy. A time-dependent potential could transfer energy to the system by creating

excitations. Fourier transformation of the potential energy shows which mode this

potential excites. The fourier transformation gives

Ṽo(q, t) =

∫
dre−iq·rVo(r− vt) =

∫
dr′e−iq·r′

Vo(r
′)e−iq·vt = Ṽo(q)e−iq·vt

Ṽo(q, ω) = Ṽo(q)δ(ω − q · v) (2.37)

The Fourier transform of the potential energy of the moving object has the energy

ω = q · v at the momentum q. For a given momentum q, this moving obstacle

can create excitations with energies ranging from 0 to ~qv. Excitations would not

be generated and the superfluid remains stable as long as the following condition is

fulfilled

εq > Max (q · v) = qv ∀q (2.38)

Therefore the minimal velocity vc required to create excitations in superfluid is de-

termined by

v ≥ Min(
εq
q

) = vc (2.39)

From the excitation spectrum of weakly interacting Bose gas system (Eq. (2.34)),

the critical velocity for superfluid is given by

vc = c =

√
4π~2asn

m2
(2.40)

The critical velocity is equal to the sound speed.

33



2.4.2 Interacting gas vs. non-interacting gas

In a non-interacting gas, the excitation spectrum is simply given by ε0p = p2/2m.

The critical velocity vanishes (vc = Min(ε0p/p) = 0), and superfluidity is absent in a

non-interacting BEC. The manifestation of superfluidity in a dilute gas BEC is due

to atom-atom interactions.

2.4.3 Critical Velocity in Optical Lattices

BEC loaded in optical lattices shows superfluidity. The critical velocity for unstable

superfluid flow is the sound speed. However, there exists another type of decay process

in the system in optical lattices, called dynamical instability. A dynamical instability

occurs due to the modification of the excitation spectrum εq by optical lattice as will

be discussed in the chapter 6.

2.5 Energy Scales in BEC Experiment

In this section, I present the list of energy scales related to typical BEC experiments.

Understanding the hierarchy of energy scales is important in studying the physics

of ultracold atoms. If the order of energy scales changes, the dynamics becomes

completely different. For example, in typical harmonic traps chemical potential µ is

higher than the trapping frequency ωho by 2 to 3 orders of magnitude (Eq.(2.16)).

However, when trapping frequency along one axis (for example, z-axis) increases more

than chemical potential(~ωz � µ), the atomic motion along the z-axis is frozen and

the system behaves as in 2-D instead of 3-D.

In a typical harmonic trap, the order of energy scales is

~2

ma2
s

� kBTc ∼ ER > µ� ~ωho (2.41)

In a deep optical lattice(i.e. 35 ER), the order of energy scales changes to

~2

ma2
s

� ~ωlatt � kBTc ∼ ER > µ ∼ U � ~ωho � J (2.42)
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Energy Frequency units

3-body recombination energy ~2/ma2
s 4.0 MHz

critical temperature for BEC Tc ∼ 10 kHz
recoil energy (λ = 780 nm, 87Rb D2 line) ~2k2

Rb/2m 3.8 kHz
recoil energy ER (λ = 1064 nm, Trapping IR laser) ~2k2

IR/2m 2.0 kHz
meanfield interaction energy gn ∼ 1 kHz
chemical potential µ ∼ 1 kHz
hopping matrix @ 35 ER J 0.5 Hz
onsite interaction matrix @ 35 ER U 1.3 kHz
external trapping ~ωho 10 ∼ 100 Hz
trapping frequency in a optical lattice site @35 ER ~ωlatt =

√
4ERVlatt 24.0 kHz

Table 2.1: Energy Scales in typical BEC experiments.

35



36



Chapter 3

Bose–Einstein Condensates in an

Optical Lattice

In this chapter I present how optical trapping works and how the optical lattice is

implemented. The Bose-Hubbard model is introduced, and the two quantum phases

associated with the Bose-Hubbard model - the superfluid phase and the Mott insulator

phase - are discussed. The system considered here is only limited to single species

ultracold atoms(87Rb BEC) in simple cubic lattice geometry. More general discussions

on ultracold atoms in optical lattice can be found in review articles[87, 78, 11]

3.1 Optical Lattice

3.1.1 Optical Dipole Trap

Atoms in a laser beam are affected by two kinds of forces. One is the dissipative force

(or scattering force). It relies on the scattering of light by atoms. Scattering of light

impart momentum kicks to atoms and increases the momentum of atoms by amounts

of ~k where k is the wave vector of the laser beam. The rate of scattering γp is

γp = γ · ρee = γ · s0/2

1 + s0 + (2δ/γ)2
(3.1)
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where ρee is the population in an excited state of two-level system, s0 is a saturation

parameter, δ is a detuning, and γ is a natural line width of atomic transition. A

saturation parameter is defined by s0 = I/Isat. I is the intensity of the laser beam,

and Isat is a saturation intensity of the transition. The dissipative force Fsc is then

given by

Fsc = ~kγp = ~k
(

γs0/2

1 + s0 + (2δ/γ)2

)
(3.2)

The other type of force is the dipole force. The dipole force is a conservative

force,which can be written as a gradient of a potential energy. This potential energy

is the AC stark shift. When the laser is far detuned from resonance (more specifically,

δ � γ), the dipole force Fdip is

Fdip = −∇Vdip

Vdip =
~γ2

8δ
s0 =

~γ2

8δ

I

Isat

(3.3)

Note that the sign of potential energy changes if the sign of the detuning δ changes.

When it is blue-detuned (δ > 0), atoms seek lower intensity. For red-detuning (δ < 0),

atoms seek higher intensity. Atoms can be trapped (repelled) by focusing a red-

detuned (blue-detuned) laser beam.

The intensity profile of a focused gaussian laser beam propagating along z-axis is

I(r, z) =
2P

πw2(z)
e
− 2r2

w2(z) (3.4)

where P is the total power of laser beam, and the 1/e2 beam waist w(z) is given

by w(z) = w0

√
1 + (z/zR). The Rayleigh length zR of the focus is zR = πw2

0/λ

(λ: wavelength of the laser beam). Near the focal point of the laser beam(z � zR,

r � w), the optical dipole trap can be approximated as a harmonic trap

Vdip(r, z) ' −V0

{
1− 2

(
r

w0

)2

−
(
z

zR

)2
}

(3.5)
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with V0 = ~γ2/8δIsat·(2P/πw2
0), and the trap frequencies are given by ωr =

√
4V0/mw2

0

, and ωz =
√

2V0/mz2
R.

3.1.2 Optical Lattice

When two laser beams with the same frequency and polarization propagate in opposite

directions, they interfere. This leads to a periodic pattern of the intensity, which acts

as a periodic potential for atoms. The interference between two laser beams leads to

a total electric field E(r, t) and intensity I(r, t).

E(r, t) = E1(r, t) + E2(r, t)

= E1e1 exp[−i(k1 · r− ω1t)] + E2e2 exp[−i(k2 · r− ω2t)] (3.6)

I(r, t) ∝ E · E∗(r, t)

= E2
1 + E2

2 + 2(e1 · e2)Re
[
E1E

∗
2e

−i((k1−k2)·r−(ω1−ω2)t)
]

(3.7)

The third term in the above Eq.(3.7) corresponds to the interference of two laser

beams, which provides aperiodic potential. There are several things to note on this

interference pattern.

1. The polarization product e1 · e2 determines the optical lattice contrast. In

general, the same polarization (usually linear polarization) is used for both

laser beams to maximize the optical lattice depth for a given total power of an

optical lattice laser beam.

2. The relative detuning ∆ω ≡ ω1 − ω2 gives rise to three different cases :

∆ω = 0 : stationary optical lattice

0 < ∆ω ∼ ωrec : moving optical lattice

ωrec � ∆ω : “time-averaged” optical dipole trap

(ωrec : recoil frequency, defined by ~ωrec = ~2k2/2m)

• ∆ω = 0 : the interference term becomes a periodic potential V ∼ sin(∆k · r).
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When two lattice beam propagate in the opposite direction (∆k = 2k), V ∼

sin(2kz). The period of an optical lattice is given by 2π/2k = λ/2, where λ is

the wavelength of a laser beam.

The period could be controlled by changing the angle θ between two optical

lattice beams. The resulting potential is V ∼ sin
([

2k sin( θ
2
)
]
z
)
, and its optical

lattice period is 2π/(2k sin( θ
2
)) = λ/2 · csc(θ/2).

• 0 < ∆ω ∼ ωrec : The phase of the interference pattern is (∆kz −∆ωt), and an

optical lattice moves with the speed of ∆ω/∆k. In case of counter-propagating

optical lattice beams (k1 = −k2), the speed of the moving lattice is given by

v = ∆ω/∆k = ∆ω/2k =
λ

2
∆f (3.8)

with ∆ω = 2π ×∆f .

• ωrec � ∆ω : In this case, the interference pattern of two laser beams oscillates

fast compared to the characteristic time scale of atomic motion. The motion

of atoms is not affected by such rapidly oscillating potentials. In quantum

mechanical language, ∆ω is far off from energy scale of atomic motion. Conse-

quently, the third term in Eq. 3.7 is averaged-out to zero. Atoms “feel” only

the individual optical dipole trapping potentials from each laser beam (i.e. E2
1 ,

E2
2 terms in Eq. (3.7)), not the optical lattice potential.).

In our experiment, an optical lattice was created by using two counter-propagating

beams with the same frequency and same polarization. The optical lattice potential

is then given by (see Eq.(3.5))

Vlatt(r, z) = −Vlatt sin(2kz)

{
1− 2

(
r

ω0

)2

−
(
z

zR

)2
}

(3.9)
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3.2 Band Structure

The presence of an optical lattice modifies the dynamics of atoms profoundly. The

energy spectrum is modified to a band structure, and energy gaps appear between

different energy bands. The dynamics of single atoms in a periodic potential can be

well described using Bloch’s theorem as follows [6].

The Hamiltonian for a single atom in a periodic potential V (x) with a period d

(i.e. V (x+ d) = V (x)) is

Eψ(x) =

(
− ~2

2m

∂2

∂x2
+ V (x)

)
ψ(x) (3.10)

A wave function ψ(x) and the periodic potential V (x) may be expanded as

ψ(x) =
∑

k

ck exp(ikx) (3.11)

V (x) =
∑
K

VK exp(iKx) (3.12)

With the expansions of ψ(x) and V (x), the kinetic energy and potential energy term

in the Schrödinger equation are expressed

−~2∇2

2m
ψ(x) =

∑
k

~2k2

2m
ck exp(ikx) (3.13)

V (x)ψ(x) =
∑
k,K

VKck exp(i(k +K)x)

=
∑
k,K

VKck−K exp(ikx) (3.14)

where in the last line, k → k −K.

The Schrödinger equation now reads

∑
k

{
~2k2

2m
ck +

∑
K

VKck−K

}
exp(ikx) = E

(∑
k

ck exp(ikx)

)
(3.15)
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Since plane waves are orthogonal to each other, Eq. (3.15) gives

~2k2

2m
ck +

∑
K

VKck−K = Eck (3.16)

, which is the Schrödinger equation in momentum space. The quasi-momentum k is

restricted to the first Brillouin zone(k : −Kx/2 ∼ Kx/2). For a sinusoidal optical

lattice potential, the potential energy term VK is

Vlatt(x) = Vlatt sin2(kLx) = Vlatt

(
eikLx − e−ikLx

2i

)2

=
Vlatt

4

(
2− ei2kLx − ei2kLx

)

VK =


Vlatt/2 K = 0

−Vlatt/4 K = ±Kx

0 otherwise

(3.17)

where kL = 2π/λL, Kx = 2kL(reciprocal vector) with wavelength λL of the optical

lattice laser. In Eq.(3.17), the K = 0 term gives a uniform energy offset to the

Hamiltonian and may be set to zero for simplicity. Second (K = ±Kx) terms give

off-diagonal matrix elements to the Hamiltonian and couple the coefficients ck to

only the coefficients ck±Kx . Consequently, the matrix form of the Hamiltonian in Eq.

(3.16) is given by (diagonal matrix) + (symmetric off-diagonal matrix).

H =



. . . (−1/4)Vlatt 0 0 0

(−1/4)Vlatt
~2(k+Kx)2

2m
(−1/4)Vlatt 0 0

0 (−1/4)Vlatt
~2(k)2

2m
(−1/4)Vlatt 0

0 0 (−1/4)Vlatt
~2(k−Kx)2

2m
(−1/4)Vlatt

0 0 0 (−1/4)Vlatt
. . .


(3.18)

The eigenenergy of this Hamiltonian matrix yields energy band structure En(k)

(n: band index = 0, 1, 2, · · · ) as plotted in Fig. 3-1
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Figure 3-1: Energy band structure in optical lattice. Ground energy band (black
curve), second energy band (blue), and third energy band (black) are plotted for
various lattice depths Vlatt = 2, 6, 10, 14ER. The energy and momentum is expressed
in a unit of recoil energy ER, and recoil momentum kL respectively. With increasing
lattice depth, the ground band becomes flatter, and energy gap increases.

3.2.1 Wannier Function

A Bloch wave function is not a spatially localized wave function, but distributed over

all lattice sites. If the optical lattice depth Vlatt is relatively deep (tight-binding limit),

atoms do not travel far over lattice sites, but stay around a lattice site. Bloch wave

functions are not adequate in treating atoms in the tight binding case. A new set

of wave functions that are localized near a lattice site is preferred. Such a new set

of wave functions can be constructed from the Bloch wave function ψn,k. These new

wave functions are called Wannier functions defined by

wn(r−R) =
1

V0

∫
dke−ik·Rψn,k(r) (3.19)

(R : position of lattice sites, V0 : volume of the first Brillouin zone). Fig. 3-2

displays the Wannier function of the lowest energy band at Vlatt = 2ER , 6ER, 10ER.

The Wannier functions wn are well localized at each lattice sites. They are orthogonal
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Figure 3-2: Wannier functions |w(x)|2 are plotted for 2, 6, 10 ER. Gray curves
represent the optical lattice potential. A x-axis is scaled with λ and the lattice period
d = 0.5λ. The overlap of Wannier functions between adjacent sites decreases with
lattice depth indicating that the hopping matrix element J drops.

at different lattice sites as well as with different band indices.

∫
drw∗

n(r−R)wn′(r−R′) = δn,n′δR,R′ (3.20)

The Wannier function wn(r) is also normalized.

∫
dr|wn(r)|2 = 1 (3.21)

3.3 Bose-Hubbard Model

In order to describe the system of interacting ultracold atoms in an optical lattice,

one needs to start from the basic many-body Hamiltonian such as Eq. (2.10). The

external potential energy term Vtrap(r) in Eq. (2.10) is now given by sum of the

external trapping potential Vtrap(r) and the optical lattice potential Vlatt(r). The

Hamiltonian is

Ĥ =

∫
drΨ̂†(r)

(
− ~2

2m
∇2 + Vtrap(r) + Vlatt(r)

)
Ψ̂(r)

+
1

2

∫
dr1dr2Ψ̂

†(r1)Ψ̂
†(r2)U(r1, r2)Ψ̂(r2)Ψ̂(r1) (3.22)

The bosonic field operator Ψ̂(r) can be expanded in Wannier functions wn(r),
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since Wannier functions are a complete basis set. It also may be assumed that the

energy scale involved in our system is small compared to the energy of the second

band. Wannier functions wn(r) reduces to only the ground band Wannier functions

w(r) = w0(r), and the bosonic field operator Ψ̂(r) is given by Ψ̂(r) =
∑

iw0(r−Ri)ai

with an annihilation operator ai of atoms as a lattice site i with position Ri of lattice

site.

There are three terms to be considered in the Hamiltonian Eq. (3.22).

• The kinetic energy and lattice potential energy term lead to a hopping matrix

element J , which describes hopping (or tunneling) between adjacent sites.

−J
∑
<i,j>

a†iaj with J =

∫
drw∗(r−Ri)

(
− ~2

2m
∇2 + Vlatt(r)

)
w(r−Rj) (3.23)

where < i, j > denote the nearest neighbor lattice sites. Note that the hopping

term has negative sign −J , since delocalization lowers the kinetic energy (lower

the curvature of the wave function).

• The trapping potential energy term gives an energy offset at each lattice site.

∑
i

εin̂i with εi =

∫
drw∗(r−Ri)Vtrap(r)w(r−Ri) → Vtrap(Ri) (3.24)

where ni is the number operator n̂i = a†iai

• The last term is the on-site interaction energy term. We consider s-wave short

range interaction and U(r1, r2) = gδ(r1 − r2). The Hamiltonian is given by

1

2
U
∑

i

n̂i(n̂i − 1) with U = g

∫
dr|w(r)|4 =

4π~2as

m

∫
dr|w(r)|4 (3.25)

With these three terms, the Bose-Hubbard Hamiltonian is obtained from Eq.

(3.22) [65, 42]

H = −J
∑
<i,j>

a†iaj +
1

2
U
∑

i

n̂i(n̂i − 1) +
∑

i

εin̂i (3.26)
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3.3.1 U and J Matrix

Two matrix elements U and J can be calculated from Wannier functions w(x)[65].

In Fig. 3-3, U and J are plotted as a function of lattice depth Vlatt. U and J

are expressed in units of recoil energy ER = ~2k2/2m. J matrix element decreases

exponentially with increasing lattice depth, while U matrix element increases more

slowly.

3.4 Superfluid Phase

In a homogenous system, the matrix element U and J are the only parameters that

define and describe the system. Let us consider two extreme cases: J � U , U � J .

When the hopping process dominates over the interaction energy (J � U), particles

easily hop between lattice sites (the superfluid phase). On the contrary if U � J ,

the energy cost for moving one particle from sites to sites is very high leading to

suppression of hopping process. This regime where atomic motion is frozen to each

lattice site is called the Mott insulating phase. The transition between the superfluid

and Mott insulating phase occurs at a critical point between the two limits. A deep

superfluid phase(J � U) is discussed in this section, and a discussion on the deep

Mott insulating phase(U � J) followes in the next section

In a case of U/J → 0, the Hamiltonian in Eq. (3.26) becomes Ĥ = −J
∑

<i,j> a
†
iaj,

which is a tight-binding model Hamiltonian for atoms in an optical lattice. In a single

atom case, the eigenstates of this Hamiltonian are simply given by

|Ψ〉 =
1√
M

∑
i

e−ik·Ria†i |0〉 (3.27)

where the wave vector k has discrete values in the first Brillouin zone. k = (lx/Mx)Kx+

(ly/My)Ky + (lz/Mz)Kz (lx,y,z = 0, 1, 2, · · · ) where Mx,y,z are the number of lattice

sites along x,y,z axis (total number of lattice sites M = Mx ·My ·Mz). The corre-
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Figure 3-3: U and J matrix elements
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sponding eigenenergy could be obtained after a simple algebra.

E(lx, ly, lz) = −2J cos θ (3.28)

with

θ = 2π

(
lx
Mx

+
ly
My

+
lz
Mz

)
(3.29)

The band width for the first band is 4J .

For the N -atom case, the wavefunction of the ground state (k = 0) is

|Ψ〉 →

[
1√
M

∑
i

a†i

]N

|0〉 (3.30)

The number statistics at a lattice site could be determined from this wavefunction in

Eq. (3.30). The probability for S atoms to be at a certain lattice site i in the ground

eigenstate |Ψ〉(Eq. (3.30)) is

f(S;N, 1/M) =

(
N

S

)(
1

M

)S (
1− 1

M

)N−S

(3.31)

This is a binomial distribution for a probability 1/M and the number of trial N . The

average number per site n̄ is given by n̄ = N × (1/M) = N/M , and the number

fluctuation is
√
N/M(1− 1/M) '

√
N/M =

√
n̄. In a typical experiment, the

total number of atoms N is ∼ 104 to 105, the number of lattice sites M ∼ 105,

the average number per site n̄ ∼ 1 to 3. When the numbers N , M are very high

(� 1), the binomial distribution becomes the Poisson distribution. Therefore the

number statistics of the superfluid phase becomes equal to the Poisson distribution,

the number statistics of coherent states. The superfluid ground state can be expressed

as a set of coherent states residing at lattice sites i as follows.

|Ψ〉SF
U/J→0 →

∏
i

[
exp(n̄a†i )

]
|0〉 (3.32)

One important thing to notice about a superfluid coherent state is that it has long
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range density correlation. Two states ai|Ψ〉SF
U/J→0 and aj|Ψ〉SF

U/J→0 have a finite overlap

for a large separation |Ri −Rj|.

The superfluid phase ground state, which is a coherent state in the limit of U/J →

0, becomes “squeezed” as the on-site interaction U increases. If U/J is increased to

� 1, the state is completely squeezed into a number state (Fock state).

3.4.1 Energy Spectrum

As discussed in the previous section, in the limit of J � U the energy spectrum[80,

72] (Eq. (3.28)) forms a band structure with a width 4J . The modified energy

dispersion relation can be understood in the context of effective mass m∗[73]. The

effective mass is defined from the curvature of the energy dispersion relation, m∗ ≡

(∂2E(p)/dp2)−1 ∝ 1/J . The energy dispersion relation is now expressed with effective

mass m∗ near the momentum p = 0 as

E(p) =
p2

2m∗ with m∗ = (∂2E(p)/dp2)−1
∣∣
p=0

(3.33)

The effective mass m∗ deviates from the initial mass m in the presence of lattice.

With increasing optical lattice depth, the hopping processes are suppressed(lower J)

and the effective mass increases. An experimental study of the effective mass of a

BEC in an optical lattice has been performed by measuring the frequency of dipole

oscillations of a BEC in a variable optical lattice depth [21]. For instance, Fig. 3-1

shows that the lowest band becomes flat due to the increase of effective mass m∗ as

the lattice depth is raised.

3.4.2 Excitation Spectrum

Excitation spectrum ε(k) in the superfluid phase could be considered in two different

range of k.

• Long wavelength excitation (k → 0): For small k, particles in the system be-

haves as if they have an effective mass m∗. The excitation energy is given by
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Figure 3-4: Excitation spectrum of the superfluid in optical lattice. The black
(dashed) curve shows the excitation spectrum in optical lattice (with no optical lat-
tice, respectively). The spectrum has the linear phonon mode for long wavelength
excitation(q → 0). In the presence of optical lattice, the spectrum is modified to have
an energy band structure (Bogoliubov band).
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a linear dispersion relation as in the weakly interacting gas with no lattice (as

discussed in chap 2) except for a new effective mass, m∗.

ε(k) ∼ c∗k (3.34)

with a modified sound velocity c∗ ∼
√
U/m∗ ∼

√
U · J . The sound velocity

c∗ in optical lattice decreases with a lattice depth. For more rigorous mathe-

matical methods, see Ref. [124, 72] where the Bogoliubov approach was used

for the energy spectrum. Eq. (3.34) shows that the excitation spectrum of the

superfluid phase has no energy gap.

• Near the first Brillouin zone (k ∼ kL): The periodic condition modifies the

excitation spectrum εk to be periodic and to form a band structure(Bogoliubov

band) as in the Bloch band. Near the Brillouin zone boundary, the excitation

spectrum bends over instead of bend up as illustrated in Fig. 3-4. In the limit

of J � U , the excitation energy is approximated to ε(k) ∼ −2J cos(πk/kL) for

k ∼ kL.

3.5 Mott Insulator Phase

3.5.1 Commensurate Filling

For U/J � 1, the limit opposite to the superfluid phase, the Hamiltonian becomes

(1/2)U
∑

i n̂i(n̂i−1). The eigenstates for this Hamiltonian are number states |n〉(n =

0, 1, 2, 3, · · · ) (Fock state). The ground state is given

|Ψ〉U/J→∞ →
∏

i

(a†i )
n|0〉 (3.35)

where the atom number per site n = N/M is integer (commensurate filling)

In Fock state configuration, the first excited state corresponds to a particle-hole

excitation ( |n〉i|n〉j → |n+ 1〉i|n− 1〉j ) as illustrated in Fig. 3-5 (a). The excitation
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energy is

∆E = Eptcl + Ehole = (E(n+ 1)− E(n)) + (E(n− 1)− E(n))

= nU + (−(n− 1)U) = U (3.36)

To transport a particle from one site to other in the Mott insulating phase, it requires

a minimum energy ∆E (none-zero energy gap in energy spectrum), otherwise the

Mott insulating system does not allow particle to “flow”(insulator).

The phase coherence property of the Mott insulator phase is very different from

that of the deep superfluid phase. Due to suppressed tunneling process, atoms in

lattice sites can not “communicate” and not share their wave function information.

Lack of communication leads to absence of density correlation. To be more spe-

cific, two states ai|Ψ〉U/J→∞ and aj|Ψ〉U/J→∞ have vanishing overlap for any i,j (

〈Ψ|a†jai|Ψ〉U/J→∞ = 0 ). If J increases from zero, the wave function of atoms can

start to tunnel through the lattice spacing more easily so that the atoms become less

restricted in “communication”. However, even if atoms can “talk” to atoms in other

lattice sites, the range of communication is limited to near lattice sites (short-range

coherence) as long as the ratio of U/J is above a certain critical value (U/J)c. Below

(U/J)c, the long range phase coherence is recovered and the system turns into the

superfluid phase.

3.5.2 Incommensurate Filling

What happens to the system if the occupation number is not equal to integer? Let

us consider the situation where one particle is added to n = 1 Mott insulating phase.

Strong interaction limit (U/J � 1) is still assumed here. In this system, it does not

cost energy to transport the added particle to other sites (Fig. 3-5 (b)). The energy

spectrum for n̄ = 1 + ε becomes gapless and shows superfluidity. This system can be

considered as superfluid component resides on top of the frozen background atoms in

the Mott insulating phase. The chemical potential for n = 1 + ε is given by U .

Let us consider the opposite case where one particle is taken out of (or one hole
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commensurate filling n=1 incommensurate filling n=1+ε

(a) (b)

∆E = U ∆E = 0

Figure 3-5: Commensurate and incommensurate systems in optical lattice. To move
one atom to other site, (a) in commensurate filling the energy cost is equal to the
onsite interaction energy U (b) in incommensurate filling additional energy is not
required.

is added to) the n = 1 Mott insulating system, the energy spectrum also becomes

gapless since it does not take energy to move one hole from site to site in the same

way as discussed above. On contrary to the n = 1 + ε case, in n̄ = 1− ε system the

chemical potential vanishes (µ(1 − ε) = 0). A particle can be “plugged” in one of

the empty lattice sites without costing interaction energy with other atoms that are

initially occupied in the lattice.

3.6 The Superfluid - Mott Insulator Transition

3.6.1 Qualitative Overview of the Quantum Phase Transition

We have considered two extreme regimes of the parameter U/J � 1, � 1. The state

in each limit is very different in terms of energy spectrum and phase coherence. For

example, while the deep Mott insulating phase has a finite energy gap ∆E = U , the

energy spectrum of the superfluid phase is gapless(∆E = 0). It could be expected

that if the system is initially prepared in the deep superfluid phase(J � U) and the
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Figure 3-6: Qualitative view of quantum phase transition. (a) The chemical potential
for two incommensurate fillings n = 1 ± ε is displayed as a function of J/U . They
differ by U at J/U = 0, but become equal at a certain value (J/U)c. At non-zero
J/U the energy gap ∆E for the Mott insulator with n = 1 is given by the difference
of chemical potentials between n = 1 ± ε. (b) Transport of atoms in the n = 1 MI
phase.

interaction energy U is slowly turned up, the energy gap ∆E becomes non-zero at a

certain point (U/J)c and opens up as U increases.

The quantum phase transition between the two phases may be treated qualita-

tively in the following way. As discussed in the previous section, in the limit of

J = 0 the chemical potential µ is very sensitive to the filling factor n̄. It is given by

µ(1 + ε) = U , µ(1− ε) = 0. On the other hand, in the deep superfluid phase(J � U)

a chemical potential is a continuous function of a filling factor n̄. Consequently, two

chemical potentials for n̄ = 1 ± ε, that initially differ by U , become infinitesimally

close to µ(1) as the the hopping matrix J is raised up from 0. The chemical potential

for the n̄ = 1 superfluid is given by µ(n̄ = 1) = 0.5U . The chemical potential for

n̄ = 1, 1 ± ε are drawed qualitatively as a function of J/U in the Fig. 3-6 (a). The

two chemical potential meet at a critical point (J/U)c.
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Now let us consider the n = 1 Mott insulator phase to see how the energy gap

∆E disappear across the phase transition. The energy gap ∆E could be obtained as

follows. When a particle hops between sites in the Mott phase, one lattice site, say

i, becomes filled with two particles, and the other site j is left empty. The whole

system could be considered to be made of two systems with n = 1± ε, as depicted in

the Fig. 3-6 (b). Then the excitation energy for this infinitesimal transport (k → 0)

is the sum of the energy taken for adding one particle to n = 1 + ε system and the

energy taken for subtracting one particle from n = 1− ε system. The energy gap ∆E

is given by difference between two chemical potential energies

∆E = Eptcl + Ehole = µ(1 + ε)− µ(1− ε) (3.37)

In a n = 1 system, the energy gap ∆E (Eq. (3.37)) of the Mott insulating phase

decreases as the hopping term J grows as illustrated in the Fig. 3-6 (a). ∆E finally

vanishes at a point (J/U)c, and the system turns into the superfluid phase.

3.6.2 Quantum Phase Diagram

So far, the quantum phases have been discussed under the condition that the system

is homogenous (no external trapping) and the atom number in a system is fixed. By

introducing the chemical potential µ, the condition of fixed atom number may be

removed. The Hamiltonian is modified with a chemical potential term

H = −J
∑
<i,j>

a†iaj +
1

2
U
∑

i

n̂i(n̂i − 1)−
∑

i

µn̂i (3.38)

The quantum phase is determined as a function of a chemical potential µ and the

parameter J/U .

The quantum phase diagram has been theoretically studied[104] and calculated

using various numerical methods such as the Gutzwiller mean-field theory [65, 75],

mean-field perturbation methods [124], Quantum Monte Carlo (QMC) method [20,

8, 74, 74], etc. The most recent QMC [20] calculation provides the critical point
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Figure 3-7: Quantum phase diagram calculated using the meanfield approach. The
quantum phase is determined as a function of the chemical potential µ and J/U
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Figure 3-8: Density profile of ultracold atoms in optical lattice for J/U = 0.01[(a)]
, and J/U = 0[(b)] with chemical potential µ0 = 1.5U . Each quantum phase is
surrounded by layers of other quantum phases (formation of “shell structure”). In
(a), the density between MI phases varies continuously in the SF shell. In (b) (J = 0),
the SF components are absent and the density profile becomes step-like with the MI
phase.

(J/U)c = 1/29.34(2) at a filling factor n = 1 in a 3D cubic lattice. The mean-field

theory predicts the critical point (J/U)c = 1/(5.8z) for n = 1 with z = 2d the

number of nearest neighbors. The mean field critical point (J/U)c in 3D cubic lattice

is 1/34.8. The quantum phase diagram derived from the mean field theory is plotted

in Fig. 3-7.

3.6.3 Density Profile : “Shell Structure”

In experiments, atoms are normally trapped in an external trap, and the density

profile becomes inhomogeneous. If the density change is smooth enough (this con-

dition is generally held in our experiment), a small part of the system localized
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near r may be approximated to be homogenous with the local chemical potential

µloc = µ0 − Vext(r)(local density approximation). The Hamiltonian may be written

H = −J
∑
<i,j>

a†iaj +
1

2
U
∑

i

n̂i(n̂i − 1) +
∑

i

Vext(Ri)n̂i −
∑

i

µn̂i

= −J
∑
<i,j>

a†iaj +
1

2
U
∑

i

n̂i(n̂i − 1)−
∑

i

µloc(Ri)n̂i (3.39)

The quantum phase is now determined by the local chemical potential µloc as well as

U/J .

The local chemical potential µloc varies from µ0 (trap center) to 0 (trap edge) in

a typical harmonic trap; the quantum phase also changes as a function of position

in the trap. It becomes possible in trapped system that several different quantum

phases exist simultaneously. For example, for J/U = 0.1 and µ0 = 1.5, the system

has 3 different phases; n = 2 MI phase near the trap center, two superfluid layers, and

n = 1 MI phase between the two superfluid layers (Fig. 3-8 (a)). The density profile

consists of SF and MI phase layers, which is called “shell structure”[30, 67, 65].

In the limit of J/U → 0, the system is fully frozen, and the quantum phase must

be the MI phase at every position in the system. The number fluctuation becomes

zero so that the ground state is given by a Fock state. The number of atoms per site

is then an integer and determined as

n̄ = n if n− 1 < µ/U < n (3.40)

with integer n = 0, 1, 2, · · · . The density profile becomes discontinuous with steplike

profile as illustrated in Fig. 3-8 (b).

3.6.4 Time-Of-Flight Images

The phase coherence properties can be estimated from time of flight images. When

atoms in the superfluid phase are released from the trap and optical lattice, phase
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Figure 3-9: Time of flight images of ultracold atoms released from the trap and optical
lattice for variable lattice depth. The interference fringe contrast increases with lattice
depth. For deep lattice (i.e. 16, 20ER), the system is in the Mott insulating phase,
and the fringe pattern disappears due to lack of long-range phase coherence. The
expansion time was 33 ms.

coherence[53] leads to an interference pattern as depicted in Fig. 3-9. The interference

peaks have the momentum of 2kL[95]. However, the Mott insulating phase does not

have long range phase coherence and does not show the interference pattern in the

time-of-flight images. The time of flight images are shown in Fig. 3-9 across the

superfluid to the Mott insulating phase transition. The fringe patterns are clearly

visible in the superfluid phase with lattice depths of 3 ER to 13 ER, while it disappears

above 16 ER where the system is in the Mott insulating phase.

One thing to note on time-of-flight images is that the interference pattern does

not provide direct information on the SF-MI phase transition. The interference fringe

pattern probes only ground-state properties, and the SF-MI phase transition should

be probed by measuring the properties of excitations[101].
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Chapter 4

The Science Chamber

In this chapter, I describe our new experimental apparatus, the “Science Chamber”.

The science chamber is an auxiliary vacuum chamber attached to the main vacuum

chamber, of which design is described in Ref. [118]. The main vacuum chamber is

equipped with magnetic trap coils and magneto-optical trap(MOT) optics for the

production of BEC. Typically BEC is produced and trapped in the main vacuum

chamber for experimental study. One drawback of the main vacuum chamber is that

there is very limited optical access, since big magnetic coils and laser cooling optics

occupy most of space around the main vacuum chamber. Such limited optical access

to the main chamber makes it difficult to set up optical lattice laser optics around

the main chamber. Typical optical lattice experiments generally require 6 clear laser

beam paths to a vacuum chamber.

These problems are fixed by introducing an auxiliary vacuum chamber attached to

the main chamber. In this configuration of two vacuum chambers, BEC (or ultracold

atoms) is prepared in the main chamber, and transferred to the auxiliary chamber

using an optical dipole trap. The role of the main chamber is only to produce a

BEC or ultracold atoms, and the experimental part with the BEC is performed in

the auxiliary chamber. We call this auxiliary chamber “science chamber”, since most

of the scientific experiments are carried out in the auxiliary chamber.

The Science chamber concept provides great flexibility in several technical aspects.

The design of the science chamber could be customized for each type of experiment,
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and the installation of the science chamber could be done easily without breaking the

main chamber’s vacuum. This makes it easy and quick to switch between different

experiments. The scheme of the science chamber has been employed at MIT for the

atom chip, hard disk trap, and optical lattice experiment. For more details on the

experimental scheme in these experiments, I refer to early theses ([110, 76] for atom

chip experiment, [13] for hard disk trap experiment)

In this chapter, only the science chamber and associated optical lattice setup are

covered. Detailed description and discussion of other parts of the Rb BEC machine

such as the Rb oven, the Zeeman slower, and the main chamber, are given in the Rb

BEC machine paper [118], and other theses [117, 13, 15]

4.1 Overview

4.1.1 Vacuum Chamber

The science chamber is designed for optical lattice experiments. The chamber has

many viewports for optical lattice laser beams and optical trapping beams, especially

accommodating two large viewports for high-resolution imaging. The science chamber

is illustrated in the fig. 4-1. In a horizontal plane, there are 6 view ports (the outer

diameter 1.25′′ ∼ 1.5′′), 1 flange for vacuum pumping, and 1 small flange connecting

to the main chamber. Two big viewports with the diameter of 4′′ are placed on the

top and bottom of the science chamber (along z-axis in Fig. 4-1). All viewport glasses

are AR coated for λ = 780 and 1064 nm.

The science chamber is connected to the main chamber by a flexible bellow on the

flange labeled by (a) in Fig. 4-1. The 4-way cross vacuum part, where the ion pump,

ion gauge, and Ti-sub pump are installed, is connected to the science chamber on the

flange labeled by (b) in Fig. 4-1.
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Figure 4-1: Top view of the science vacuum chamber. There are 6 view ports (the
outer diameter 1.25′′ ∼ 1.5′′), 1 flange (b) for vacuum pumping, and 1 small flange
(a) connecting to the main chamber. Along the vertical direction there are two 4′′

diameter viewports on the top and bottom of the chamber, which is designed for high
resolution imaging.

4.1.2 Bias Coils

For bias B-field, pairs of coils are used in Helmholz configuration. Each of 4 coils

with 20 turns ( 4 turns/layer × 5 layers = 20 turns) are placed on the four diagonal

viewport flanges in Fig.4-1. The dimension of these coils is: outer diameter: 4′′,

inner diameter: 2-3/4′′. Along the vertical direction (z direction), two big coils with

20 turns ( 5 turns/layer × 4 layers = 20 turns ) are placed on the top and bottom

viewports. Its outer and inner diameter are 7-1/16′′ and 6′′ respectively.

4.1.3 RF, Microwave Antenna

A RF antenna is made of a coil of a thin copper wire wound with five turns (N = 5).

Its diameter is slightly smaller than the inner diameter of the top viewport flange so

that the RF antenna can fit inside the top viewport flange. RF signal is generated

by RF synthesizers (model number: Agilent 33250A, or SRS DS345 ), and the signal

is amplified and sent to the RF antenna.
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(a) rf antenna (b) microwave antenna

Rf antenna

Imaging 
lens

Figure 4-2: Rf and microwave antenna. (a) An rf antenna is installed right above
the top viewport with a plastic ring-shape mount. A high-resolution imaging lens
stack is also shown above the top viewport flange. The imaging lens is very close to
the vacuum chamber for higher numerical aperture(NA). Bias coil pairs are mounted
along three perpendicular direction. (b) A microwave antenna is located below the
chamber. It is an open-ended rectangular waveguide with a frequency range of 4.90-
7.05 GHz.
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An open-ended rectangular waveguide is employed as the microwave antenna

horn.(Fig. 4-2) Waveguide standard WR-159 (frequency range: 4.90 − 7.05 GHz(F-

band)) was used for the 6.8 GHz, 87Rb hyperfine transition. Dimensions of waveguide

are 1.590′′ × 0.795′′ (W×H) with a length of 6′′(Manufacturer: Waveline INC. model:

5901-SMAF(Adapter), 5942-2(6 inch-long straight section)). The Agilent microwave

synthesizer(model: E8257D-520) and microwave amplifier (Manufacturer: Microwave

power INC. L607-37, maximum output power: 37dBm) are used for signal generation

and amplification.

For spin flipping (∆m = ±1), the direction of the oscillating magnetic field must be

perpendicular to the bias magnetic field direction . The bias magnetic field direction

is set along the y-axis in Fig. 4-1. The rf coil’s magnetic field direction was set along

z-axis. For the microwave antenna, the magnetic field direction is the long axis of the

rectangular waveguide and was chosen to lie along the x-axis in Fig. 4-1

In microwave applications, special coaxial cables designed for high frequency signal

are required. A typical type of coaxial cables used in the lab, RG-58 works properly

only up to few hundreds MHz and has huge attenuation at 6.8 GHz, over 30dB/10m.

In our experiment, a rigid cable shielded with aluminium (Pasternack Enterprises,

PE34184-60) is used for connecting the amplifier and the microwave antenna, and

semi-rigid cable is used between the synthesizer and amplifier.

4.1.4 Ultra High Vacuum in the Science Chamber

The science chamber was pre-baked at 250◦C with a turbo and an ion pump before

being joined with the main chamber. After its installation, the science chamber was

baked out again at 250◦C. After the bake out, the Ti-sub pump was fired several times,

and the final pressure in the science chamber reached down to between mid-10−11 and

10−10 Torr, which is acceptable pressure range for ultracold atom experiment.

Compared to the typical pressure in the main chamber, which is below 10−11

Torr, the science chamber pressure is relatively high. It is strongly believed that the

capacity of the ion pump in the science chamber is not big enough for the vacuum

load, and it limits the pressure. The capacity of ion pumps typically used in the main
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Figure 4-3: IR laser beam set-up in the science chamber.
Three IR laser beams are used for optical dipole trapping: the transport ODT laser
beam (yellow beam coming from left), the anti ODT (blue beam coming from right),
and the cross ODT (blue beam coming from bottom). The transport ODT transports
atoms from the main chamber to the science chamber. The atoms are then transferred
to the anti ODT from the transport ODT in the science chamber. A combination
ODT (anti ODT + cross ODT) is employed as the main trap.
Three optical lattice laser beams are aligned to the center of ODT. Two horizontal
lattice beam directions are chosen along the diagonal directions orthogonal to each
other. The vertical lattice (not shown in the figure) is set up along z-direction.

chamber is 55 l/s, while the science chamber ion pump’s capacity is considerably

small 20 l/s. As a result, when the gate valve between the main chamber and the

science chamber opens the science chamber pressure becomes lower due to pumping

from the main chamber ion pump. If lower pressure is required in the future, it should

be considered to change the ion pump in the science chamber.

4.1.5 IR Laser Beams for Optical Trapping and Lattice

9 optical beam paths are employed for IR laser: 6 beam paths (3 incoming beams

and 3 retro-reflected beams to form standing wave) for optical lattices, 3 beam paths
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for optical dipole traps(ODT). The configuration of IR laser beams is shown in Fig.

4-3.

The transport ODT laser beam (yellow beam on the left in Fig. 4-3) is aligned to

the position of the main chamber magnetic trap. The transport ODT beam captures

atoms cooled in the main chamber, then the beam is linearly moved to the center

of the science chamber by moving its focus lens using a motorized translation stage.

Since the beam path is very long and its focus lens is mounted on the translation

stage, the transport ODT beam has mechanical vibration issues not to provide stable

trapping potential.

To address these issues, another ODT beam, which we call “anti” ODT (blue beam

on the right in Fig. 4-3), is set up in the opposite direction of the transport ODT

beam. The anti ODT has the same beam profile and position as the transport ODT

except for the laser beam propagation direction. When the transport ODT beam

arrives in the science chamber, the transport ODT beam and the anti ODT beam

overlap very well so atoms trapped in the transport ODT could be mostly transferred

into the anti ODT.

The third ODT beam perpendicular to the anti ODT beam direction (cross ODT

in Fig.4-3) is aligned to the focal spot of the anti ODT. The cross ODT provides tight

confinement along the long axis of the anti ODT to enhance the evaporative cooling

efficiency and to reach below the BEC transition temperature.

Two optical lattices are set up in the horizontal plane as shown in Fig. 4-3. The

third optical lattice is aligned along the vertical direction (z-direction).

4.2 Optical Dipole Traps

4.2.1 Optical Trap Transport

In order to deliver ultracold atoms produced in the main chamber, focused IR laser

beam is employed as a tweezer and transporter. The optics arrangement for the trans-

port ODT is illustraed in Fig. 4-4. The IR laser beam is magnified and collimated
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Figure 4-4: Transport ODT optics layout. ODT IR laser beam size is magnified by
two telescopes: combinations of 35 mm+75mm, and 100 mm+300 mm lenses. The
collimated IR laser beam with 1/e2 beam diameter of 12 mm is focused on the atoms
by an f = 500 mm lens. A translation stage moves the atoms trapped in the ODT
by translating the f = 500 mm focus lens.

with an 1/e2 radius of ∼ 6 mm. The laser beam is then focused on the atoms in

the main chamber by a f = 500 mm lens, and the 1/e2 radius of the focal spot is

wODT ∼ 30µm. The ODT laser power is linearly ramped up to 600 mW in 2 s to

capture the atoms.

Transport of atoms to the science chamber is performed by moving the f =

500 mm focus lens(Fig.4-5). An air bearing linear translation stage(Aerotech ABL2075,

with a precision of up to 0.1µm) moves the lens. Its motion is precisely controlled by

a computer program. A computer program calculates the optimal transport velocity

and acceleration, and it drives the translation stage for a given moving distance d

and time duration t. Typical transport parameters are d = 360.80 mm, and t = 3 s.

After the transport, the transport ODT laser power is linearly ramped down to

zero, while the anti ODT laser power is simultaneously ramped up to 600 ∼ 700 mW

in 2 s to transfer atoms from the transport ODT to the anti ODT.
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Figure 4-5: Transport of cold atoms. Before transport, atoms are cooled in the main
chamber. (a) After cooling is finished, the transport ODT is slowly ramped on to
atoms in the main chamber for catching and trapping atoms in the ODT laser beam.
(b) The main chamber magnetic trap is turned off suddenly, and atoms are held in the
ODT beam for ∼ 500 ms until sloshing motion of atoms induced during the sudden
turn-off of magnetic trap is suppressed. Transport starts by moving the focus lens.
The transport distance is typically ∼ 360 mm. (c),(d) Atoms are transferred to the
anti ODT beam from the initial ODT beam (see text).
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4.2.2 Cross Optical Dipole Trap: Combination trap

The trap geometry of the anti-ODT beam is highly elongated; the trap frequencies

are ω⊥ ∼ 600 Hz (along the perpendicular direction), ω‖ ∼ 5 Hz (along the beam

propagation axis) at the maximum power P = 600 mW. The evaporative cooling

process is slow and inefficient with such a low trapping frequency ω‖. In our setup,

BEC could not be achieved by evaporative cooling in a single anti-ODT beam.

In order to increase trapping frequency ω‖ along the weak axis of the anti-ODT,

an additional ODT laser beam (called the cross-ODT) is utilized. The focus size

of the cross ODT is 55µm (1/e2 radius). After the atoms are transported into the

anti-ODT, the cross ODT beam is turned on. The power is linearly ramped up to

600 mW in 2 s, providing a high trapping frequency of ω‖ ∼ 200 Hz.

4.3 Production of BEC in the Science Chamber

In typical experiments performed in the main chamber, atoms are cooled and con-

densed into BEC by the following sequence of cooling techniques: MOT, optical

molasses, and rf-induced evaporative cooling in magnetic trap.

A BEC in the science chamber could be produced in two different ways:

there could be two experimental procedures.

1. BEC is made in the main chamber, and transported to the science chamber

using the transport ODT.

2. Cold atoms (but not cold enough to condense into BEC) are made in the main

chamber, and transported to the science chamber. The BEC is achieved in the

science chamber by further evaporation cooling.

Option 1 is normally employed in the Na BEC experiment at MIT.([76, 110])

However, implementation of this scheme is difficult with Rb atoms due to different

properties between Rb and Na, such as mass, three body recombination rate, etc.[117]

In our experimental setup, it was observed that Rb BEC becomes unstable easily and

decay very fast in the transport ODT during the transport.

70



In contrast to a BEC, the thermal gas can be transported without significant loss,

since the thermal gas is relatively immune to heating compared to BEC. The number

and temperature of cold atoms transported in the science chamber were found to be

stable and sufficient to be condensed into BEC. The scheme # 2 has been exploited

as our main cooling scheme offering consistent performance of BEC production.

In scheme # 2 , the cooling sequence in the main chamber is slightly modified;

during the last rf-induced evaporation cooling step, the rf ramp is stopped at ∼ 500

kHz above the BEC transition. The transport ODT is then ramped in 2 s. The

main chamber magnetic trap turns off suddenly, and transport starts as described in

section 4.2. After delivery of atoms to the anti-ODT, the cross ODT is turned on to

realize a tight combination trap. The evaporation cooling is then performed in the

combination trap by ramping down the trap depth in about 2 s. A typical protocol

for the production of BEC is shown in Fig.4-6. After ramp-down of the combination

trap, atoms are held in a trap for additional 100 ms to allow residual thermal atoms

to evaporate. Finally, the BEC is achieved in the combination trap.

Images of a BEC with 13 ms time-of-flight are displayed in Fig. 4-7 In the com-

bination trap, the trapping force is mainly provided by the anti-ODT, since it has

a tighter focal spot than the cross-ODT. The trap depth of the combination trap is

controlled by varying the anti-ODT laser power. Fig. 4-7 also shows how the BEC

fraction (or BEC temperature) is controlled by the final ODT depth.

Typical frequencies of the combination trap are ω⊥ = 2π×150 Hz, ω‖ = 2π×25 Hz

(cigar shape), and the atom number N is on the order of 104. BEC is prepared in

the hyperfine state |F = 1,mF = −1〉, same as the initial hyperfine state of cold

atoms prepared in the main chamber. We observed that the atoms stay in the same

hyperfine state without undergoing spin flip during turn-off of the main chamber

magnetic trap coils and transport, even if an additional bias B-field is not applied. It

is a combination of the Earth bias field (∼ 0.5 G) and ambient B-field in the laboratory

that prevents atoms from spin flipping. Thanks to the ambient field, the B-field does

not cross zero in the path of transport, and the spin of atoms adiabatically follows

B-field direction so that atoms are safely delivered to the science chamber without
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(a)

(b)

Figure 4-6: Experimental procedure for BEC in the science chamber. (a) Atom
transport procedure. The atoms transported to the science chamber are transferred
from the transport ODT to the anti ODT between t = 6 and t = 8 sec. The cross
ODT laser beam is then ramped up to form a combination trap (anti ODT + cross
ODT). (b) Evaporation cooling procedure in the combination trap. The anti ODT
is ramped down first followed by cross ODT. The evaporation cooling is normally
performed in a few seconds. After the ramp down of the combination trap depth,
atoms are held for another few hundred ms to evaporate residual thermal atoms.
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Figure 4-7: Emergence of BEC in the combination trap. BEC emerges from a thermal
atomic cloud as the trap depth lowers. The number denoted on the right of plots is
the power of the anti ODT, which determines trap depth.
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Figure 4-8: Imaging setup for the science chamber.

spin flip.

4.4 Imaging

The science chamber is designed in particular for high-resolution imaging. A big top

viewport with a 4′′ diameter window is close to the center of the vacuum chamber.

Its large solid angle is suitable for high numerical aperture optics. The imaging setup

of the science chamber is illustrated in Fig. 4-8.

The imaging process starts with pumping atoms into the F = 2 ground hyperfine

state using a repumping laser beam tuned to 52S1/2F = 1 → 52P3/2F = 2 transition.

Immediately the imaging beam (cycling transition 52S1/2F = 2 → 52P3/2F = 3)

illuminates the atoms, and the shadow of atoms is collected with a CCD camera

(absorption imaging). The duration of the imaging laser pulse is chosen to be short

enough to minimize atomic motion during the imaging. Typical exposure time is

50µs.
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Figure 4-9: The configuration of a high resolution imaging lens. It consists of four
2′′-diameter spherical lenses. The rightmost plane glass represents the viewport.

4.4.1 High Resolution Lens

The resolving power of a lens is determined by its numerical aperture (NA). The

imaging resolution of a lens is proportional to λ/(NA) (λ is wave length of imaging

light). To obtain higher NA, a lens should cover a larger solid angle coming from the

imaging target.

Four 2, ′′ diameter spherical lenses (8 lens surfaces) were assembled for our imaging

lens system. 6 out of 8 lens surfaces are spherically curved, and 2 are flat. The

configuration of lenses was optimized using a ray-tracer program. Detailed dimensions

of the lens stack are given in the appendix A. The focal length of the lens stack is

determined to be 73 mm. The numerical aperture for our lens stack is ∼ 0.3 providing

an optical resolution of ∼ 2µm.

After passing the high-resolution lens stack, imaging light ray is sent to 2 ′′ di-

ameter f=750 mm lens to be focused and imaged on a CCD camera. With 73 mm

objective lens and 750 mm camera lens, the magnification factor M of the imaging

system is ∼ 10. In order to avoid optical aberation related with off-center rays such

as coma, or astigmatism, both the lens stack and 750 mm lens are mounted on the

same optics cage system keeping the center line of lenses aligned.
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4.5 Optical Lattice

In our experiment, a 3-D cubic optical lattice potential is employed. Optical lattices

are created by retro-reflecting incoming laser beam and forming standing waves. The

optical lattice axes were chosen to be along three orthogonal directions.

In general, an optical lattice potential is formed not only by counter propagating

laser beams but also by any pair of intersecting laser beams. As a consequence, there

would be “unwanted” optical lattice potentials created by interference between two

different axis laser beams. The optical lattice potential formed by two laser beams

along the different axes (i.e. laser #1,#2) is given by (see the section 3.1.2)

Vlatt(r, t) = V1 + V2 + 2
√
V1V2

{
(e1 · e2)Re

[
e−i((k1−k2)·r−(ω1−ω2)t)

]}
(4.1)

where V1, V2 are the potential energy depth induced by each laser beam. The polariza-

tions of two laser beams were chosen to be orthogonal(e1 · e2 = 0), and the frequency

difference (∆ω = ω1 − ω2) to be very large in order to remove the interference term

of Eq.(4.1) between different lattice axes. The frequency detuning ∆ω was set to

−3, 0, 3, MHz respectively for three lattice laser beams.

Typical optics layout for optical lattices is drawn in Fig.4-10. The IR laser is

delivered to the optics setup by an optical fiber. The power of the laser is monitored

by a photo diode. This signal is sent to a PID control box, which actively stabilizes and

controls the laser power. The polarization of the beam is first set to linear polarization

by a polarized beam splitter(PBS) cube. The angle of the linear polarization is then

rotated by λ/2 wave plate to the desired angle. After the IR laser beam size is

adjusted by a telescope, it is focused onto the atoms, and is retro-reflected by a

dichroic mirror to form the lattice potential. Dichroic mirrors that reflect 1064 nm

IR laser but transmit 780 nm light (87Rb D-2 line) are used so that imaging along a

lattice axis is possible.
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λ/2

Dichroic mirrorDichroic mirror

PID
controller

photo
detector

optical fiber

imaging beam

Figure 4-10: Optics layout for the optical lattice setup. An IR laser beam delivered
by an optical fiber is focused on atoms. The retro-reflected beam is focused on the
atoms again to form a standing wave. Dichroic mirrors (reflects 1064 nm light and
transmits 780 nm light) are used for imaging along the lattice axis.

4.5.1 IR Laser System for the Optical Lattice

1064 nm IR laser is employed for our optical lattice. such lasers are commonly used

in material processing and medical purpose, and high power is available at affordable

cost. Our 1064 nm IR laser system is manufactured by IPG photonics. The laser unit

consists of two parts: a seed laser (MODEL:YLD-0.01-1064-SF) and a fiber amplifier

(MODEL: YLD-0.01-1064-SF). The seed laser is a 1064 nm ND:YAG single mode

laser pumped by a laser diode. Output power is normally ∼ 10mW with a linewidth

of 100 kHz.1 The seed laser is coupled into the fiber laser amplifier. Our fiber amplifier

laser unit can amplify up to 20 W.

The high power IR laser beam is then distributed to six laser beams: three ODT

beams, three optical lattice beams. They are delivered from the laser table to each

optics setup on the BEC machine optics table through optical fibers. The IR laser

beam setup is illustrated in Fig. 4-11. The IR laser is split into two beams by beam

splitter cubes, and the splitting ratio is controlled by λ/2 waveplate located between

1As of 2008, the laser diode of our seed laser unit runs on fixed current mode. Power mode causes
frequency instability
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Figure 4-11: IR laser setup. The IR laser beam passes through telescope optics
to adjust the beam size to an optical isolator inlet. After the optical isolator, the
IR laser beam is split into 6 beams. The power and frequency of each laser beam
is adjusted by AOM’s. The frequency detunings of laser beams are shown in the
figure. Non polarization-maintaining optical fibers are used in our experiments, and
the polarization of out-coupled light is adjusted by two waveplates (λ/2, λ/4) located
before the fiber coupler shown in the figure.
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the cubes. The frequency of the laser beams is modulated by AOMs which different

frequency offsets relative to the initial λ = 1064 nm laser beam. This ensures that

the interference between different IR laser beams is suppressed.

In general, the laser system for a red-detuned optical lattice must be far detuned

from the atomic transition in order to suppress spontaneous light scattering and atom

loss. 1064 nm IR laser is sufficiently far detuned from the 87Rb D-2 line(780 nm),

for spontaneous scattering rate to be very low. For example the spontaneous light

scattering rate γ is ∼ 0.02 Hz in a deep optical lattice with a depth of 35ER.

4.5.2 Optical Lattice Alignment

Each axis of the optical lattice beam is aligned as follows

1. Set up the optics: Arrange optics for optical lattice as in Fig. 4-10.

2. Find the position of atoms: Image a trapped BEC (in-situ) along the lattice

axis. Keep the CCD camera at the same position for the next step.

3. Find and align the lattice laser spot: Set the CCD camera mode to align

mode. Turn on the lattice IR laser beam, and move mirrors or lenses to find the

IR laser beam spot on the camera. (CAUTION: While finding and locating

the laser spot on the CCD camera, attention is required to avoid burning the

CCD camera. Focused IR laser beam can damage the CCD chip easily, and

the damaged pixel will be permanently dead. The power of the IR laser

system must be turned down to minimum. Additional attenuation of

the IR laser beam should be properly done by using high-ND2 filters.

) Once the laser spot is found, steer and focus it on the same position as of the

atoms in the image acquired in step 2.

4. Retro-reflect the lattice beam: Set up the retro-reflection mirror. When

the retro-reflected laser beam overlaps very well with the initial incoming lattice

beam, it is coupled back into the optical fiber delivering the incident beam. This

2Normally ND 4-6
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back-coupled laser beam follows the exact same beam path of the initial laser

beam in the opposite way until it is reflected by the optical isolator shown in

Fig. 4-11.

5. Align the retro-reflection mirror: The retro-reflection mirror could be

aligned by monitoring and maximizing the power of the retro-reflected laser

beam rejected from the optical isolator. Typically 5 to 10 % of the initial laser

beam is also reflected from the optical isolator and gives huge DC offset in the

intensity of the reflected laser beam. The retro-reflected laser beam signal is

normally smaller than this DC offset. In order to suppress this DC offset, an

optical chopper system is utilized. The retro-reflected laser beam signal now

becomes an AC square wave signal oscillating at the chopper frequency. By

filtering out the DC component from the signal, only the retro-reflected beam

signal is measured.

6. “Ask” atoms how well the optical lattice is aligned : By applying a short

12.5µs pulse of the lattice laser beam onto BEC, Kapitza-Dirac(KD) diffraction

of atoms is obtained. The final alignment is done by maximizing the intensity

of the diffraction pattern.

4.5.3 Lattice Beam Calibration

The depth of optical lattices is calibrated by analyzing the Kapitza-Dirac diffraction

pattern of BEC [57]. When a very short pulse of standing wave laser beam is applied

to atoms3, the wavefunction of atoms is modified by the phase imprint from the pulse.

The phase imprinted by the AC stark shift of the standing wave pulse is given by

φ(z) =
1

~

∫ τ

0

dtVlatt(z) =
V0τ

~
cos(2kz) (4.2)

3The pulse duration τ should be shorter than the photon recoil time scale 1/ωR so that the
atomic motion during the pulse time is considered to be very small. (Kapitza-Dirac regime)
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The wavefunction of BEC is modified by the phase factor eiφ

|Φ〉 → e−iφ(z)|Φ〉BEC =
∞∑

n=−∞

inJn

(
V0τ

~

)
ei2nkz|Φ〉BEC (4.3)

where the Jacobi-Anger identity is used (exp [iα cos β] =
∑∞

n=−∞ inJn(α) exp[inβ]),

and Jn’s are Bessel functions of the first kind. In Eq.(4.3), the phase factor ei2nkz

implies that states with momentum 2n~k are populated. The population of the

momentum state 2n~k is given by

Pn =

[
Jn

(
V0τ

~

)]2

(4.4)

From images of KD diffraction patterns, populations of each momentum state are

measured with various lattice laser powers P . By fitting the measured populations

to Eq.(4.4), the lattice depth V0 is calibrated as a function of the laser power P .

Typically τ = 12.5µs pulse has been used in the calibration. Note that 12.5 µs is

much shorter than a recoil time scale, which is 500 µs for λ = 1064nm.

For the calibration of optical lattice, different methods, such as Bragg pulse, are

also employed in other groups’ experiments. (See Ref.[87] for details on calibration

methods)

4.5.4 Technical Issues

Several technical issues have been encountered while the science chamber and optical

lattice system were built. Two points are addressed in this section.

1. High power optics: When IR laser is used for optical lattices or optical

trappings, high power is normally required, since the frequency of IR lasers is

far-detuned from the atomic resonance. Such a high power laser beam requires

high power optics. Optics which are non-compatible with high power leads to

residual absorption and beam distortion.

The distortion is caused by local heating of optics. The temperature increases

only near the laser beam path, resulting in a non-uniform temperature distri-
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(a) (b)

Figure 4-12: Thermal lensing effect in optics. The profile of laser beam was measured
after passing a non-high-power PBS cube with (a) low power (1 W), and (b) high
power (10 W). With high power, temperature of optics near the center of laser beam
increases higher than other part of optics. It results in distortion of laser beam profile
such as hollow core shape.

bution. A temperature gradient leads to a non-uniform index of refraction and

to distortion of the beam profile. This is the so-called “thermal lensing effect”.

When the laser power was higher than ∼ 10 W, the thermal lensing effect

appeared on polarized beam splitter(PBS) cubes of the IR laser setup described

in Fig.4-11. It severely degraded our optical fiber coupling efficiency. Thermal

lensing effects on laser beam profile are illustrated in the Fig.4-12. PBS cube

is normally made up of two pieces of triangular shaped glass glued together by

an adhesive material. It is this adhesive material which leads to the thermal

lensing effect. The problem was solved by using high energy PBS cubes in which

a pair of triangular shaped glass is optically contacted instead of by adhesive

material.

Thermal lensing effects also occurred in our optical isolator, which uses normal

glued PBS cubes as polarizers. A high power isolator is now employed in our

system which uses Brewster window polarizer instead of normal glued PBS

cubes.
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2. Mechanical vibration We have seen the life time and the size of the BEC

in either combination trap or optical lattice to be strongly affected by acoustic

noise such as talking in the laboratory leading to unstable performance of the

machine. There are several suspicious steps where the noise effects are signifi-

cant: the switch-over from the transport ODT to the anti ODT, the evaporation

step in the combination trap, ramping of optical lattice.

In our experimental setup, nine IR laser beams for ODTs and lattices are focused

at the same position, and their beam pathes are quite long. Small mechanical

vibrations are able to disturb the laser beam alignment and create sloshing

or heating of the atoms. To make things worse, the frequency of mechanical

vibrations is similar to the frequency of atomic motion. Even though the noise-

sensitive part has not yet been identified , mechanical vibration effects could

be reduced by removing all the sound in the laboratory, mainly human talking.

Nevertheless, such noise issues must be properly addressed in the near future.
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Chapter 5

Manipulation of BEC with an

Optical Lattice

This chapter discusses optical lattices as manipulation tools for ultracold atomic exper-

iments. Two experiments performed with Rb BEC using optical lattices as engineer-

ing tools[19, 16] are briefly introduced. Please see the reprints included in Appendix

G(Ref.[16]) and E(Ref.[19]) for detailed discussions.

5.1 Optical Lattice as a Manipulation Tool

Optical periodic potentials have been employed in a number of a BEC experiments

for manipulation and engineering of a BEC. The roles of a optical lattice as a manip-

ulation tool can fall into three categories as follows.

5.1.1 Kaptiza-Dirac Scattering: Two-Way Coherent Splitter

When a very short pulse of an optical standing wave is applied, a BEC is coherently

scattered (Kapitza-Dirac scattering) into momentum states with p = ±n×2~kL along

the direction of the standing wave with integers n = 0, 1, 2, · · · (kL: recoil momentum

of optical lattice laser). Kapitza-Dirac (K-D) scattering has been widely employed as
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Figure 5-1: Oscillating interference fringes. (a) Time-of-flight images of a BEC with
the K-D scattered atom pairs. The fraction of atoms in |0〉 state oscillates with a time
duration τ between two short standing wave pulses. (b) Oscillation of the fraction of
atoms in |0〉.

a coherent splitter of cold atoms[59, 10, 51, 93].

K-D scattering was utilized as a coherent splitter in our experiment of photon recoil

momentum measurement[16] for atomic interferometry. In our experiment reported

in Ref.[16], a standing wave pulse for K-D scattering was applied to a BEC to prepare

two coherent momentum states |p = ±2n~k〉. After time τ the second pulse for K-D

scattering was applied, and the two out-coupled momentum states come back to the

initial momentum state |0〉 leading to interference between the initial BEC atoms

and the atoms that were out-coupled and then returned to |0〉. We observed that

the interference fringe oscillated with a recoil frequency of a laser light(Fig.5-1). By

measuring the frequency of fringe oscillation, the recoil momentum of atoms caused

by the absorption of a photon in a dispersive medium was determined to be n~k (n:

the index of refraction of gas).

5.1.2 Bragg Scattering: One-Way Coherent Splitter

A “moving” standing wave formed by two laser beams with a slight frequency differ-

ence ∆ω coherently populate the states satisfying the Bragg condition: momentum

of atom p = ~∆k(~∆k: momentum difference between the two laser beams) and the

energy of atom E(p) = ~∆w. This scheme has been used for the study of an excitation
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spectrum of a BEC[126, 115], the spectroscopy of a dynamic structure factor[113],

matter wave mixing experiments[63, 125], an out-coupler for an atom seed[103], etc.

Bragg scattering was utilized as a coherent out-coupler to create a small atom seed

for a 4-wave mixing in the experiment presented in the next section.

5.1.3 Optical Lattice: Energy Dispersion Modifier

The modification of an energy dispersion relation from free particle E0(p) = p2/2m

to the energy band structureEn(p) in the presence of optical lattices is widely uti-

lized for various purpose. Remarkable phenomena in optical lattices such as Bloch

oscillation[9], Landau zener tunneling[89] has been demonstrated in optical lattices.

Optical lattices have been utilized to engineer atomic mass in various cases: variable

mass[21] for the Josephson junction experiment, very high mass[94] for 1D Tonks gas

transition, negative mass[35, 34, 5] for the study of anomalous atomic motions.

As presented in the following section, the 4-wave mixing in 1 dimension was

demonstrated by engineering an energy dispersion relation with a optical lattice.

5.2 1D Four Wave Mixing in an Optical Lattice

This section starts with one simple question: in one dimensional situation can two

particles with the same velocity collide?

In free space, a collision between two particles in the same momentum state is not

possible due to the energy-momentum conservation(or phase matching condition).

The energy dispersion in free space is simply given by E(p) = p2/2m, and the energy-

momentum conservation law imposes

2E(p) 6= E(p+ q) + E(p− q) for all q (5.1)

However, in a periodic potential, the energy dispersion relation E(p) becomes the

energy band En(p) with band indices n = 1, 2, 3 · · · . For the ground band, the energy

E0(p) is bound within bandwidth energy, and the curvature of En(p) becomes negative
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Figure 5-2: The energy dispersion relation and the phase matching condition in an
optical lattice with a depth of 0.5ER. (a)Black curve(dashed parabolic curve) shows
the energy dispersion in an optical lattice (in free space, respectively). The first
Brillouin zone is given by (−kL, kL). In the ground band, two atoms with same
quasimomentum k0 can collide and scatter into two different states with momentum
k1 and k2 conserving the momentum and energy. The momentum state k2 outside
the first Brillouin zone is the same state with q = k2− 2kL in the first Brillouin zone.
(b) A set of quasimomentum states satisfying the energy-momentum conservation in
a lattice depth of 0.5ER. ∆ki = ki − k0 (i = 1, 2) are plotted.

near the first Brillouin zone boundary leading to collisions between two atoms with

the same quasimomentum q. This scattering process is illustrated in Fig. 5-2.

For a given momentum k0, there is one pair of states with k1 and k2 satisfying

the phase matching condition as shown in Fig. 5-2 (b). For a momentum k0 < 0.5kL,

phase matching condition is not satisfied. At momentum k0 = 0.5kL the scattering

process becomes possible for ∆k1,2 = ±1kL; the two scattered states k1 = −0.5kL,

k2 = 1.5kL are indeed the same state with quasimomentum −k0 = −0.5kL in the

first Brillouin zone.(k1 ≡ k2 (mod 2kL)) As k0 increases from 0.5kL, the difference in

quasimomenta of the two scattered states, k1 and k2−2kL, increases ((b) in Fig. 5-2)

For the experimental demonstration, a BEC was loaded into a variable quasimo-

mentum state k0 by utilizing a moving optical lattice. Experimental description on

moving optical lattice is given in the section 6.3.1 and in the appendix E. When BEC

was loaded into quasimomentum state k0 > 0.5kL, a scattering of BEC atoms into

two discrete momentum states was observed. Fig. 5-3 shows that the two scattered
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Figure 5-3: Atom pairs scattered from a BEC. A BEC in a quasimomentum state
k0 and two scattered states k1 and k2 − 2kL are imaged after 43 ms of ballistic
expansion. As k0 increases, the momentum of the scattered states changes according
to the phase matching condition. Our observation agrees with the phase matching
condition predicted in Fig.5-2 (b).

states are confined in the first Brillouin zone with momentum of k1 and k2 − 2kL. It

was also found that the momentum difference between two scattered states increases

with the initial momentum k0.

When atoms with quasimomentum k1 were seeded to the condensate of k0 by

using Bragg pulse, the scattering process was observed to be accelerated in generating

the two phase matched scattered atoms of k1, and k2 (4-wave amplification in 1D:

2k0 → k1 + k2).
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Chapter 6

Phase Diagram for a BEC Moving

in an Optical Lattice

The stability of superfluid currents in a system of ultracold bosons was studied us-

ing a moving optical lattice. The phase diagram for disappearance of superfluidity as

a function of momentum was measured in the superfluid phase to the Mott insulat-

ing phase. This experimental study was reported in Ref. [88], which is included in

Appendix C.

6.1 Introduction

The realization of condensed matter systems using ultracold atoms brings the preci-

sion and control of atomic physics to the study of many-body physics. Many studies

have focussed on Mott insulator physics, an important paradigm for the suppression

of transport by particle correlations. Previous studies of the superfluid(SF)-to-Mott

insulator(MI) transition in optical lattices with ultracold bosons [65, 90, 52, 116, 43,

49, 17, 44] adressed the quenching of superfluidity below a critical lattice depth. Here

we extend these studies into a second dimension by studying stability of superfluid

current as a function of momentum and lattice depth as suggested in Ref. [2]. These

transport measurements show the stability of superfluid at finite current, which is a

non-equilibrium state.
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Transport measurements extend previous work on stationary systems in two re-

gards. First, superfluidity near the MI transition has only been indirectly inferred

from coherence measurements, whereas in this work, we characterize the superfluid

regime by observing a critical current for superfluid flow through the onset of dis-

sipation. Second, previous studies [65, 90, 52, 116, 43, 49, 17, 44] were not able

to precisely locate the phase transition, since the observed excitation spectrum and

atomic interference pattern did not abruptly change [52, 43, 49], partially due to the

inhomogeneous density. In contrast, the sudden onset of dissipation provides a clear

distinction between the two quantum phases. In the SF phase, current flows without

dissipation if the momentum does not exceed a critical momentum, while in the MI

phase the critical momentum vanishes and transport is dissipative.

6.2 Critical Momentum of Superfluid Current in

an Optical Lattice

As discussed in the section 2.4, the stability of superfluid is closely related to the

excitation spectrum ω(q) of system. A relative motion of superfluid opens a decay

channel to excitation modes with ωd(q) = q · v (v: relative speed of superfluid), and

those excitation modes of q′ satisfying ωd(q
′) = ω(q′) become populated resulting in

fragmentation of the superfluid into such momentum states q′.

The elementary excitation spectrum ω(q) is modified in the presence of an optical

lattice to have a phonon part (long wavelength) and a band structure part (near the

1st Brillouin zone boundary, Bogoliubov band)[72, 123, 84, 124]. In the long wave

length limit (q → 0), the excitation spectrum in optical lattice has a phonon branch,

and the Landau instability would still occur in optical lattice system when the system

moves faster than the sound speed.

Near the first Brillouin zone boundary, the excitation spectrum in an optical

lattice deviates from the free space excitation spectrum. In free space, its excitation

spectrum is a continuous function from 0 to∞, while in the optical lattice it is changed
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to band structure, a bound and periodic function of quasimomentum q. This gives

rise to another type of instability mechanism in optical lattice: dynamical instability.

Two different types of instability are discussed in the following sections

6.2.1 Energetic & Dynamical Instability

A simple but intuitive picture on instabilities in superfluid can be obtained by consid-

ering small fluctuations added to the superfluid ground state[130]. A BEC loaded into

a one-dimensional optical lattice can be described by the G-P equation (Eq.(2.13))

with a periodic potential Vtrap(x) = V0 cos(2πx
a

) (lattice spacing a = λ/2)

µφ(x) =

(
~2

2m

∂2

∂x2
+ V0 cos(

2πx

a
) + g |φ(x)|2

)
φ(x) (6.1)

The superfluid moving with momentum q in the optical lattice is described by

Bloch waves φq(x) = eiqxψq(x). Assume that fluctuations with momentum Q are

added to the system. They are expressed also in the form of Bloch waves

δφq,Q = eiqx
[
uq(x,Q)eiQx + v∗q (x,Q)e−iQx

]
(6.2)

All the wave vectors q, Q and the functions φq(x), uq(x,Q), vq(x,Q) have periodic

boundary conditions1. There are two different wave vectors q and Q: BEC is assumed

to flow with momentum ~q, and we perturb the BEC with wavevector Q to see its

stability. The energy change δEq,Q associated with fluctuations δφq,Q can be obtained

numerically. Detailed numerical results and mathematical discussions are given in

[130, 85]. There are three cases for the value of δEq,Q

1. δE > 0: In this situation, the fluctuations increase the energy of the system. If

δEq,Q is positive for all Q, the system moving with q is stable against fluctua-

tions.

2. δE < 0: The fluctuating state which has negative δEq,Q becomes energetically

1The quasimomentum ~q, ~Q is in the first Brillouin zone ({− 1
2

2π
a ∼ 1

2
2π
a }). The functions are

periodic with lattice spacing a.
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favored. These fluctuation mode can be populated through excitation processes,

and the system becomes unstable.

For stationary BEC (q = 0), δE0,Q is positive for all Q implying that a station-

ary BEC in an optical lattice is stable. With increasing momentum q, δEq,Q

approaches zero and finally starts to become negative for Q near 0 (long wave-

length excitation) at a critical momentum qc1. Above a critical value qc1, the

system can decay through phonon excitations (Q → 0) resulting in instabil-

ity.(Energetic (or Landau) instability)

3. δE is imaginary: When q is increased above a certain value qc2 = 1
4

2π
a

(or quarter

of the first Brillouin zone size), δEq,Q starts becoming imaginary for Q near the

first Brillouin zone boundary (Q = ±1
2

2π
a

). Imaginary energy δE implies that

small fluctuations grow exponentially leading to a decay of system.(Dynamical

instability)

The two types of instabilites are distinguished by the quasimomentum Q of

the fluctuation modes that induce instability, Q = ±1
2

2π
a

for the dynamical

instability, while Q = 0 for the energetic instability. For more discussions on

dynamic and energetic instability see Refs. [106, 131, 62]

6.2.2 Decay Process and Elementary Excitation

Decay processes through energetic and dynamical instabilities can be understood in

the context of the spectrum of elementary excitation. The excitation spectrum of a

BEC moving in an optical lattice is given in Fig. 6-1 for various momentum q of

BEC.

The excitation spectrum in Fig.6-1 implies that decay process could occur by

exciting two different excitation modes: Q ∼ 0 and Q = ±kL.

• Q ∼ 0 (Energetic Instability): When the BEC moves faster than the sound

speed ((b) in Fig. 6-1), the excitation energy near Q ∼ 0 becomes lower than

the unperturbed initial state. The system can lower its energy by exciting

phonon modes, and the superfluid becomes unstable.
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Figure 6-1: Excitation spectrum of a BEC moving in optical lattice with momenta
q. In each plot, the energy and momentum are given in the frame of the moving
BEC.(not a lab frame) (a) linear phonon mode appears in the spectrum. (b) If the
BEC moves faster than the speed of sound, the energy of excitations becomes lower
than the energy of the initial unperturbed state. (c) The phase matching condition
(momentum-energy conservation) for excitations. (d) Two excitation modes with
Q = ±kL satisfy the phase matching condition at q = 0.5kL. Those excitation modes
are populated leading to fragmentation and instability of the system [Dynamical
instability].
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Let us consider how BEC emits phonons and decays. In creating (or anni-

hilating) quasi-particles, a phase matching condition (i.e. momentum-energy

conservation) must be considered. For example, in (c) of Fig. 6-1 a quasi-

particle with momentum Q1 is emitted to a lower energy Eq(Q1). The phase

matching condition implies that another quasi-particle with momentum should

be emitted. As (c) of Fig. 6-1 shows the phase matching condition is not sat-

isfied in the excitation spectrum. Therefore this process is not possible unless

additional potential energy or particles are added. For example, in (c) of Fig.

6-1 thermal atoms can take away excess energy Eq(0) − Eq(Q1) satisfying the

phase matching condition. Energetic instabilities induced by thermal atoms

have been studied experimentally [106].

• Q ∼ kL (Dynamic Instability): At q = 0.5kL, excitation energy of Q = ±kL

becomes equal to the energy of the initial state as shown in (d) of Fig. 6-1. In

creating a pair of excited particles with Q = +kL, −kL, both momentum and

energy are conserved[33, 19].

Eq(0) + Eq(0) = Eq(kL) + Eq(−kL) (6.3)

Above qc2 = 0.5kL, the set of excitations that satisfy the phase matching con-

dition expands around Q = ±kL. The system becomes dynamically unstable

for q > qc2 = 0.5kL. Fig 6-2 shows that momentum states with Q = ±kL are

populated at the onset of dynamical instability (qc2 = 0.5kL).

6.2.3 Superfluidity in the Regime of Strong Interaction

So far, we have considered superfluid flow in the regime of weak interaction (or in

shallow optical lattices). For weak interactions (U/J → 0), the system approaches

single-particle physics in a periodic potential well described by Bloch states and band

structure. The critical momentum for a stable current-carrying state is 0.5 ~kL [130].

However, these analyses neglect the growing importance of quantum correlations
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q = 0 kL q = 0.5 kL

kL
2 kL2kL

(a) (b)

Figure 6-2: The onset of a dynamical instability. Time-of-flight images of interference
pattern of BEC released from an optical lattice and the integrated images are shown
for a BEC with momentum q = (a) 0 kL and (b) 0.5 kL. The optical lattice depth
was set to 3ER. (b) shows the population of excited states with Q = ±kL at the
onset of the dynamical instability. Since the quasi-momentum of two excitation states
Q = ±kL differ by a reciprocal vector 2kL, they are indeed the same state within the
first Brillouin zone, and only one momentum component is visible in the image (b).
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Figure 6-3: Phase diagram for stability of superfluid flow for commensurate and
incommensurate filling. Commensurate system turns into the MI phase for u > uc,
and the critical momentum vanishes, while incommensurate system is not in the MI
phase even for u > uc, and the critical momentum does not vanish. pr denotes a
recoil momentum ~kL.

for larger lattice depth which leads to the SF-MI phase transition, where the critical

momentum for a superfluid current vanishes (qc = 0). The critical momentum de-

creases from 0.5kL with increasing interaction parameter U/J , and it vanishes at the

MI transition (U/J)c. The critical momentum in between SF and MI phases has been

numerically studied using the mean field approach showing that critical momentum

decreases smoothly from 0.5~kL(weak interaction) to 0 (MI transition) with increas-

ing U/J . The critical momentum is plotted as a function of u ≡ U/J in Fig. 6-3.

More detailed discussions of numerical methods are given in ref. [2, 98].

For u > uc, a homogenous system with incommensurate filling n = 1 + ε is not

in the MI phase, but stays in the superfluid phase. The n = 1 + ε system may be

considered as a dilute superfluid (or holes if ε is negative) on top of the MI background

atoms, and the critical momentum remains equal to 0.5kL for u > uc. The critical

momentum for n = 1 + ε is displayed in Fig. 6-3. The critical momentum decreases

from 0.5~kL initially, but increases back to 0.5~kL.
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6.2.4 Effect of the Inhomogeneous Density Profile

Our measurement of critical momentum of the n = 1 system was not limited by the

inhomogeneous density profile. For our range of lattice depths, low critical momenta

and the onset of dissipation occur only near the formation of MI shells with integer

occupation numbers n[2]. The onset of dissipation related to the n = 1 domains occurs

at smaller momentum than for any other n (Fig.6-3). For instance, with increasing

momentum p the n = 1 domain becomes unstable first, and this triggers dissipation

over the whole atomic cloud[2]. Therefore, the breakdown of superfluid flow in the

system was determined by the formation of the n = 1 domain and was not smeared

out by the inhomogeneous density.

6.3 Experimental Setup

This experiment was performed in the main chamber. For detailed description of the

main chamber of the Rb BEC machine, I refer to other theses: Ref. [117, 13] (general

machine description), Ref. [15] (optical lattice setup).

A BEC of 87 Rb atoms in |1,−1〉 state was prepared and trapped in a combination

of an Ioffe-Pritchard magnetic trap and an optical dipole trap. The number of atoms

in the BEC was 2 × 105. The magnetic trap frequencies were ωx,y = 2π × 40 Hz

radially and ωz = 2π × 4.6Hz axially. The laser beam for the optical dipole trap was

oriented along the x axis. This laser beam was retro-reflected and the polarization

of the retro-reflected beam was rotated in order to minimize interference between the

two beams2. Along the vertical direction (y axis) a lattice was formed by a retro-

reflected laser beam. For the z axis, a moving lattice was created by introducing

a small frequency detuning δf between the two counter-propagating laser beams

using AOMs driven by phase-locked frequency generators. The 3D optical lattice was

ramped up exponentially in 160 ms. A x-axis optical lattice is ramped by rotating the

polarizations of the retro-reflected beam to increase interference between two counter-

propagating beams, while other axes optical lattices were turned on by turning on

2The polarization of retro-reflected beam was controlled by liquid crystal variable retarder.
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the power. All lattice beams had an 1/e2 waist of 100− 200µm.

6.3.1 Moving Lattice

For transport measurements, we moved an optical lattice [9, 39] which provides more

flexibility to change the momentum than exciting a dipole oscillation by displacement

of the BEC [21, 40]. A moving optical lattice with velocity v = λ · δf/2 was created

along the long axis of the BEC by introducing a small frequency detuning δf between

two counterpropagating lattice beams. If the velocity v(t) changes slowly enough not

to induce interband excitations, the initial Bloch state |p = 0〉 of the condensate in

the optical lattice adiabatically evolves into the currentcarrying state |p(t) = −mv(t)〉

where p is the quasimomentum. For increasing lattice depth, the effective mass of

atoms m∗ = [∂2E(p)/∂p2] increases, and the group velocity vg = −(m/m∗)v(t) de-

creases. As a consequence, atoms prepared in a moving lattice with quasimomentum

p = −mv travel in the frame of the moving lattice with vg and in the lab frame

with velocity ∆v = v + vg = (1 − m/m∗)v, which approaches v in a deep lattice.

Consequently, we observed that in a deep moving lattice atoms were dragged along

to the edge of the trapping region limiting the experimental time scale to probe for

dissipation. This became an issue for larger values of p and was addressed by first

ramping up the lattice with p = 0 and then alternating the velocity of the moving

lattice, thus performing a low-frequency AC transport measurement instead of DC.

6.3.2 Adiabaticity of Moving Lattice

In order to adiabatically load a BEC in a current carrying state |p = −mv(t)〉, the

optical lattice should be varied slowly enough not to create excitations such as higher

band states. The adiabaticity criterion is given

~|〈n, q| d
dt
|0, q〉| � |En(q)− E0(q)| for n > 0 (6.4)

where |n, q〉 is a state with momentum q in nth band, and En(q) is energy of |n, q〉.
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For the momentum change q(t), the adiabatic condition Eq.(6.4) imposes∣∣∣∣λ2 d

dt
[~q(t)]

∣∣∣∣� band gap (6.5)

The left term in the above condition reads

λ

2

d

dt

[
m
λ

2
δf(t)

]
=

(2π~)2

8ER

d

dt
δf(t)

Sinusoidal frequency modulation is applied to one of moving lattice beams with

δf(t) = fM sin(ω1t). The adiabatic condition is then given

fMω1 �
(band gap)ER

(2π~)2
(6.6)

The maximum frequency modulation parameters in our experiment (fM ∼ 5 kHz3

ω1 = 2π × 10 Hz) satisfies this condition very well (bandgap energy is ∼ a few kHz,

and recoil energy is 2 kHz).

6.4 Measurement of the Critical Momentum

6.4.1 Experimental procedure

Two sets of experimental procedures were used for measurement of the critical mo-

mentum, and our results were consistent for both.(Fig.6-4)

Close to the SF-MI phase transition, the lattice was increased to Vlatt with a fixed

(and small) value of momentum p (dashed arrows in Fig. 6-4). After a variable

hold time thold at Vlatt the lattice was ramped down to zero, and the magnetic trap

switched off. After 33 ms of ballistic expansion, the atoms were imaged and the

condensate fraction was determined as a function of momentum by using a bimodal

fitting function.

For smaller lattice depths, the lattice was ramped up with p = 0 (Fig. 6-

3δf = 4kHz corresponds to half the recoil velocity v = (λ/2) · δf = 0.5 ~kL/m.
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Figure 6-4: Phase diagram showing the stability of superfluid flow in an optical
lattice and the experimental procedure. The gray curve shows the predicted boundary
between superfluid flow and dissipative flow phases for a three-dimensional gas with
a commensurate filling of n = 1 atom per site[2]. The solid (dashed) arrows illustrate
the experimental trajectory used for small (large) lattice depths (see text for details).

4). Then a sinusoidal momentum modulation of the moving lattice with amplitude

pM = (mλ/2) fM was applied by modulating the frequency detuning δf = fM sin(ω1t)

between the counterpropagating lattice beams. The 10 ms period of this momentum

modulation (ω1 = 2π × 100 Hz) was slow enough to meet the adiabaticity condition,

but fast enough to limit the displacement of the atomic cloud to less than a few µm.

Both the trapping potential and the optical lattice were then turned off suddenly.

Images were acquired after 33 ms of ballistic expansion. The time-of-filght images in

Fig. 6-5 show that superfluid becomes unstable above a certain momentum.

6.4.2 Determination of Critical Momentum

The condensate fraction of the center peak of the superfluid interference pattern

was recorded as a function of the momentum modulation amplitude pM . Several

cycles of the momentum modulation were applied to obtain a high contrast between

the stable and dissipative regimes. Fig. 6-6 (a) shows how the transition between

superfluid and dissipative flows becomes sharper with increasing number of cycles of
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0.12 pr 0.31 pr 0.32 pr 0.43 pr0 pr

Figure 6-5: Images of interference patterns released from an optical lattice at u/uc =
0.61 moving with variable momentum. Instability occurred between p = 0.31pr and
0.32pr.

the momentum modulation. The critical momentum was determined from a log-log

plot of the condensate fraction as a function of momentum p [Fig. 6-6(b)]. The

intersection between two linear fit functions was taken as the critical momentum.

Our result was found to be consistent for different frequency ω1 and number of cycles

of the momentum modulation.

6.5 The Critical Point for the Quantum Phase Tran-

sition

The quantum phase transition from the superfluid to the Mott insulator has the

following signatures.

1. Appearance of energy gap ∆E in the excitation spectrum

2. Loss of long-range phase coherence

3. Loss of superfluid current

Most studies of the SF-MI phase transition monitor the coherence in the superfluid

phase through an interference pattern observed in the ballistic expansion resulting

from a sudden turn-off of the confining potential and lattice. Previous observations

of the phase transition found the experimental transition point to lie in the range

between 10 and 13 ER[52]. This uncertainty is related to the inhomogeneous density
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Figure 6-6: Determination of the critical momentum of superfluid flow. Shown is
the condensate fraction as a function of a momentum p. (a) Condensate fraction
with u/uc = 0.61 for a variable number of cycles of the momentum modulation (one
cycle: × and blue line, two cycles: � and purple line, three cycles: N and red line).
A dashed vertical line indicates the critical momentum where instability begins to
occur. The two and three-cycle data are offset vertically for clarity. These data were
fitted with an error function to guide the eye. (b)Condensate fraction on a log-log
scale for two different interaction strengths.
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Figure 6-7: Critical momentum for a condensate in a 3D lattice. The solid line shows
the theoretical prediction for the superfluid region. The horizontal solid line is a fit
to the data points in the MI phase. (Inset) Fit of critical momenta near the SF-MI
phase transition.

profile of trapped atoms and to the fact that the visibility of the interference extends

beyond the transition point due to short-range coherence in the MI phase[49]. It

has been suggested that observed kinks(Fig. 2 of Ref. [49]) in the visibility are

linked to the formation of the MI shells with occupation numbers n = 2 and 3[49].

Several authors have suggested other features in the momentum distribution beyond

coherent interference peaks as a more distinct signature of the phase transition[129,

68]. Here we show that the disappearance of the critical momentum for superfluid

flow provides such a signature and allows the determination of the transition point

with high precision.

Fig. 6-7 shows the critical momentum measured with various interaction strength

u. The critical point uc for the SF-MI phase transition can be deteremined as the point

where the critical momentum vanishes. Near the SF-MI phase transition, the critical

momentum approaches zero with the predicted functional form, pc ∝
√

1− u/uc[2].

Fitting the data points close to the SF-MI phase transition with this function, we

could determine the critical point for the SF-MI phase transition uc = 34.2(±2.0)

corresponding to 13.5(±0.2)ER.
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Our result agrees with the mean-field theory prediction uc = 34.8 for n = 1 SF-

MI phase transition[65], and deviates by 2 σ from the predictions of uc = 29.34(2)

of quantum monte carlo calculation[46, 20], which includes corrections beyond mean-

field theory. This demonstrates that our method has the precision to identify non-

mean-field corrections. However, to turn precision into accuracy, experiments or

QMC simulations [129, 46, 20] have to address corrections due to finite size, finite

temperature, and finite time to probe the onset of the instability. In our experiment,

these corrections seemed to be small, but have not been characterized at the level of

1% in lattice depth.

6.6 Decay of the Superfluid Current in a 1D Sys-

tem

For studing the 1D system, we prepared an array of one-dimensional gas tubes by

ramping two pairs of optical lattice beams up to lattice depths of Vx = Vy = 30ER

supressing hopping between the tubes. After a hold time of 10 ms, a moving optical

lattice(z-axis) was ramped up to various lattice depths. As in the 3D experiment,

a momentum modulation was applied, after which the moving optical lattice was

ramped down to zero, followed by the other two optical lattices. The condensate

fraction was determined after 33 ms of ballistic esxpansion as a function of the mo-

mentum modulation amplitude. The critical momentum, where the onset of dissipa-

tion begins, was identified from a log-log plot as in the 3D case. In contrast to sharp

transition in 3D experiment, the transition from stable to unstable flow was observed

to be broad in the 1D gas. To characterize the width of the transition between stable

and dissipative flow regimes, the data was fitted with error function, and the center

of the fitted error function was taken as the center of the transition. (Fig. 6-8 (b))

At a very shallow lattice depth of 0.25ER, a sharp transition was observed, and the

measured critical momentum agreed very well with the prediction[2, 98], pc = 0.39pr.

However, slight increase of the lattice depth to 0.5ER led to a significant decrease of
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Figure 6-8: Critical momentum for a 1D gas in an optical lattice. (a) The gray line
indicates the mean-field theory prediction. The interaction strengths are normalized
by the mean-field prediction for uc = 5.8 × 2[65, 116]. Squares (crosses) represent
the measured critical momentum (the center of the transition). Measurements were
taken at lattice depths of 0.25, 0.50, 0.75, 1.0, 2.0 ER. The lines between crosses and
squares indicate the width of the transition region. (b) Condensate fraction measured
at 0.25 ER and 0.75 ER. The data were fitted with an error function. Squares (the
critical momentum) and crosses (the center of the transition) are indicated on the
plots.
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the critical momentum as well as a dramatic broadening of the transition as shown

in Fig. 6-8. For lattice depths lager than 2ER, the transition became very broad and

showed complex behavior, and a quantitative anlysis of data could not be obtained.

Our measured critical momentum shows a significant deviation from the mean-field

theory calculation[40, 98, 102]. This result is in agreement with the other transport

experiment performed with 1D gas at NIST[40]. In the NIST work damped dipole os-

cillations of a 1D Bose gas was observed, while diople oscillations of a 3D gas showed

no damping. They found that the damping coefficient grew rapidly with increasing

lattice depth even at very shallow lattice depth. This experimental result is theoret-

ically investigated showing that quantum fluctuation dominates in 1D gas transport

leading to significant deviation from the mean-field theory. Our observed broaden-

ing of the transition confirms theoretical studies which emphasize the importance of

quantum fluctuations in the 1D system. Quantum tunneling out of metastable states

which are ignored in the mean-field description can lead to a decay of the superfluid

current at very low momentum[98].

6.7 Conclusion

We have used transport studies to connect a well-known dynamical instability for

weakly interacting bosons with the equilibrium superfluid to Mott insulator transi-

tion. A comparison of 3D and 1D systems confirms the applicability of a mean-field

description in three dimensions and the crucial importance of fluctuations in one di-

mension. The disappearance of superfluid currents at the SF-MI phase transition

precisely located the phase transition. Our results illustrate the control and preci-

sion of condensed matter physics experiments done with ultracold atoms and their

suitability to test many-body theories.
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Chapter 7

Spectroscopy and Imaging of the

Mott Insulator Shell Structure

This chapter describes experiments on the Mott insulator phase performed in two

different apparatuses: the main chamber, and the science chamber. The experiment

performed in the main chamber, previously reported in Ref. [18], are briefly intro-

duced. See the reprint included in Appendix D for detailed discussions.

7.1 Introduction

The Mott insulator(MI) is distinguished from a conventional insulator in that carrier

particles can not flow in a conventional insulator due to a fully filled energy band,

while in the Mott insulator it is the particle-particle interaction that prevents carriers

from flowing even in a partially filled conduction band. In the SF-MI transition,

this particle-particle interaction drastically modifies atom number statistics from a

coherent state (Poisson distribution) to a Fock state.

The number statistics was diagnosed using the clock shift (the mean field shift)

with observation that the clock shift spectrum changed from a gaussian shaped peak

in a shallow optical lattice to multiple discrete peaks in a deep optical lattice[18](Fig.7-

2). This implies that the density distribution in the superfluid phase is continuous,

while it turns into discrete occupation numbers in the Mott insulator.
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In addition, the clock shift diagnostic tool offers the method to selectively address

individual n = 1, 2, 3, · · · “shells” of the Mott insulator phase by utilizing the fre-

quency of discrete peaks in the clock shift spectrum. With the clock shift scheme,

individual Mott insulator shells could be imaged with this scheme.

In this chapter, using clock shift spectroscopy we discuss high-resolution imag-

ing of the Mott insulator shells. In addition, the temperature-dependence of the

number statistics of the Mott insulator is presented. This could potentially serve as

thermometer for ultracold atomic system.

7.2 Clock Shift Spectroscopy

7.2.1 Clock Shift

When atoms in one hyperfine state are transferred to other hyperfine state, the res-

onance frequency is shifted by change in interaction energy between atoms in the

initial state and final state. Such frequency shift occurs in many applications of a

atomic clock, where the hyperfine transition is used as a frequency standard. This

frequency shift is called “clock shift”, and it normally limits the accuracy of atomic

clocks.

In BEC, the interaction energy is given by s-wave interaction, the change in the

interaction energy corresponds to (4π~2a/m)n [60]. For the transition between two

hyperfine states (|1〉, |2〉), each state experiences a frequency shift

∆µ1/~ =
4π~
m

(a11n1 + a12n2) (7.1)

∆µ2/~ =
4π~
m

(a22n2 + a12n1) (7.2)

where a11, a12, a22 are the s-wave scattering length of |1〉 − |1〉, |1〉 − |2〉, |2〉 − |2〉,

respectively, and n1, n2 are the densities of atoms in states |1〉 and |2〉.
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The total change in the transition frequency between |1〉and|2〉 is

∆ν = ∆(µ2 − µ1)/~ =
4π~
m

[(a22 − a12)n2 − (a11 − a12)n1] (7.3)

If we start with all of atoms in state |1〉, the frequency shift reduces to

∆ν = −4π~
m

(a11 − a12)n1 (7.4)

The frequency shift ∆ν is linearly proportional to the density of atoms n1 with scat-

tering length difference a11−a12. Therefore, the measurement of clock shift ∆ν reveals

the density profile n1.

7.2.2 Clock Shift in Optical Lattice

The interaction energy in the Bose-Hubbard model for two bosonic species (two dif-

ferent hyperfine states |1〉, |2〉) is [3]

U({n1,i}, {n2,i}) =
1

2
U11

∑
i

n1,i(n1,i − 1) +
1

2
U22

∑
i

n2,i(n2,i − 1) (7.5)

+U12

∑
i

(n1,i − 1/2)(n2,i − 1/2) (7.6)

where Uαβ(α, β = 1 or 2) is the U matrix element between states α and β, n1,i, n2,i

are the number operators at lattice site i.

Consider the situation where the system is prepared with N atoms in |1〉, and a

weak probe hyperfine transition pulse is applied. the frequency shift is then given as

the change in the interaction energy

~∆ν = U(N − 1, 1)− U(N, 0) = −(U11 − U12)(N − 1) (7.7)

For instance, in the lattice system with a single atom per site (N = 1) no interaction

energy exists resulting in a zero frequency shift ∆ν = 0. The difference of matrix
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element U in Eq.(7.7)is given by

U11 − U12 =
4π~2(a11 − a12)

m

∫
dr|w(r)|4 (7.8)

=
a11 − a12

a11

U11 (7.9)

For 87Rb atom s-wave scattering lengths are given by a11 = 100.44 a0, a12 =

98.09 a0, a22 = 95.47 a0.

7.2.3 Two–Photon Transition

In 87Rb atom there are two hyperfine manifolds in the ground state, F = 1 and F = 2

separated by ∼ 6.8 GHz. |F = 1,mF = −1〉 and |F = 2,mF = 1〉 states were chosen

as initial (|1〉) and final (|2〉) state for our clock shift spectroscopy[18, 119]. The bias

magnetic field in the experiment was set to B0 ∼ 3.23 G where two hyperfine states

experience the same first Zeeman shift and the transition frequency becomes robust

against B-field fluctuations[60].

To drive the transition between |1,−1〉 and |2, 1〉, two-photon (microwave + rf)

transition was used. The frequency of microwave was set to fixed value of ∼ 6, 833

MHz giving a detuning ∆ = 0.5 MHz from |2, 0〉 intermediate state. The frequency

of the rf photon (∼ 1.6− 1.7 MHz) was varied to probe the frequency shift.

7.2.4 Experimental Procedure

Optical lattice is exponentially ramped up as illustrated in Fig. 7-1. A 100 ms

two-photon pulse was then applied to atoms while held in the lattice. Immediately

after the two-photon pulse, only the atoms transferred to the state |2〉 = |2, 1〉 were

selectively imaged using imaging light resonant with the F = 2 → F ′ = 3 cycling

transition. The atoms that were not transferred and remained in initial state |1〉 =

|1,−1〉 are transparent to the imaging light. During the imaging, both ODT trap and

the optical lattice was kept on for in-situ absorption imaging.
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Figure 7-1: Experimental procedure for clock shift spectroscopy. The 3D optical
lattice is exponentially ramped up to Vlatt = 35ER in 193 ms. The exponential
ramp curve is Vlatt(t) = A {exp(t/τ)− 1} with A = 15ER/(exp(4) − 1) and τ =
40 ms. A two-photon pulse (microwave + rf) is then applied for 100 ms for clock shift
spectroscopy.

7.3 Clock shift spectroscopy of the SF–MI phase

transition

For the density profile probe, the clock shift spectroscopy was performed on a BEC

across the superfluid-Mott insulator transition with variable lattice depth from 0ER

(no lattice, superfluid phase) to 35ER (MI phase). Fig.7-2 shows our observed clock

shift spectrum.

For a trapped BEC without optical lattice, a harmonic trapping give the density

distribution f(n) = (15n/n0)
√

1− n/n0 (with normalization condition
∫
dnf(n) = 1)

varying smoothly from n0(at trap center) to 0(trap edge). The density distribution

f(n) leads to the line shape of clock shift spectrum I(∆ν) with the Eq. (7.4)

I(∆ν) =
15∆ν

∆ν0

√
1− ∆ν

∆ν0

(7.10)

with ∆ν0 = (−4π~/m)(a11 − a12)n0. The spectrum of the trapped BEC in Fig.7-2

shows a single continuous peak. As the lattice depth increases, broadening of the line

shape was observed (i.e. the spectrum for lattice depth 5ER in Fig.7-2), which is in
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Figure 7-2: Clock shift spectroscopy across the SF-MI transition. Spectrum was
measured for lattice depths of 0 ER (�), 5 ER (4), 10 ER (◦), 25 ER (�), 35 ER (•).
The spectra are vertically offset for visual clarity.

agreement with the predicted line width
√
〈∆ν〉2 ∼ U(interaction) of Eq. 7.10.

The clock shift spectrum in Fig. 7-2 changed from a gaussian shaped peak in a

shallow optical lattice to multiple discrete peaks in a deep optical lattice(i.e. 25, 35ER

)(Fig.7-2). This implies that the density distribution in the superfluid phase is con-

tinuous, while it turns into discrete occupation numbers in the Mott insulator.

For deep lattices, the separation of the peaks in the spectrum is determined by

the difference ∆U = U11(a11−a12)/a11 of the onsite interaction energy U . The onsite

interaction U11 could be obtained from the peak separation (Fig. 7-3). The width

of the discrete peaks was measured to be 10 Hz, which is mainly limited by the two-

photon pulse time = 100 ms. It was observed in our previous experiment that the

width of the discrete peaks could be narrowed down to 1 Hz level by increasing the

two-photon interrogation time up to 1 s[13].
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Figure 7-3: Probe of the onsite interaction U . A curve shows the onsite interaction
calculated using Wannier functions.(see Fig. 3-3)

7.4 Imaging the Mott Insulator Density Profile

In our first clock shift experiment [18] performed in the main chamber, the details

of the density profile in the MI phase could not be obtained due to the low imaging

resolution of ∼ 10µm which was mainly limited by lack of optical access. Our newly

designed high NA lens improved imaging resolution to ∼ 2µm. In the rest of this

chapter, I present the experiments performed in the science chamber utilizing high

resolution imaging power.

Each Mott insulator shell could be selectively addressed by using discrete peak

frequencies in the clock shift spectrum (Fig.7-2). For instance, atoms in the n = 1

MI domain can be transferred to |2, 1〉 without transferring any other n MI domains

using the resonance frequency of the n = 1 peak.

Fig. 7-4 shows the image of the n = 1 Mott insulator domain. The density profile

of a thin slice along a dashed line in Fig. 7-4 (b) shows that the density of the

n = 1 MI shell drops near the center of cloud where the n = 2 MI shell structure

resides. The image integrated along x-axis in Fig. 7-4 (c) shows the “flat top” feature

indicating that the n = 1 MI domain has an empty core[111].

The reconstruction of the 3D density profile of n = 1 MI domain was performed

using the inverse Abel transform with the assumption of cylindrical symmetry[14].

Over 10 shots were averaged to improve the signal to noise ratio. Fig. 7-4 (d) shows
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(a)

(b)

(c)

(d)

z

x

Figure 7-4: Inverse Abel transform of n = 1 Mott insulator shell (a) Absorption
image of n = 1 MI phase. (b) Density profile of single pixel slice along the dashed
line drawn in (a). The density is lower near the center of trap. (c) Density profile
integrated along the x-axis. It shows a “flat top” feature. (d) Density n̄n=1(0, 0, z)
obtained using the inverse Abel transform. It shows the formation of the n = 1 MI
shell structure.
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our reconstructed density profile n̄n=1(0, 0, z) along the long axis of the trap. This

density profile directly shows the formation of the shell structure in the MI phase.

In the inverse Abel transform, the data is numerically differentiated. The noise in

the numerical derivative of a single image was too high and we had to average over 10

shots. Our processed density profile ((d) of Fig.7-4) clearly shows the empty core. The

back ground data points outside the atomic cloud have non-negligible noise and were

forced to be lower by factor of 5 in the inverse Able transform in these preliminary

results. The sharpness of the boundary between n = 1 and n = 2 MI domains could

not be resolved with high accuracy, since we have not yet systematically studied what

affects our current resolution.

7.5 Application to Thermometer for Ultracold Atomic

Systems

Through the SF-MI phase transition, the initial state of BEC is adiabatically trans-

formed into a set of micro systems at each lattice site. Such adiabatic transitions relate

and map the physical quantities between initial and final states. Special emphasis is

given to those quantities that are hardly accessible in one state but measurable in the

other state, i.e. the entropy and temperature.

The thermodynamics of the micro systems deep in the MI phase can be described

in a following simple way by considering only particle–hole excitations [61, 48]. In a

single lattice site of a deep MI phase, eigenstates are given by Fock states |n〉 with

energy E(n) = Un(n − 1)/2. The partition function Z(β, µ) is then expressed as a

function of temperature β = 1/kBT and chemical potential µ

Z(β, µ) =
∑

n

exp [−β (E(n)− nµ)] (7.11)

The probability ρn that n atoms are occupied in a lattice site can be obtained from
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Figure 7-5: Occupation number n and entropy S at variable temperatures T =
0.005U , 0.02U , 0.05U . At low T, the density profile has plateaus of n = integer with
sharp boundaries. As T increases, particle-hole excitations arise near the boundaries
and the density varies smoothly. The entropy has a maximum value of Smax = kB log 2
at the center of the boundaries for T < U .

the partition function Z(β, µ)

ρn(β, µ) =
exp [−β (E(n)− nµ)]

Z(β, µ)
(7.12)

The occupation number n̄ and entropy S are

n̄(β, µ) =
∑

n

nρn (7.13)

S(β, µ) = −kB

∑
n

ρn log ρn (7.14)

They are plotted in Fig. 7-5 for various temperature T .

At T = 0, the density profile has density plateaus with sharp boundaries. With

increasing temperature the MI domains expands due to particle-hole excitations, and

the boundary between different density plateaus becomes broad. At non-zero T (<

U), the chemical potential range of the MI domains expands by ∆µ ∼ 2T . Inside

the boundaries where the density smoothly varies i.e. from 1 to 2, the atom number
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(a) (b)

(d)(c)

n=1

n=2

Figure 7-6: Expansion of the MI domains with increasing trap depth and temperature.
The integrated density profile n(z) of n = 1 (blue) and n = 2 (green) MI domains
are shown for different trap depths Vtrap. The trap depths are denoted with respect
to the reference trap used in (a): Vtrap = 0 kHz in (a), 7 kHz in (b), 14 kHz in (c), 30
kHz in (d). The boundary between density plateaus (shaded area) becomes broader
with increasing trap depth Vtrap.

fluctuates between 1 and 2 leading to the increase of entropy S. As long as the

temperature is lower than the interaction energy (T < U), the entropy arises mainly

from single particle-hole excitations, and the maximum entropy is given by Smax =

kB log 2 at the center of boundaries (dashed line in Fig. 7-5).

To observe the temperature dependence of the MI domain size, the temperature

of the system was adjusted by varying the trap depth. For all the trap depths used

in our measurement, the condensate fraction was found to be close to 1. In general,

it is difficult to precisely determine the condensate fraction near 100 %.1 Therefore,

our measure for temperatrue is the final trap depth Vtrap, and not the condensate

fractions.

The integrated density profiles (n(z) =
∫ ∫

dxdy n(x, y, z)) of n = 1 and n = 2

1This is one of the reasons for employing the MI phase as a thermometer, since precise measure-
ment of thermodynamical quantities of a BEC is a difficult task for small T/Tc
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Figure 7-7: The boundary position for the n = 1 and n = 2 MI domains at variable
temperature. A blue (green) curve represents the boundary position of n = 1 (n =
2, respectively) MI domain calculated for our trap geometry. For comparison, our
measurement of boundary position (blue squares: n = 1, green circles: n = 2) are
also displayed with n = 1 measurement fitted on the predicted curve: Vtrap = (a) 0
kHz, (b) 7 kHz, (c) 14 kHz, (d) 30 kHz.

MI domains are shown in Fig. 7-6 for variable trap depths Vtrap. The “flat top” areas

are visible in n = 1 density profile. The boundary of the MI domains was determined

to be the edges of the “flat top” area for n = 1, and the outer edges for n = 2 (Fig.

7-6).

We observed that the Mott domains expanded with increasing trap depth Vtrap

(Fig. 7-6). The n = 1 MI domain (blue dashed line in Fig.7-6) expanded toward

the center of trap, and the n = 2 MI domain (green dashed line in Fig.7-6) spreaded

outwards from the center. An overlap region of the n = 1 and n = 2 MI domains was

observed to become broader with increasing trap depth Vtrap (shaded area in Fig. 7-6

(b), (c), (d)).

The curves in Fig. 7-7 shows predicted positions of the MI domain’s boundary

calculated for our trap geometry. For comparison, our measured boundary positions

are also displayed with n = 1 measurements fitted on the calculated curve.

Expansion of the overlap area of the n = 1 and n = 2 domains (shaded area

in (b)-(d) of Fig.7-6) implies that the step-like density profile became smoother and

continuous. One may expect that the discrete peak structure in the clock shift spec-

trum becomes continuous due to the change of the density profile to a smooth curve.
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Figure 7-8: Entropy estimated in the MI phase. Entropy per particle is estimated in
units of kB log 2.

However, we observed no significant change in the peak structure of the clock shift

spectrum; the position and heights of n = 1 and n = 2 peaks remained the same.

This implies that the state in the overlap area is an incoherent mixture (thermal mix-

ture) of Fock states |1〉, |2〉: each Fock state |n〉 contributes to each peak with the

probability ρn.

Although the smooth density profile of the MI phase at finite temperature is

similar to that of the superfluid profile, they are fundamentally different. In the MI

case, the state is an incoherent mixture of Fock states |n〉 with associated probabilities

ρn = exp[−β(E(n)−nµ)]/Z(β, µ). The number is determined by an ensemble average,

n̄ =
∑

n ρnn with non-zero entropy. In contrast, the superfluid phase is described

by a coherent superposition (pure state) of Fock states
∑

n cn|n〉 providing 〈n̂〉 =∑
n |cn|2n.

The entropy reaches a maximum Smax = kB log 2 near the boundary of the MI

domains. The entropy of the system can be estimated by assuming that the entropy is

equal to Smax = kB log 2 in the overlap zone and 0 in the pure MI phase domains(non-

overlap zone). The estimated entropy is displayed in Fig. 7-8

Entropy has not been experimentally studied in trapped BEC system2. Such

measurements are challenging particularly for low temperature (small T/Tc). The

entropy S of a trapped BEC, for low temperature T < µ , has been predicted in

2Specific heat was investigated experimentally[38]
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Figure 7-9: Prediction of entropy per particle S/N of a trapped BEC.[50]

theoretical work by Giorgini et al. [50]

Si(T,N) =
7Aζ(3)

5
√

2

(
15asN

σ

)1/5(
kBT

~ω0

)5/2

(7.15)

with σ =
√

~/mω0, trap frequency ω0, A = 10.6. The entropy S is plotted in Fig. 7-

9. From this curve, the initial temperatures Ti of experimental sets (a)-(d) in Fig.7-6

can be estimated by setting Si = Sf : Ti/Tc = (a) ∼ 0.05, (b) ∼ 0.2, (c) ∼ 0.25 (d)

∼ 0.35.

7.6 Conclusion

In conclusion, we have imaged individual Mott insulating phases. Detailed density

profiles could be obtained with our new high-resolution imaging system. They showed

the formation of the MI shell structure. A expansion of the MI domains was observed

with increasing trap depth Vtrap, which determines the initial temperature of the sys-

tem. The entropy associated with the expansion of the MI domains was estimated.

This method should provide an effective way to measure the thermodynamical quan-

tities of ultracold atomic systems.
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Chapter 8

Demonstration of Quantum Zeno

Effect using a BEC

This chapter briefly introduces the experimental demonstration of Quantum Zeno Ef-

fect with a BEC. This experiment was previously reported in Ref. [119]. See the

reprint included in Appendix F for detailed discussions.

This is the only experiment described in this thesis in which an optical lattice was

not used. Even though the microwave spectroscopy setup was initially designed for

optical lattice experiments, microwave transition was first utilized in this experiment

to drive Rabi oscillation between two hyperfine states. Two-photon(rf+microwave)

transition could be tested and characterized through this experiment before applied

to the optical lattice experiments. This experiment is shortly described and I refer

to the reprint attached in Appendix F for detailed discussions.

8.1 Quantum Zeno Effect with Pulsed Measure-

ment or Continuous Measurement

The quantum Zeno effect(QZE) is the suppression of transition between quantum

states by frequent measurements. Let us consider a two-level system where two levels
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Figure 8-1: Pulsed quantum Zeno effect. Boxes [traingles] are the data points mea-
sured with a Rabi frequency ωR/2π = 54.6(0.5) [24.7(0.1), repectively] Hz. The
lifetime τEP was measured with variable time interval δt. Black lines indicate the
predicted QZE lifetime τEP = 4/(ω2

Rδt)

|1〉, |2〉 are coherently driven at a Rabi frequency ωR.

8.1.1 Pulsed Measurement

Measurements of the state of the system project the system into one of the two states

|1〉, |2〉. If the system is initially in |1〉 and a measurement is made after short time

δt(� 1/ωR), the probability for the system to be in |1〉 is ≈ 1 − (ωRδt/2)2. For N

successive measurements the probability for the system to be in |1〉 is given by

P (N) =
[
1− (ωRδt/2)N

]2 ≈ exp[−N(ωRδt/2)2] = exp[−(ω2
Rδt/4)T ] (8.1)

with the total free evolution time T = Nδt. The initial state |1〉 decays with an

effective decay rate 1/τEP instead of normal Rabi oscillation. The effective decay

rate 1/τEP is

1/τEP = ω2
Rδt/4 (8.2)

The characteristic time τEP for the pulsed QZE is much longer than the char-
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Figure 8-2: Continuous quantum Zeno effect. Rate of continuous measurement γ is
linearly proportional to measurement laser beam power. Lifetime τEC increases with
increasing measurement rate γ. Gray bands indicates range of expected lifetimes.

acteristic time 1/ωR of normal Rabi-type oscillation. This shows the suppression of

transition.

To experimentally demonstrate QZE, a BEC prepared with an initial hyperfine

state |1〉 = |1,−1〉 was driven to state |2〉 = |2, 1〉 with the two-photon (rf+microwave)

transition. Measurements were performed with a laser beam resonant with the F =

2 → F ′ = 3 D2 transition. The pulsed QZE was observed with a train of repeated

pulses of the measurement laser. Fig. 8-1 shows that the lifetime τEP increases

dramatically with a measurement rate 1/δt.

8.1.2 Continuous Measurement

For a continuous measurement, atoms are continuously illuminated with a weak mea-

surement laser beam. If atoms are in state |2〉, they emit a photon at a rate γ, and

those atoms are removed from the system by the photon recoil kick. The population

of state |1〉 decays with a rate 1/τEC which is given by the optical Bloch equation as

[108]

1/τEC = ω2
R/γ (8.3)
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For comparison, let us consider a pseudo-continuous measurement scheme where a

measurement is performed by a series of randomly distributed pulses. The population

in state |1〉 is after N pulse measurement

P (N) = 〈1− (ωRδt/2)2〉N ≈ exp
[
−Nω2

R〈δt2〉/4
]

= exp

[
−ω

2
R〈δt2〉
4〈δt〉

T

]

with T = N〈δt〉. If the probability for measurement pulse during a time interval δt

is γδt, 〈δt〉 = 1/γ and 〈δt〉2 = 2/γ2. The effective decay rate is

1/τEP,random = ω2
R/2γ (8.4)

Although the continuous measurement beam leads to the same emission rate γ of

state |2〉 as the random pulse measurement case, the decay rates 1/τEC , 1/τEP,random

are different by a factor of 2. While in the random pulse case the wave function

evolves without interference of measurement pulses between measurement pulses, in

the continuous QZE case the evolution of wave function is continuously intervened by

the presence of a measurement. Fig.8-2 shows our measurement of continuous QZE.

By matching the observed lifetimes for the pulsed and continuous QZE, we find

that each measurement type has the same QZE when γδt = 3.60(0.43), which is in

agreement with the predicted value of 4. This rules out the pseudo-continuous QZE

that gives γδt = 2 instead of 4.
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Chapter 9

Conclusion

Ultracold atoms in optical lattice have proved to be a powerful tool in understanding

and simulating conventional condensed matter physics. The superfluid-Mott insulator

transition realized in ultracold atomic system illustrates the capability of ultracold

atomic system in optical lattice as a quantum simulator for condensed matter physics

(especially, Hubbard Model). In particular, quantum magnetism is now actively

pursued by many groups using ultracold atoms in optical lattices. In the current

stage, some further steps seem to be required for the realization of magnetic order-

ing in optical lattice. First, the controllability of individual spin states of atoms is

needed such as spin-dependent potentials to manipulate the effective spin-spin in-

teraction. Second, the temperature for the magnetic ordering realization must be

very low, i.e. compared to Néel temperature. To measure such low temperatures a

new thermometer is required. Possibly, additional cooling methods are required to

reach anti-ferromagnetic ordering. As a first step toward this goal, in the new science

chamber the MI transition was achieved and the spatial density profile of the MI shell

structure could be observed with a new high resolution imaging system. The next

steps are the implementation of a spin-dependent optical lattice and a new scheme

of thermometry. Hopefully, this leads to the exploration of a new forms of magnetic

matter with new understandings of and insights into nature. I am confident that the

Rb lab will continue to have many exciting moments, and I hope there will be many

successes.
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In the near future, as further steps spin-dependent optical lattice will be imple-

mented with a new scheme of thermometry. It would bring a new form of magnetic

matter with new understandings and insights on nature. I believe the Rb lab will go

forward to this goal with many exciting moments, and I hope there would be many

successes.
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Appendix A

The Configuration of a High

Resolution Imaging Lens

This appendix contains the design of our high resolution imaging lens.

#1#2#3#4
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This imaging optics were designed, assembled and tested by postdoc David Weld.

The high resolution imaging lens has 4 spherical lenses. The information on the

individual lenses and spacers are listed.

• Lens #1: Meniscus shape. (closest to the imaging target)

R1 = 119.3 mm

R2 = 47.9 mm

• Spacer #1:

Length = 0.680′′

• Lens #2: Plano-convex shape

R3= ∞

R4=77.52 mm

• Spacer #2:

Length = 0.637′′

• Symmetric bi-convex shape

R5=R6=205.67 mm

• Spacer #3:

Length=0.767′′

• Lens #4: Plano-concave shape

R7=77.52 mm

R8=∞

(All spacers are 2′′ diameter aluminum tubes with 1/16′′ wall) thickness.

The configuration of the high resolution imaging lens was optimized by a ray

tracing program. A closeup view of traces of imaging rays in the high resolution lens

is shown below.
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Appendix B

Designs for Experimental

Apparatus

This appendix contains drawings for the science chamber and layout for the 780 nm

diode laser optics.
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Top view of the science chamber
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Side view of the science chamber
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Appendix C

Phase Diagram for a Bose-Einstein

Condensate moving in an Optical

Lattice

This appendix contains a reprint of Ref. [88]: Jongchul Mun, Patrick Medley,

Gretchen K. Campbell, Luis G. Marcassa, David E. Pritchard, and Wolfgang

Ketterle, Phase Diagram for a Bose-Einstein Condensate moving in an Optical

Lattice, Physical Review Letters 99, 150604 (2007).
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Phase Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice

Jongchul Mun, Patrick Medley, Gretchen K. Campbell,* Luis G. Marcassa,† David E. Pritchard, and Wolfgang Ketterle
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, MIT,

Cambridge, Massachusetts 02139, USA
(Received 26 June 2007; published 12 October 2007)

The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical
lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5
recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott
insulator (MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a
function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the
critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas
was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable
phases was observed.

DOI: 10.1103/PhysRevLett.99.150604 PACS numbers: 05.60.Gg, 03.75.Kk, 03.75.Lm, 05.30.Jp

The realization of condensed matter systems using ultra-
cold atoms brings the precision and control of atomic
physics to the study of many-body physics. Many studies
have focused on Mott insulator physics, an important
paradigm for the suppression of transport by particle cor-
relations. Previous studies of the superfluid (SF)-to-Mott
insulator (MI) transition in optical lattices with ultracold
bosons [1–8] addressed the quenching of superfluidity
below a critical lattice depth. Here we extend these studies
into a second dimension by studying stability of superfluid
current as a function of momentum and lattice depth as
suggested in Ref. [9]. These transport measurements show
the stability of superfluid at finite current, which is in
nonequilibrium.

Transport measurements extend previous work on sta-
tionary systems in two regards. First, superfluidity near the
MI transition has only been indirectly inferred from coher-
ence measurements, whereas in this work, we characterize
the superfluid regime by observing a critical current for
superfluid flow through the onset of dissipation. Second,
previous studies [1–8] were not able to precisely locate the
phase transition, since the observed excitation spectrum
and atomic interference pattern did not abruptly change
[3,5,6], partially due to the inhomogeneous density. In
contrast, the sudden onset of dissipation provides a clear
distinction between the two quantum phases. In the SF
phase, current flows without dissipation if the momentum
does not exceed a critical momentum, while in the MI
phase the critical momentum vanishes and transport is
dissipative.

Bosonic atoms in an optical lattice are often described
by the Bose-Hubbard Model where the tunneling between
nearest neighbor lattice sites is characterized by the hop-
ping matrix element J and the repulsive interactions by the
on-site matrix element U [1,10–12]. The dimensionless
interaction energy u � U=J determines the quantum phase
of the system. For u > uc, the system is in the MI phase, for
u < uc, the SF phase. uc increases with the number of
atoms N per site.

For weak interactions (u ! 0), the system approaches
single-particle physics in a periodic potential well de-
scribed by Bloch states and band structure. The critical
momentum for a stable current-carrying state is 0.5 pr
(pr � h=� is the recoil momentum of an atom, where �
is the wavelength of the optical lattice light) [13]. At the
critical momentum, it becomes possible for two atoms in
the same initial Bloch state to scatter into two other states
and conserve energy and quasimomentum [14,15]. Insta-
bilities in a 1D optical lattice were studied theoretically
using a linear stability analysis of the Gross-Pitaevskii
equation [13,16], and experimentally [14,17,18]. The theo-
retical studies predicted that for increasing lattice depth or
increasing atomic interactions the stability of superfluid
flow should increase [13,16]: the dynamic instability
would stay near 0.5 pr, whereas the Landau critical veloc-
ity and therefore the energetic instability would shift to
larger momenta (For more discussions on dynamic and en-
ergetic instability, see Refs. [19,20]). However, these
analyses neglect the growing importance of quantum cor-
relations for larger lattice depth which leads to the SF-MI
phase transition, where the critical momentum for a super-
fluid current vanishes. In this Letter, we study the decrease
of the critical momentum from its value for the weakly
interacting regime towards zero at the MI transition
(Fig. 1).

Most studies of the SF-MI phase transition monitor the
coherence in the superfluid phase through an interference
pattern observed in the ballistic expansion resulting from a
sudden turn-off of the confining potential and lattice.
Previous observations of the phase transition found the
experimental transition point to lie in the range between
10 and 13 ER (with the recoil energy defined as ER �
p2
r=2m, where m is the atomic mass) [3]. This uncertainty

is related to the inhomogeneous density profile of trapped
atoms and to the fact that the visibility of the interference
extends beyond the transition point due to short-range
coherence in the MI phase [6]. It has been suggested that
observed kinks in the visibility are linked to the formation
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of the MI shells with occupation numbers N � 2 and 3 [6].
Several authors have suggested other features in the mo-
mentum distribution beyond coherent interference peaks as
a more distinct signature of the phase transition [21,22].
Here we show that the disappearance of the critical mo-
mentum for superfluid flow provides such a signature and
allows the determination of the transition point with high
precision.

Our measurement was not limited by the inhomogene-
ous density profile. For our range of lattice depths, low
critical momenta and the onset of dissipation occur only
near the formation of MI shells with integer occupation
numbers N [9]. The onset of dissipation related to the N �
1 domains occurs at smaller momentum than for other N
domains. For instance, with increasing momentum p the
N � 1 domain becomes unstable first, and this triggers
dissipation over the whole atomic cloud [9]. Therefore,
the breakdown of superfluid flow in the system was deter-
mined by the formation of the N � 1 domain and was not
smeared out by the inhomogeneous density. Our criterion,
the sudden onset of dissipation, depended on the formation
of an insulating shell surrounded by a superfluid region,
which occurs only in the inhomogeneous case.

In our experimental setup, a Bose-Einstein condensate
(BEC) of 87Rb atoms in the 5S1=2 j1;�1i state was pre-
pared and trapped in a combination of an Ioffe-Pritchard
magnetic trap and an optical dipole trap. The number of
atoms in the BEC was typically 2� 105. The magnetic trap
frequencies were !x;y � 40 Hz radially and !z � 4:6 Hz
axially. The laser beam for the optical dipole trap was ori-
ented along the x axis. This laser beam was retroreflected
and the polarization of the retroreflected beam was rotated
in order to minimize interference between the two beams.
Along the vertical direction (y axis) a lattice was formed by
a retroreflected laser beam. For the z axis, a moving lattice

was created by introducing a small frequency detuning �f
between the two counterpropagating laser beams using
acousto-optical modulators driven by phase-locked fre-
quency generators. The 3D optical lattice was ramped up
exponentially in 160 ms. All lattice beams were derived
from the same laser operating at � � 1064 nm and had an
1=e2 waist of 100–200 �m. The lattice depth was cali-
brated with 1% accuracy by applying a 12:5 �s lattice
laser pulse to a BEC and comparing the observed
Kapitza-Dirac diffraction pattern of a BEC to theory.

For transport measurements, we moved an optical lattice
[17,23] which provides more flexibility to change the
momentum than exciting a dipole oscillation by displace-
ment of the BEC [24,25]. A moving optical lattice with
velocity v � ��f=2 was created along the long axis of the
BEC by introducing a small frequency detuning �f be-
tween two counterpropagating lattice beams. If the velocity
v�t� changes slowly enough not to induce interband ex-
citations, the initial Bloch state jp � 0i of the condensate
in the optical lattice adiabatically evolves into the current-
carrying state jp�t� � �mv�t�i where p is the quasimo-
mentum. For increasing lattice depth, the effective mass of
atoms m� � �@2E�p�=@p2��1 increases, and the group ve-
locity vg � ��m=m��v�t� decreases. As a consequence,
atoms prepared in a moving lattice with quasimomentum
p � �mv travel in the frame of the moving lattice with vg

and in the lab frame with velocity �v � v	 vg � �1�
m=m��v, which approaches v in a deep lattice.
Consequently, we observed that in a deep moving lattice
atoms were dragged along to the edge of the trapping
region limiting the experimental time scale to probe for
dissipation. This became an issue for larger values of p and
was addressed by first ramping up the lattice with p � 0
and then alternating the velocity of the moving lattice, thus
performing a low-frequency ac transport measurement in-
stead of dc.

We have used two sets of experimental procedures
(Fig. 1), and our results were consistent for both. Close
to the SF-MI phase transition, the lattice was increased to
Vlatt with a fixed (and small) value of momentum p (dashed
arrows in Fig. 1). After a variable hold time thold at Vlatt the
lattice was ramped down to zero, and the magnetic trap
switched off. After 33 ms of ballistic expansion, the atoms
were imaged and the condensate fraction was determined
as a function of momentum by using a bimodal fitting
function. For smaller lattice depths, the lattice was ramped
up with p � 0 (Fig. 1). Then a sinusoidal momentum
modulation of the moving lattice with amplitude pM was
applied by modulating the frequency detuning �f between
the counterpropagating lattice beams. The 10 ms period of
this momentum modulation was slow enough to meet the
adiabaticity condition, but fast enough to limit the dis-
placement of the atomic cloud to less than a few �m.
Both the trapping potential and the optical lattice were
then turned off suddenly. After 33 ms of ballistic expan-
sion, the condensate fraction of the center peak of the
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FIG. 1. Phase diagram showing the stability of superfluid flow
in an optical lattice and the experimental procedure. The gray
curve shows the predicted boundary between superfluid flow and
dissipative flow phases for a three-dimensional gas with a
commensurate filling of N � 1 atom per site [9]. The solid
(dashed) arrows illustrate the experimental trajectory used for
small (large) lattice depths (see text for details).
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superfluid interference pattern was recorded as a function
of the momentum modulation amplitude pM. Several
cycles (typically, three to five) of the momentum modula-
tion were applied to obtain a high contrast between the
stable and dissipative regimes [Fig. 2(a)].

Figure 2(a) shows how the transition between superfluid
and dissipative currents became sharper with increasing
number of cycles of the momentum modulation. The criti-
cal momentum was determined from a log-log plot of the
condensate fraction as a function of momentum p
[Fig. 2(c)]. The intersection between two linear fit func-
tions was taken as the critical momentum. Our result was
found to be independent of the time period and number of
cycles of the momentum modulation at a few percent level.

In the MI phase, stable superfluid flow is not possible
and the critical momentum should vanish. However, using
the procedure described above, we measured a small criti-
cal momentum of 0.02 pr for lattice depths Vlatt � 14, 15,
16 ER. Up to this momentum, the SF-MI phase transition
remained reversible. We interpret the nonzero critical mo-
mentum as a finite-size effect. For our cloud size of

60 �m, the corresponding Heisenberg momentum uncer-
tainty of 0.018 pr agrees with our measured critical mo-
mentum. In cold atom experiments, some sloshing motion
of the cloud in the trapping potential is unavoidable. The
momentum uncertainty determined above indicates how
much sloshing motion can be tolerated without affecting
the observed phase transition.

The critical lattice depth for the SF-MI phase transition
can be determined as the point where the critical momen-
tum vanishes. Using the predicted functional form [9] of
the approach towards zero, pc /

��������������������
1� u=uc

p
, as a fit func-

tion for the data points close to the SF-MI phase transition
(the data points shown in the inset of Fig. 3) we determined
the critical value uc � 34:2 (�2:0) corresponding to a
lattice depth of 13:5��0:2� ER. Our result agrees with the
mean-field theory prediction uc � 5:8� 6 � 34:8 for N �
1 SF-MI phase transition [1] and deviates by 2 � from the
predictions of uc � 29:34�2� of quantum Monte Carlo
(QMC) simulation [26,27], which includes corrections
beyond the mean-field theory. This demonstrates that our
method has the precision to identify non-mean-field cor-
rections. However, to turn precision into accuracy, experi-
ments or QMC simulations [21,26,27] have to address
corrections due to finite size, finite temperature, and finite
time to probe the onset of the instability [27]. In our experi-
ment, these corrections seemed to be small, but have not
been characterized at the level of 1% in lattice depth.

The mean-field prediction for stable superfluid flow in
1D is similar to that for the 3D system [9]. However, it is
well known that fluctuations play a much more important
role in 1D. For studying a 1D system, we prepared an array
of one-dimensional gas tubes by ramping two pairs of
optical lattice beams up to lattice depths of Vx � Vy �
30 ER suppressing hopping between the tubes. After a hold
time of 10 ms, a moving optical lattice was ramped up
along the z axis. As in our 3D experiment, a momentum
modulation was applied, after which the moving optical
lattice was ramped down to zero, followed by the other two
optical lattices. The condensate fraction was determined
after 33 ms of ballistic expansion as a function of the
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FIG. 2 (color online). Determination of the critical momentum
of superfluid flow. Shown is the condensate fraction as a function
of a momentum p. (a) Condensate fraction with u=uc � 0:61 for
a variable number of cycles of the momentum modulation (one
cycle: � and blue line, two cycles: � and purple line, three
cycles: � and red line). A dashed vertical line indicates the
critical momentum where instability begins to occur. The two
and three-cycle data are offset vertically for clarity. These data
were fitted with an error function to guide the eye. (b) Images of
interference patterns released from an optical lattice at u=uc �
0:61 moving with variable momentum. Instability occurred
between p � 0:31pr and 0:32pr. Some of the triangular data
points in (a) were obtained from these images. (c) Condensate
fraction on a log-log scale for two different interaction strengths.
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momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc � 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc � 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T � 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
SF-MI phase transition precisely located the phase transi-
tion. Our results illustrate the control and precision of
condensed matter physics experiments done with ultracold
atoms and their suitability to test many-body theories.
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Imaging the Mott Insulator Shells
by Using Atomic Clock Shifts
Gretchen K. Campbell,1* Jongchul Mun,1 Micah Boyd,1 Patrick Medley,1

Aaron E. Leanhardt,2 Luis G. Marcassa,1† David E. Pritchard,1 Wolfgang Ketterle1

Microwave spectroscopy was used to probe the superfluid–Mott insulator transition of a Bose-Einstein
condensate in a three-dimensional optical lattice. By using density-dependent transition frequency
shifts, we were able to spectroscopically distinguish sites with different occupation numbers and to
directly image sites with occupation numbers from one to five, revealing the shell structure of the Mott
insulator phase. We used this spectroscopy to determine the onsite interaction and lifetime for
individual shells.

T
he Mott insulator (MI) transition is a

paradigm of condensed matter physics,

describing how electron correlations can

lead to insulating behavior even for partially filled

conduction bands. However, this behavior

requires a commensurable ratio between electrons

and sites. If this condition for the density is not

exactly fulfilled, the system will be conductive.

For neutral bosonic particles, the equivalent

phenomenon is the transition from a superfluid

to an insulator for commensurable densities. In

inhomogeneous systems, as in atom traps, the

condition of commensurability no longer ap-

plies: For sufficiently strong interparticle inter-

actions, it is predicted that the system should

separate into MI shells with different occu-

pation number, separated by thin superfluid

layers (1–3).

The recent observation of the superfluid-

to-MI transition with ultracold atoms (4) has

stimulated a large number of theoretical and ex-

perimental studies E(5) and references therein^.
Atomic systems allow for a full range of control

of the experimental parameters, including tun-

ability of the interactions and defect-free prepa-

ration, making them attractive systems for

studying condensed matter phenomena. The MI

phase in ultracold atoms has been characterized

by studies of coherence, excitation spectrum,

noise correlations (4, 6, 7), and molecule

formation (8). Recently, by using spin-changing

collisions, Gerbier et al. selectively addressed

lattice sites with two atoms and observed the

suppression of number fluctuations (9).

In this study, we combined atoms in the MI

phase with the high-resolution spectroscopy used

for atomic clocks and used density-dependent

transition frequency shifts to spectroscopically

resolve the layered structure of the Mott shells

with occupancies from n 0 1 to n 0 5 and to

directly image their spatial distributions.

Bosons with repulsive interactions in an

optical lattice can qualitatively be described by

the Hamiltonian (10, 1),

Ĥ 0 jJ
X

bi, jÀ

â
.
i aj þ 1=2U

X

i

n̂iðn̂i j 1Þ þ
X

i

ðei jmÞn̂i ð1Þ

where the first two terms are the usual

Hamiltonian for the Bose-Hubbard model, the

last term adds in the external trapping potential,

and J is the tunneling term between nearest

neighbors, â
.
i and âi are the boson creation and

destruction operators at a given lattice site. U 0
(4pI2a/m)Xkw(x)k4d3x is the repulsive onsite

interaction, where I is Planck_s constant divided
by 2p, m is the atomic mass, a is the s-wave

scattering length, w(x) is the single particle

Wannier function localized to the ith lattice site,

and n̂i 0 â
.
i âi is the number operator for bosons

at site i. The last term in the Hamiltonian is due

to the external trapping confinement of the

atoms, where e
i
0 V

ext
(r
i
) is the energy offset

at the ith site due to the external confinement

and m is the chemical potential.

The behavior of this system is determined by

the ratio J/U. For low lattice depths, the ratio is

large and the system is superfluid. For larger

lattice depths, the repulsive onsite energy begins

to dominate, and the system undergoes a

quantum phase transition to a MI phase. For

deep lattices, the atoms are localized to individ-

ual lattice sites with integer filling factor n. This

filling factor varies locally depending on the

local chemical potential m
i
0 m j e

i
as

n 0 Modðmi=UÞ ð2Þ

where Mod is the modulo and decreases from

the center to the edge of the trap.

To prepare the atoms in the Mott insulating

phase, we first created a 87Rb Bose-Einstein

condensate in the the kF 0 1, m
F
0 j1À state

(where F and m
F
are the quantum numbers for

the total spin and its t component, respectively)

by using a combination of an Ioffe-Pritchard

magnetic trap and an optical dipole trap. The

optical trap was oriented perpendicular to the

long axis of the magnetic trap, creating a more

isotropic trapping potential that was better

matched to the optical lattice. The laser beam

for the optical trap had a 1/e2 waist , 70 mm
and was retroreflected. However, the polariza-

tion of the retroreflected beam was rotated such

that the interference between the two beams

had minimal contrast. The resulting trap had

radial and axial trap frequencies of w 0 2p �
70 Hz and w 0 2p � 20 Hz, respectively, where

the axial direction is now parallel to the optical

trap. A three-dimensional (3D) optical lattice

was created by adding two additional retro-

reflected laser beams derived from the same laser

at l 0 1064 nm. The lattice was adiabatically

ramped up by rotating the polarization of the

retroreflected optical trapping beam to increase

the interference contrast along that axis and by

increasing the laser power in the other two axes.

The lattice depth was increased by using an

exponential ramp with a 40-ms time constant.

After ramping on the lattice, all three beams were

linearly polarized orthogonal to each other and
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had different frequency detunings generated by

using acousto-optic modulators. The lattice depth

was up to 40E
rec
, where E

rec
0 I2k2/2m is the

recoil energy and k 0 2p/l is the wave vector of

the lattice light. At 40E
rec
, the lattice trap

frequency at each site was w
lat
0 2p � 25 kHz,

and the external trap frequencies increased to

w 0 2p � 110 Hz and w 0 2p � 30 Hz in the

radial and axial directions, respectively.

Zeeman shifts and broadening of the clock

transition from the F 0 1 to the F 0 2 state were

avoided by using a two photon transition

between the k1, j1À state and the k2, 1À state,

where at a magnetic bias field of È 3.23 G both

states have the same first-order Zeeman shift

(11). The two-photon pulse was composed of

one microwave photon at a fixed frequency of

6.83 GHz and one radio frequency (rf) photon at

a frequency of around 1.67 MHz. The pulse had

a duration of 100 ms, and when on resonance

the fraction of atoms transferred to the k2, 1À

state was less than 20%. After the pulse, atoms

in the k2, 1À state were selectively detected with

absorption imaging by using light resonant with

the 52S1/2k2, 1À Y 52P3/2k3, 1À transition. For

observing the spatial distribution of the Mott

shells, we imaged the atoms in the trap. For

recording spectra, we released the atoms from

the trap and imaged them after 3 ms of ballistic

expansion in order to reduce the column density.

When the two-photon spectroscopy is per-

formed on a trapped condensate without a lattice,

the atoms transferred to the k2, 1À state have a

slightly different mean field energy because of the

difference between a
21
and a

11
scattering lengths,

where a
21

is the scattering length between two

atoms in states k2, 1À and k1, j1À and a
11

is the

scattering length between two atoms in the

k1, j1À state. This difference in scattering

lengths leads to a density-dependent shift to the

resonance frequency, Dn º r(a
21
j a

11
), where

r is the condensate density (11). This collisional

shift is commonly referred to as the clock shift

(12) because of its importance in atomic clocks,

where cold collisions currently limit the accura-

cy (13, 14). When performed on a condensate

with peak density r
0
in a harmonic trap in the

limit of weak excitation, the line shape for the

two-photon resonance is given by (15):

IðvÞ 0 15hðv j v0Þ
4r0DE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1j

hðv j v0Þ
r0DE

s
ð3Þ

where n
0
is the hyperfine transition frequency

and the mean field energy difference is

DE 0
h2

pm
ða21 j a11Þ ð4Þ

In the case of 87Rb, a
21
0 5.19 nm and a

11
0

5.32 nm (16). Both the frequency shift and the

linewidth increase with the condensate density.

As the lattice is ramped on, the peak density of

the condensate in a given lattice site increases as

r0ðrÞ 0 m j 1=2mw2
trapr

2
� �

1=U ð5Þ

where w
trap

is the external trap frequency for the

combined magnetic and optical trap, and, by

using the Thomas-Fermi approximation m, the
chemical potential, is given by

m 0

"
15=16

ðl=2Þ3m3=2NUw3
trapffiffiffi

2
p

p

#2=5

ð6Þ

where N is the total atom number. For low lattice

depths, the system is still a superfluid, delocalized

over the entire lattice. However, the two-photon

resonance line is shifted and broadened because

of the increased density, with the center of the

resonance at n 0 n
0
þ 2r

0
DE/3h. For deep

lattices in the MI regime, the repulsive onsite

interaction dominates, number fluctuations are

suppressed, and each lattice site has a sharp

resonance frequency determined by the occupa-

tion number in the site. The separation between

Fig. 1. Two-photon spectroscopy across the superfluid-to-MI transition. Spectra for 3D lattice depths of
0Erec (open squares), 5Erec (open triangles), 10Erec (open circles), 25Erec (solid squares), and 35Erec
(solid circles) are shown. The spectra are offset for clarity. The shift in the center of the n 0 1 peak as
the lattice depth is increased is due to the differential AC Stark shift from the lattice. The dotted lines
show Gaussian fits of the peaks.

Fig. 2. Probing the
onsite interaction energy.
(A) The separation be-
tween the n 0 1 and
n 0 2 peaks is shown for
lattice depths of V 0
25Erec (square) and V 0
35Erec (circle). As the
lattice depth was in-
creased, the separation
increased from 22(1) Hz
to 30(1) Hz. The shaded
area gives the expected value determined from a band structure
calculation, including the uncertainty in the scattering lengths. The
uncertainty in the measured separation is indicated by the size of the
points. (B) Location of resonances for all MI phases relative to the n 0 1
phase for V 0 25Erec and V 0 35Erec. For low site occupation (n values

from 1 to 3), the separation between the resonances is roughly constant,
implying constant U. For V 0 35Erec, the separation between the n 0 4 and
n 0 5 peaks was 22(2) Hz, a 27% decrease from the 30(1) Hz separation
between the n 0 1 and n 0 2 peaks. The slope of the lines is fit to the
separation between the n 0 1 and n 0 2 peaks.
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the resonance frequencies for the n and n j 1

MI phases is given by

dv 0
U

h
ða21 j a11Þ=a11 ð7Þ

The linewidth of the resonances is no longer

broadened by the inhomogeneous density and

should be limited only by the bandwidth of the

two-photon pulse.

The resonance transitioned from a broadened

line to several sharp lines as the lattice depth was

increased (Fig. 1). At a lattice depth of V 0 5E
rec
,

the line was broadened and the line center was

shifted slightly because of the increased density.

At V 0 10E
rec
, the line was shifted and broadened

further, and in addition the line shape became

asymmetric as the atom number in lattice sites

with small occupation was squeezed. For deeper

lattice depths, the system underwent a phase

transition to a MI phase, and discrete peaks

appeared, corresponding to MI phases with

different filling factors; for V 0 35E
rec
, MI phases

with occupancies of up to five were observed.

When the lattice depth was increased inside

the MI regime (from V 0 25E
rec

to V 0 35E
rec
),

the separation between the resonance peaks

increased, presumably because of the larger

onsite interaction energy as the lattice trap was

increased. As given in Eq. 7, the separation

between the peaks provides a direct measure-

ment of the onsite interaction energy, U. Our

results are in good agreement with calculated

values of U (Fig. 2A). Although the separation

between the n 0 1, n 0 2, and n 0 3 peaks is

roughly constant, for higher filling factors the

separation between the peaks decreases; the

effective onsite interaction energy becomes

smaller for higher filling factors (Fig. 2B). This

result shows that for low occupation numbers the

atoms occupy the ground state wave function of

the lattice site, whereas for larger occupation

numbers, the repulsive onsite interaction causes

the wave function to spread out, lowering the

interaction energy. From a variational calcula-

tion of the wave function similar to (17), we

find that the onsite energy for the n 0 5 shell

should be È20% smaller than that for the n 0 1

shell, in agreement with the measured value

(Fig. 2B).

The peaks for the different occupation

numbers were spectrally well separated. There-

fore, on resonance, only atoms from a single

shell were transferred to the k2, 1À state. An

image of these atoms (without any time of

flight) shows the spatial distribution of this

shell. Figure 3B shows absorption images for

n 0 1 to n 0 5 shells. As predicted (1), the n 0 1

MI phase appears near the outer edge of the

cloud. For larger n, the radius of the shell

decreases, and the n 0 5 sites form a core in

the center of the cloud. The expected radius for

each shell was obtained from Eq. 2 by using

the measured values for the onsite interaction.

The observed radii were in good agreement

except for the n 0 1 shell, which may have

been affected by anharmonicities in the exter-

nal trap. Absorption images taken with rf

values between the peaks show a small signal,

which may reflect the predicted thin superfluid

layers between the insulating shells; however,

this needs be studied further with improved

signal-to-noise ratio. The expected absorption

image of a shell should show a column density

with a flat distribution in the center and raised

edges. However, because of limitations (reso-

lution and residual fringes) in our imaging

system, these edges were not resolved.

Because we were able to address the dif-

ferent MI phases separately, we could determine

the lifetime for each shell. For this, the atoms

were first held in the lattice for a variable time t
before applying the 100-ms two-photon pulse.

For the n 0 1 MI phase and ignoring technical

noise, the lifetime should only be limited by

spontaneous scattering from the lattice beams.

Even for the deepest lattices, the spontaneous

scattering rate is less than 10j2 Hz. For the n 0
2 MI phase, the lifetime is limited by dipolar

relaxation, which for 87Rb is slow, with a rate G
10j2 Hz. For sites with n Q 3, the lifetime is

limited by three-body recombination with a rate

equal to gn(n j 1)(n j 2) (18), with g 0 0.026

Hz for our parameters. This gives three-body

lifetimes of t
3B

of 6.2 s, 1.6 s, and 0.6 s for the

n 0 3, n 0 4, and n 0 5 MI phases, respectively.

This calculation of g assumes for the density

distribution the ground state of the harmonic

oscillator potential, so for higher filling fac-

tors the actual lifetime could be higher. We

Fig. 4. Lifetime of individ-
ualMI shells.The lifetime for
each MI phase can be
measured independently by
adding a hold time before
applying the two-photon
pulse. Spectra are shown
for hold times of 0ms (solid
circles), 100 ms (solid
squares), 400 ms (open
circles), and 2000 ms (open
squares). The lattice depth
was V 0 35Erec except for
the 100-ms hold time, for
which it was V 0 34Erec. The
lines show Gaussian fits to
the peaks, and the spectra
were offset for clarity.

Fig. 3. Imaging the shell structure of the MI. (A) Spectrum of the MI at V 0
35Erec. (B) Absorption images for for decreasing rf frequencies. Images a to
e were taken on resonance with the peaks shown in (A) and display the
spatial distribution of the n 01 to n 0 5 shells. The solid lines shows the

predicted contours of the shells. Absorption images taken for rf frequencies between the peaks (images i to iv) show a much smaller signal. The field of
view was 185 mm by 80 mm.
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show relative populations as a function of the

hold time and derive lifetimes as t almost

equal to 1 s, 0.5 s, and 0.2 s for the n 0 3, n 0
4, and n 0 5 MI phases, respectively (Fig. 4);

this is shorter than predicted, which is possibly

due to secondary collisions. For n 0 1 and n 0
2, lifetimes of over 5 s were observed.

We expect that this method can be used to

measure the number statistics as the system un-

dergoes the phase transition. One would expect

that the spectral peaks for higher occupation num-

ber become pronounced only at higher lattice

depth; an indication of this can be seen already in

Fig. 1. For low lattice depths, the tunneling rate is

still high, but one can suddenly increase the lat-

tice depth and freeze in populations (19), which

can then be probed with high-resolution spec-

troscopy. Fluctuations in the atom number could

identify the superfluid layers between the Mott

shells. In addition, by applying a magnetic gra-

dient across the lattice, tomographic slices could

be selected, combining full 3D resolution with

spectral resolution of the site occupancy. These

techniques may address questions about local

properties that have been raised in recent theo-

retical simulations (20). The addressability of

individual shells could be used to create systems

with only selected occupation numbers (e.g., by

removing atoms in other shells). Such a prepara-

tion could be important for the implementation of

quantum gates, for which homogenous filling is

desirable. For atoms other than rubidium, atomic

clock shifts are much larger, e.g., for sodium,

larger by a factor of 30. Therefore, it should be

easier to resolve the MI shells, unless the

collisional lifetime of the upper state of the clock

transition sets a severe limit to the pulse duration.

Note added in proof: After submission of

this work, the vertical profile of an n 0 2 MI

shell was obtained by using spin-changing

collisions and a magnetic resonance imaging

technique (21).
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Evidence for a Past High-Eccentricity
Lunar Orbit
Ian Garrick-Bethell,* Jack Wisdom, Maria T. Zuber

The large differences between the Moon’s three principal moments of inertia have been a mystery
since Laplace considered them in 1799. Here we present calculations that show how past high-
eccentricity orbits can account for the moment differences, represented by the low-order lunar
gravity field and libration parameters. One of our solutions is that the Moon may have once been
in a 3:2 resonance of orbit period to spin period, similar to Mercury’s present state. The possibility
of past high-eccentricity orbits suggests a rich dynamical history and may influence our
understanding of the early thermal evolution of the Moon.

T
he Moon is generally thought to have

accreted close to the Earth and migrated

outwards in a synchronously locked low-

eccentricity orbit. During the early part of this

migration, theMoonwas cooling and continually

subjected to tidal and rotational stretching. The

principal moments of inertia A G B G C of any

satellite are altered in a predictable way by

deformation due to spin and tidal attraction. The

moments are typically characterized by ratios

that are easier to measure, namely, the libration

parameters b 0 (C – A)/B and g 0 (B – A)/C,

and the degree-2 spherical-harmonic gravity

coefficients C
20

0 (2C – B – A)/(2Mr2) and

C
22

0 (B – A)/(4Mr2), where M and r are the

satellite mass and radius. Of these four values

b, g, and C
20

can be taken as independent.

Using the ratio (C – A)/A, Laplace was the first

to observe that the lunar moments are not in

equilibrium with the Moon_s current orbital

state (1). He did not, however, address the

possibility of a Bfossil bulge,[ or the frozen

remnant of a state when the Moon was closer to

the Earth. Sedgwick examined the lunar

moments in 1898, as did Jeffreys in 1915 and

1937, and both authors effectively showed that

b is too large for the current orbit, suggesting

that the Moon may carry a fossil bulge (2–5).

However, Jeffreys showed that the fossil

hypothesis might be untenable because the ratio

of g/b 0 0.36 does not match the predicted ratio

of 0.75 for a circular synchronous orbit (equiv-

alently, C
20
/C

22
0 9.1, instead of the predicted

ratio of 3.33). Indeed, using data from (6), none

of the three independent measures of moments

represent a low-eccentricity synchronous-orbit

hydrostatic form; C
20

0 2.034 � 10j4 is 22

times too large for the current state, and b 0

6.315 � 10j4 and g 0 2.279 � 10j4 are 17 and

8 times too large, respectively (7, 8).

The inappropriate ratio of g/b orC
20
/C

22
has

led some to dismiss the fossil bulge hypoth-

esis as noise due to random density anomalies

(9, 10). However, the power of the second-

degree harmonic gravity field is anomalously

high when compared to the power expected

from back extrapolating the power of higher

harmonics (7, 11). This suggests that the bulge

may be interpreted as a signal of some

process. Degree-2 mantle convection has been

proposed as a means of deforming the Moon

(12, 13), but the dissimilarity of all three prin-

cipal moments violates the symmetry of any

simple degree-2 convection model (12). The

Moon_s center-of-mass/center-of-figure offset

influences the moment parameters slightly,

but that problem is geophysically separate and

mathematically insignificant to the degree-2

problem (8, 14).

Because C
20

is due primarily to rotational

flattening, and C
22

is due to tidal stretching,

the high C
20
/C

22
ratio seems to imply that the

Moon froze in its moments while rotating

faster than synchronous. However, in such

cases no constant face would be presented to

the Earth for any C
22

power to form in a

unique lunar axis. This apparent dilemma can

be avoided by considering that in any eccen-

tric orbit with an orbit period to spin period

ratio given by n:2, with n 0 2, 3, 4, I, the

passage through pericenter results in higher

C
22

stresses throughout a single elongated

axis (hereafter called the pericenter axis).

When the stresses experienced over one orbit

period are time-averaged, the highest stresses
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Appendix E

Parametric Amplification of

Scattered Atom Pairs

This appendix contains a reprint of Ref. [19]: Gretchen K. Campbell, Jongchul

Mun, Micah Boyd, Erik W. Streed, Wolfgang Ketterle, and David E. Pritchard

Parametric Amplification of Scattered Atom Pairs, Physical Review Letters 96,

020406 (2006).
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Parametric Amplification of Scattered Atom Pairs

Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Erik W. Streed, Wolfgang Ketterle, and David E. Pritchard*
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 12 September 2005; published 19 January 2006)

We have observed parametric generation and amplification of ultracold atom pairs. A 87Rb Bose-
Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k0 and
spontaneously scattered into two final states with quasimomenta k1 and k2. Furthermore, when a seed of
atoms was first created with quasimomentum k1 we observed parametric amplification of scattered atoms
pairs in states k1 and k2 when the phase-matching condition was fulfilled. This process is analogous to
optical parametric generation and amplification of photons and could be used to efficiently create
entangled pairs of atoms. Furthermore, these results explain the dynamic instability of condensates in
moving lattices observed in recent experiments.

DOI: 10.1103/PhysRevLett.96.020406 PACS numbers: 03.75.Kk, 03.75.Lm, 05.45.�a

Nonlinear atom optics is a novel research area born with
the advent of Bose-Einstein condensates of alkali atoms
[1]. Unlike photons, ultracold atoms have a very strong
nonlinearity directly provided by s-wave collisions, and
therefore they do not need a nonlinear medium to provide
effective interaction. A number of nonlinear processes first
observed with photons have been demonstrated with matter
waves such as four-wave mixing [2,3], solitons [4–7],
second-harmonic generation [8–11], and sum-frequency
generation [9]. Nonlinear atom optics, and, in particular,
four-wave mixing, has previously been suggested as an
ideal way to create entangled pairs of atoms [3,12,13].
However, in previous four-wave mixing experiments
[2,3] using condensates in free space, the quadratic disper-
sion relation for free particles only allowed for the phase-
matching condition to be fulfilled when the magnitudes of
all four momenta were equal (in the center-of-mass frame).
This is the only way in which two particles can scatter off
each other and conserve energy and momentum. In par-
ticular, in free space, if a condensate is moving with
momentum k0, atoms within the condensate cannot elasti-
cally scatter into different momentum states, and therefore
the analog to optical parametric generation of photons is
not possible.

The situation is very different when an optical lattice is
added. The lattice delivers energy in the form of the ac
Stark effect and momentum in units of 2@kL to the atoms,
where kL is the wave vector of the optical lattice. The
motion of atoms in this periodic potential is described by
a band structure, which deviates from the quadratic free
particle dispersion curve. In a lattice, as recently suggested
[14], it becomes possible for two atoms in the condensate
to collide and scatter into a higher and lower quasimomen-
tum state and conserve energy. As we discuss below, this
can lead to dynamic instabilities of the condensate, but also
enables nondegenerate four-wave mixing and the atom-
optics analog of optical parametric generation.

Phase matching is essential for high efficiency in non-
linear processes in quantum optics including optical para-

metric generation of photons [15], and a modification of
the dispersion curve has been used to demonstrate optical
parametric amplification in semiconductor microcavities
[16]. In atom optics, dispersion management was used to
modify the effective mass of atoms [17], and to create
bright gap solitons [18]. Here we demonstrate that by
modifying the dispersion curve using an optical lattice,
scattering processes which cannot occur in free space
become possible, and we realize the matter-wave analogue
of an optical parametric generator (OPG) and an optical
parametric amplifier (OPA).

To demonstrate the matter-wave analogue of an OPG, a
87Rb Bose-Einstein condensate with quasimomentum k0
was loaded into a one-dimensional optical lattice. To load
the atoms at a given quasimomentum relative to the
Brillouin zone, a moving optical lattice was adiabatically
applied to a magnetically trapped condensate initially at
rest in the lab frame. The lattice was created using two
counter-propagating laser beams with frequency difference
��, giving the lattice a velocity of v � �

2 ��, where � is the
wavelength of the optical lattice. In the rest frame of the
lattice, the condensate has quasimomentum k0 � m�

2@ ��,
where m is the atomic mass. By changing the detuning
between the lattice beams, ��, k0 could be varied. As
shown in Fig. 1(d), as the value of k0 was varied we
observed elastic scattering of atom pairs into final states
k1 and k2. The range of possible final states varied with k0
due to the phase-matching condition. For values of k0 less
than � 0:55kL the dispersion relation imposed by the
Bloch structure of the optical lattice does not allow elastic
scattering to occur. For our lattice depth of V � 0:5Erec,
where Erec � @

2k2L=2m, the values of k2 which satisfied
energy and momentum conservation were beyond the first
Brillouin zone. Since the scattering process occurs within
the first Bloch band, the atoms in state k2 have a quasimo-
mentum k2 � �2k0 � k1�Mod �2kL� [see Fig. 1(a)]. As the
value for �� (and the resulting value of k0) is increased, the
separation between k0 and the allowed states k1 and k2
decreases as is clearly observed in Fig. 1(d). For values of
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k0 above � 0:75kL, the final momentum states were no
longer distinguishable, and the condensate became
unstable.

To demonstrate the matter-wave analogue of an OPA,
we first created a small seed of atoms with quasimomen-
tum k1 before ramping on the moving lattice (see Fig. 2).
To create the seed we applied a Bragg pulse to the mag-
netically trapped condensate, outcoupling a small fraction
of atoms into the momentum state kBragg [19]. Immediately
after applying the pulse, the optical lattice was adiabati-
cally ramped on. In the rest frame of the lattice, the seed
has quasimomentum k1 � kBragg � k0. The phase-
matching condition for a given seed kBragg was found by
varying the frequency difference �� of the lattice, and
therefore the quasimomenta k0 and k1 of the atoms. As
shown in Fig. 2(d), when the phase-matching condition
was fulfilled, we observed amplification of the seed k1 as

well as its conjugate momentum k2. The growth of k1 and
k2 as a function of time are shown in Fig. 3.

The experiments were performed using an elongated
87Rb condensate created in a magnetic trap previously
described in Ref. [20]. The magnetic trap had a radial
(axial) trap frequency of 35(8) Hz. The condensate, con-
taining between 0:5–3:0� 105 atoms, was produced in the
j52S1=2; F � 1; mF � �1i state. The Bragg pulse was cre-
ated with two laser beams derived from the same laser,
which was red detuned from the 52S1=2; F � 1 !
52P3=2; F � 1 transition at � � 780 nm by 400 MHz,
and was � polarized. As shown in Fig. 2, the Bragg beams
were aligned such that atoms were outcoupled along the
long axis of the condensate. The intensity of the Bragg
pulse was chosen such that less than 5% of the initial
condensate was outcoupled into kBragg, and the length of
the pulse was 2 ms. The angle between the Bragg beams
could be varied to change the momentum of the outcoupled
atoms. The optical lattice was created using two counter-
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FIG. 2. Parametric amplification of scattered atom pairs in a
1D optical lattice. (a) First, a 2 ms Bragg pulse was applied to the
condensate. (b) The Bragg pulse seeded atoms along the long
axis of the condensate with momentum kBragg � �ka � kb� in the
lab frame. (c) The optical lattice was then adiabatically ramped
on and applied for 10 ms. When the phase-matching condition
was fulfilled, parametric amplification of atoms in the seeded
state k1 and its conjugate momentum state k2 was observed.
(d) Resonance curve showing amplification of k2, when k1 was
seeded. Amplification occurred only when the phase-matching
condition was met. For a fixed kBragg, the resonance condition
was found by varying the detuning �� of the lattice. The data
was taken for kBragg � 0:43kL. The fraction of amplified atoms
was obtained by subtracting images with and without the seed
pulse. (e) Absorption images showing amplification of k1 and k2
when the phase-matching condition is met. The center of the
resonance was at �� � 5450 Hz, close to the calculated value of
�� � 5350 Hz. The width of the resonance is determined by the
Fourier width of the Bragg pulse. Most of the scattered atoms in
the third image were independent of the seed pulse.
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FIG. 1. Dispersion curve for the optical lattice and experimen-
tal setup. (a) Band structure for a lattice depth of V � 0:5Erec.
The dashed line shows the free particle dispersion curve. The
dispersion relation of the lattice allows two atoms with momen-
tum k0 to elastically scatter into the final momentum states k1
and k2. Energy and quasimomentum are conserved when k0 is
the average of k1 and k2 and the three points on the dispersion
curve lie on a straight line. If k0 is varied, the allowed values for
k1 and k2 change. For values of k0 below � 0:55kL, where kL is
the wave vector of the optical lattice, atoms cannot scatter
elastically into different momentum states. The circles (squares)
show allowed states k0; k1; k2 for k0 � 0:66kL (0:70kL). As k0 is
increased, the final momentum states move closer together. Since
the scattering occurs within the lowest band of the lattice, the
final momentum is k2 � �2k0 � k1�Mod �2kL�. (b) A 87Rb Bose-
Einstein condensate is illuminated by two counter-propagating
laser beams with detuning ��, which create a moving optical
lattice. The condensate is initially held at rest. In the rest frame
of the lattice, the condensate has quasimomentum k0 � m�

2@ ��.
(c) As k0 was varied, we observed elastic scattering into states k1
and k2. (d) Absorption images for different lattice detunings, ��,
showing parametric generation. After ramping up the lattice, the
atoms were held for 10 ms at a constant lattice depth. They were
then released from the trap and imaged after 43 ms of ballistic
expansion. The field of view is 0:5 mm� 0:3 mm.
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propagating beams derived from the same laser with � �
1064 nm, and the frequency of the two beams were con-
trolled by two separate acousto-optic modulators (AOMs)
driven with a frequency difference ��. The lattice was also
aligned along the long axis of the condensate, and was
ramped on in 1 ms using an exponential ramp. After the
condensate was held in the lattice for a variable time � it
was then released from the trap and imaged after 43 ms of
ballistic expansion.

For all of our experiments, the depth of the optical lattice
was V � 0:5Erec with a band structure shown in Fig. 1.
When the process was not seeded, atoms were elastically
scattered into a narrow band of states k1 and k2, where both
energy and momentum were conserved. However, the
population in neither state was large enough for amplifica-
tion to be observed. When the process was seeded, ampli-
fication occurred when the quasimomentum was tuned
such that energy and momentum were conserved for the
states k0, k1, and the conjugate momentum k2. In our
experiment, the difference �k � k0 � k1 between the qua-
simomenta of the condensate k0 and seed k1 was set by the
angle of the initial Bragg pulse. For a given Bragg angle,
there is only one set of quasimomenta k0, k1, and k2 where
the phase-matching condition is fulfilled. To find this point,
we varied the velocity of the moving lattice for fixed hold

times. Results for kBragg � 0:43kL are shown in Fig. 2. The
phase-matched value for k2 is at 1:08kL, beyond the bound-
ary of the first Briollouin zone. Therefore, the atoms are
observed with a momentum k2 � �0:92kL. For kBragg �
0:43kL, 0:34kL, and 0:28kL, we observed resonances at
�� � 5450 Hz, 5750 Hz, and 6100 Hz, respectively. For
these Bragg angles and our lattice depth, the expected
values were 5350 Hz, 5700 Hz, and 6050 Hz.

In Fig. 3, 5% of the initial condensate containing N0 �
1:3�3� � 105 atoms was outcoupled with kBragg � 0:43kL.
The gain for the process is determined by the strength of
the nonlinear interaction U � 4�@2a

m between atoms in the
condensate, where a is the s-wave scattering length. We
can estimate the maximum amplification rate to be � �
2n0U=@ [3], with _N1�2� � �N2�1�, where N1�2� is the num-
ber of atoms in the momentum state k1�2�, and n0 is the
condensate density. For N0 � 1:3�3� � 105, the maximum
growth rate should be � � 540 Hz. The amplification rate
will decrease as the state k0 is depleted. However, for our
small seeds, the amplification was limited by the loss of
overlap between the condensate and the amplified pulses.
The Thomas-Fermi radius (RTF) of the condensate in the
axial direction was 33 �m, and the recoil velocity (vrec)
for the final states k1 and k2 with respect to the initial
condensate was vrec � 1:8 �m=ms and 6:8 �m=ms, re-
spectively. The overlap integral between the amplified
atoms and the initial condensate can be approximated as
a Gaussian with time constant �c � 0:75RTF=vrec, which
for our parameters is 3.75 ms. We compare our results to
the modified rate equation

_N 2�1� � �N1�2�e�t2=�2c : (1)

Since atoms are scattered into states k1 and k2 in pairs, one
would expect that the final atom number in the two states
(minus the initial seed) are equal. Instead, we observe a
smaller number in state k2 which we ascribe to the prox-
imity of k2 to the boundary of Brillouin zone. This leads to
instabilities, where atoms in state k2 are scattered into other
momentum states or into higher bands. If we allow a
variable scale factor in our model to correct for the loss
of atoms in N2, as shown in Fig. 3, the gain for N1;2 is in
agreement with the experimental data.

Amplification was also observed when atoms were
seeded in state k2. Because of the geometry of our experi-
mental setup, we were unable to load atoms directly into
k2 � �0:92kL. However when atoms with quasimomen-
tum k � 1:08kL were loaded into the lattice, the ramp-up
was no longer adiabatic due to their proximity to the
boundary of the first Brillouin zone. Because of this, atoms
from the seed were loaded into both the second Bloch band
(with k � 1:08kL) and the ground state (with k �
�0:92kL � k2). As shown in Fig. 3(b), the gain for this
process was almost identical to when atoms were seeded in
state k1.
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FIG. 3. Growth curve for atomic population in quasimomen-
tum states k1 and k2 when the process was seeded.
(a) Amplification of atoms with quasimomentum k1 (solid
points), and with the conjugate momentum k2 (open points),
when state k1 was seeded. (b) Amplification of atoms in k1 (solid
points), and k2 (open points), when k2 was seeded. The values for
k0; k1; k2 were 0:66kL, 0:23kL, and �0:92kL respectively. The
solid lines shows the expected gain using Eq. (1) with variable
scale factors for each curve as the only free parameters.
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The loss of overlap could be alleviated by using a more
extreme trap geometry in which the condensate is more
elongated, e.g., by confining atoms in a tight transverse
optical lattice. In this configuration, it may be possible to
observe the parametric scattering dynamics for longer time
scales, which may allow for the observation of Rabi oscil-
lations between k0 and k1, k2 as predicted in Ref. [14]. For
longer coherence times, parametric amplification could
also be an efficient means of producing pairs of momentum
entangled atoms for quantum information applications
[12,13], but the issue of secondary collisions out of states
k1 and k2 has to be carefully addressed.

For high atom numbers, and for large values of k0, the
condensate became unstable and scattered into a broad
band of final momentum states [Fig. 2(e)]. For kBragg �
0:43kL, the energy of atoms outcoupled by the Bragg
beams was � 370 Hz, whereas the chemical potential of
the condensate was � 300 Hz. Because of this, if the atom
number was increased significantly the momentum peaks
were no longer distinguishable. When the chemical poten-
tial of the condensate was larger than the separation be-
tween the phase-matched momentum states, the process
was self-seeded; i.e., the momentum spread of the initial
condensate contained atoms with momentum k0, k1, and
k2, and considerable scattering occurred. Similarly, if the
atom number was kept constant, and the value of k0 was
increased, the phase-matched momentum states moved
closer together until they were no longer distinguishable.
This occurred at values of k0 above � 0:75kL, and we
observed a dynamic instability. For larger atom numbers,
the critical value of k0 decreases. For values of k0 less than
0:55k0 elastic scattering cannot occur, and the system
should be stable for all atom numbers. Instabilities of
condensates in optical lattices has attracted much attention
recently, both theoretically [21–28] and experimentally
[29–33]. Most recently, dynamic instabilities of conden-
sates in moving lattices were observed in Refs. [29,30]. In
Ref. [30], the chemical potential was a factor of 3 higher
than in our experiment, leading to a dynamic instability for
all values of k0 above 0:55kL. Although discrete momen-
tum states could not be observed in those experiments, it is
possible that the mechanism for the dynamic instability is
self-seeded parametric amplification. Indeed, the phase-
matching condition for parametric amplification is identi-
cal to the resonance condition for dynamic instability in the
noninteracting limit [21]. After the submission of this
Letter, recent work on period-doubling instabilities in a
shaken optical lattice [34] was reinterpreted as parametric
amplification [35].

In conclusion, we have demonstrated a matter-wave
analogue of both optical parametric generation and optical
parametric amplification using a condensate moving in a
one-dimensional optical lattice. The optical lattice modi-
fied the dispersion curve and ensured phase matching. If
the separation of the phase-matched momentum states

becomes less than the speed of sound, a condensate will
self-seed the process and become dynamically unstable.
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Continuous and Pulsed Quantum Zeno Effect
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Continuous and pulsed quantum Zeno effects were observed using a 87Rb Bose-Einstein condensate.
Oscillations between two ground hyperfine states of a magnetically trapped condensate, externally driven
at a transition rate !R, were suppressed by destructively measuring the population in one of the states with
resonant light. The suppression of the transition rate in the two-level system was quantified for pulsed
measurements with a time interval �t between pulses and continuous measurements with a scattering rate
�. We observe that the continuous measurements exhibit the same suppression in the transition rate as the
pulsed measurements when ��t � 3:60�0:43�, in agreement with the predicted value of 4. Increasing the
measurement rate suppressed the transition rate down to 0:005!R.

DOI: 10.1103/PhysRevLett.97.260402 PACS numbers: 03.65.Xp, 03.75.Mn, 42.50.Xa

The quantum Zeno effect (QZE) is the suppression of
transitions between quantum states by frequent measure-
ments. It was first considered as a theoretical problem
where the continuous observation of an unstable particle
would prevent its decay [1]. Experimental demonstrations
of the QZE [2–8] have been driven by interest in both
fundamental physics and practical applications. Practical
applications of the QZE include reducing decoherence in
quantum computing [8–10], efficient preservation of spin
polarized gases [3,4,6], and dosage reduction in neutron
tomography [11].

The QZE is a paradigm and test bed for quantum mea-
surement theory[12,13]. In one interpretation, it involves
many sequential collapses of the wave functions of the
system. Quantum Zeno experiments provide constraints
for speculative extensions of quantum mechanics where
the collapse of the wave function is created by extra terms
in a modified Schrödinger equation [14]. It is still an open
question how close one can approach the limit of an infinite
number of interrogations due to the Heisenberg uncertainty
involved in shorter measurement times. These concep-
tional questions provide the motivation to extend experi-
mental tests of the quantum Zeno phenomenon. A major
improvement to a quantum Zeno experiment with ultracold
neutrons [15] is in preparation.

In this Letter we compare the suppression of the tran-
sition rate in an oscillating two-level system by continuous
and pulsed measurements. Our QZE experiments were
carried out with Bose-Einstein condensed atoms [16,17].
The long coherence time and the high degree of control of
the position and momentum of the atoms created a very
clean system and allowed us to observe much stronger
quantum Zeno suppression than before [2,5,7]. In the
experiment with pulsed measurements, up to 500 measure-
ments could be carried out and survival probabilities ex-
ceeded 98%. Furthermore, we have performed the first

quantitative comparison between the pulsed and continu-
ous measurement QZE. This is important since any real
pulsed measurement is only an approximation based on a
series of weak continuous measurements [18,19].

Let us consider a two-level system which is externally
driven at a Rabi frequency !R. Measurements of the state
of the system project the system into one of the two states
j1i, j2i. If the initial state of the system is in j1i and a
measurement is made after short time �t ( � 1=!R), then
the probability that the system is in j1i is 1� �!R�t=2�2.
With N successive measurements the probability that the
system remains in j1i is

P�N� � �1� �!R�t=2�2�N � exp��N�!R�t=2�2�
� exp���!2

R�t=4�T� (1)

with T � N�t the total free evolution time. Instead of
normal Rabi-type oscillation between two states, the initial
state j1i decays with an effective decay rate 1=�EP [20].
1=�EP is given by

1=�EP � !2
R�t=4: (2)

The characteristic time �EP for the pulsed QZE is much
longer than the characteristic time 1=!R of normal Rabi-
type oscillation . This shows the suppression of transition
by the QZE.

For a continuous measurement, the atoms are continu-
ously illuminated with laser light resonant with the tran-
sition energy between state j2i and another excited state. If
atoms are in state j2i, they spontaneously emit a photon at a
rate �. Because of the photon recoil, those atoms are
removed from the coherently driven two-level system.
The population of state j1i decays with the effective decay
rate 1=�EC which is given by the optical Bloch equations as

1=�EC � !2
R=�: (3)
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In contrast, for measurements with randomly spaced
pulses, the effective decay rate is 1=�EP �
!2

Rh�t2i=4h�ti. If the probability for measurement pulse
during a time interval �t is ��t, h�t2i � 2=�2 and h�ti �
1=�. The effective decay rate for this case is

1=�EP;random � !2
R=2�: (4)

Although the continuous beam leads to the same emission
rate � of state j2i as a random pulse measurement case, the
wave function evolution from j1i to j2i is faster in the
continuous measurement case than in random pulse
measurement case. The decay rate for continuous measure-
ments �EC [Eq. (3)] is twice the value of �EP;random
[Eq. (4)].

In our study we have determined the lifetimes �EP, �EC
with each type of measurement and used them to verify the
prediction of Eq. (2) and (3) that pulsed measurements
with time interval �t produce the same suppression of
decay as continuous measurements with a scattering rate
� when ��t � 4 [20]. In particular, by verifying Eq. (3),
we show that the continuous measurement process cannot
be simulated by a series of random pulses with a rate �.

Our experimental system consisted of magnetically
trapped 87Rb Bose-Einstein condensate in the
5S1=2j1;�1i�jF;mFi� and 5S1=2j2;�1i states [21]. Pure
condensates of Nc � 5:0�0:5� � 104 atoms in the j1;�1i
state were prepared in a f63; 63; 6:6g Hz magnetic trap.
Coherent oscillations between state j1i�j1;�1i� and state
j2i�j2;�1i� were then driven at a rate !R by a two-photon
transition (Fig. 1). The j1;�1i and j2;�1i states were
selected because they have the same 1st order Zeeman
shift at a magnetic field of 3.23 G [22].

Measurements of the population in state j2i�j2;�1i�
were performed by a laser beam of 780 nm � polarized

light resonant with the 5S1=2j2;�1i ! 5P3=2j3;�1i tran-
sition. The 362 nK energy from a single photon recoil
distinguished scattered atoms from the subrecoil � �
15 nK energy range of the condensate atoms. Successive
scatterings would eject measured atoms from the trap.
After each QZE experiment was completed the magnetic
trap was turned off and the population of surviving atoms
in each state was measured. To simultaneously measure the
j1i and j2i populations we used an rf pulse and magnetic
field sweep to transfer the atoms to other magnetic sub-
levels. Parameters were chosen in such a way that each
initial state was partially transferred to a sublevel with a
different magnetic moment. After Stern-Gerlach separa-
tion and 41 ms of ballistic expansion, the atoms were
imaged and the populations in the two initial states could
be read out simultaneously.

We quantified the QZE induced by repeated pulsed
measurements. Optical measurement pulses of 172 �W
(s0 � 0:15, where s0 � I=Isat is the transition saturation
parameter) and tp � 10 �s in duration were applied to the
driven two-level system. Each pulse scattered �29 photons
per atom and were separated by a free evolution time �t.
The lifetime �EP for a particular measurement rate 1=�t
[23] was determined by fitting the j1i atom lifetime to an
exponential decay curve over a range of times * 2�EP.
Figure 2(a) shows the dramatic increase in the observed
lifetimes (solid symbols) as the measurement rate 1=�twas
increased. The measured lifetimes for two different !R
[boxes for 2�� 54:6�0:5� Hz, triangles for 2��
24:7�0:1� Hz] are plotted along with their expected values
(lower and upper lines, respectively). The measured life-
times were not found to be strongly sensitive to variations
in optical power, pulse width, or laser detuning. The life-
time enhanced by QZE can be compared to 1=!R, which
would be the characteristic time without pulsed measure-
ments. The longest lifetime was 198�16� � 1=!R at
1=�t � 25 ms�1.

Previous works [2,7,24] express the QZE in terms of the
survival probability P�N� for number of measurements N
during a � pulse (t � �=!R), a duration where without
measurements 100% of the atoms would be transferred into
the other state. Figure 2(b) displays our results in this way.
In these terms the greatest Zeno effect is for N � 506�2�
measurements with a survival probability P � 0:984�1�.

The most frequent measurements [farthest right solid
symbols in Fig. 2(a)] show significant deviation from ex-
pected lifetimes (lines). For a high measurement rate 1=�t,
the pulse duration tp is not negligible compared to free
evolution time �t between the pulses, and the process that
occurs while the measurement pulse is on becomes more
important. In our experiment the pulse duration tp �
10 �s was 20% of the shortest time interval �t � 40 �s.
In such cases the measured lifetime depends not only on
the time interval �t but also on the pulse duration tp.
During the time interval, �t the population in state j1i
transfers (‘‘decays’’) to state j2i with �EP. During the pulse
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FIG. 1. Two-level Rabi oscillation. The two-level quantum
system consisted of the j1;�1i and j2;�1i ground hyperfine
states of 87Rb. (a) Energy level diagram for relevant 87Rb ground
hyperfine states. Arrows depict the components of the two-
photon transition between the j1;�1i and j2;�1i states.
6.8 GHz microwaves couple the j1;�1i to a virtual intermediate
state detuned 420 kHz above resonance with j2; 0i. Radio
frequency (rf) at 1.68 MHz resonantly completed the transition
to the j2;�1i state. (b) Driven population of the j1;�1i and
j2;�1i states as a function of time. Curves are fits to a two-
photon transition rate of !R=2� � 61:5�0:5� Hz. No population
was detected in j2; 0i.
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duration tp, state j1i can decay by different loss mecha-
nisms. We made a separate measurement of this additional
loss. The system was prepared in the same way except
that the measurement pulse laser was kept on continuously.
The lifetime 1=�m of this system was measured and �m
was 3:41�0:14� s�1 for !R=2� � 54:6 Hz [�m �
2:96�0:22� s�1 for !R=2� � 24:7 Hz]. In order to find
the origin of this additional loss, the measurements of
lifetimes were made with removal of either the rf or the
microwave component of the two-photon drive. The life-
time showed no change when the rf component was re-
moved, but the lifetime increased by an order of magnitude
without microwave component. This suggests that the loss
occurring during pulse duration tp is dominated by the
virtual intermediate state j2; 0i, which can be excited by
the measurement laser to the excited state 5P3=2j3; 0i.

To obtain the correct decay rate 1=�EP for the pulsed
QZE from our measurement this additional loss should be
corrected. The observed decay rate 1=� is split into two
components and can be written as

1

�
� 1

�EP

�t
tp � �t

� �m
tp

tp � �t
; (5)

where tp is pulse duration. Data points in Fig. 2(a) where
this correction had a significant impact on the lifetime are
indicated by open symbols. The predicted lifetime is
�EP � 4=�!2

R�t�, slightly larger than the measured �EP �
0:836�0:014� � 4=�!2

R�t�. The discrepancy is possibly due
to collisions between recoiling atoms and the remaining
condensate leading to additional loss.

The same initial system was subjected to a weak con-
tinuous measurement instead of repeated strong measure-
ments. Figure 3 shows the increase in lifetime with
increasing measurement laser power. While showing this
qualitative relationship is straightforward, several issues
complicate a quantitative measurement of the continuous
QZE. If the measurement laser is detuned from the optical
resonance it will have a reduced scattering rate and also
induce an ac Stark shift �rf in the resonance between j1i
and j2i, reducing the transfer rate from j1i to j2i. In
addition, imperfections in the beam can affect the intensity
at the atoms. These issues are not important for the pulsed
measurement as long as atoms scatter multiple photons.
However, they are critical to properly characterizing the
weak continuous measurement experiment.

We were able to address all of these issues simulta-
neously by measuring the ac Stark shift at several different
laser detunings. For each laser detuning (�L) and optical
power (s0) we determined the ac Stark shift �rf by max-
imizing the reduction of atoms in state j1i as a function of
rf frequency. Measurements of continuous QZE lifetime
�EC [Eq. (3)] were then made varying saturation parameter
s0 and detuning �L of the measurement laser. Equation (3)
can then be rewritten as
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FIG. 3. Continuous quantum Zeno effect. Lifetime dependence
on optical power with !R=2� � 48:5�0:9� Hz for laser detuning
�L � 0 MHz (�) and �L � �5:4 MHz (�). Gray bands indi-
cates range of expected lifetimes which are calculated from
measurements of ac Stark shift for �L � 0 MHz (upper) and
�L � �5:4 MHz (lower). Inset highlights data from lower opti-
cal powers. The saturation parameter s0 has an uncertainty of
17%.
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R�t�. Open symbols show
lifetimes after correction for additional loss mechanism by
Eq. (5). (b) The same data are displayed in terms of the survival
probability for N measurements performed during a � pulse time
t � �=!R (the time it would take to transfer 100% of the atoms
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expected survival probability P�N� � �cos� �2N���2N� for N ideal
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� �s0
2!2

R

�
1

1� 4��L
� �2

�
(6)

which is a function of s0 and �L with 87Rb D2 transition
decay rate �. Figure 4 verifies Eq. (6) for various detunings
�L. Figure 3 shows increasing lifetime with increasing
measurement laser power, the signature of the continuous
QZE. Similar to the longest lifetime point in the pulsed
QZE data [upper right solid triangle, Fig. 2(a)], the data
point with highest power in Fig. 3 shows significant devia-
tion from the lifetime expected from Eq. (6). By matching
the observed lifetimes for pulsed and continuous QZE
measurements we find that each measurement type has
the same QZE when ��t � 3:60�0:43�, which is in agree-
ment with the predicted ratio of 4 [20] but rules out
randomly repeated pulse case in Eq. (4). Equation (4) gives
the ratio of 2 instead of 4. The observed large quantum
Zeno suppression dramatically illustrates the modification
of a wave function by a null measurement, i.e., the obser-
vation that no light has been scattered [25]. The large
fraction of atoms in the initial statej1i is caused by repeated
measurements without scattering any photons.

We have extended previous work in pulsed QZE mea-
surements [2,5,7] by exploiting advantages inherent to
Bose-Einstein condensates. While in theory the Heisen-
berg uncertainty principal limits how frequently meaning-
ful measurements can be performed, in practice imperfec-
tions in real measurements are the limiting factors [24,26].
In ion experiments optical pumping between states during
the measurement pulses changed the observed population
transfer [2], requiring significant corrections for the N �
32 and N � 64 pulse measurements (Table I in [2] ) to
observe a maximum survival probability P�64� �
0:943�20� [2] [�EP � 54�30� � 1=!R]. Previous demon-
strations of the continuous QZE [3,4,6] observed qualita-
tive but not quantitatively characterized QZE suppression
effects up to 80% [4] with increasing laser intensity. Our
observed quantum Zeno suppressions are substantially
larger then both previous pulsed [2] and continuous [4]

results, and is also greater then that expected from pro-
posed experiments [11,15,24,26] in neutrons.

In conclusion, we have used a Bose-Einstein condensate
to demonstrate the QZE for both continuous and pulsed
measurements. Lifetimes for both cases were substantially
enhanced by QZE to values close to 200� 1=!R. Pulsed
and continuous QZE were quantified and compared. We
observe that the continuous measurements exhibit the same
suppression in the transition rate as the pulsed measure-
ments when ��t � 3:60�0:43�, which agrees with the pre-
dicted value of 4 [20] and rules out a simple model when a
continuous measurement is replaced by a series of random
pulses. A next generation experiment could demonstrate
even stronger quantum Zeno suppression and study the
transition from pulsed to continuous QZE by using pulse
duration and intervals approaching the spontaneous emis-
sion time.

The authors thank Helmut Rauch for insightful discus-
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Photon Recoil Momentum in Dispersive Media
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A systematic shift of the photon recoil momentum due to the index of refraction of a dilute gas of atoms
has been observed. The recoil frequency was determined with a two-pulse light grating interferometer
using near-resonant laser light. The results show that the recoil momentum of atoms caused by the
absorption of a photon is n �hk, where n is the index of refraction of the gas and k is the vacuum wave vector
of the photon. This systematic effect must be accounted for in high-precision atom interferometry with
light gratings.
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The momentum of a photon in a dispersive medium is of
conceptual and practical importance [1–6]. When light
enters a medium with an index of refraction n, the elec-
tromagnetic momentum is modified [3–5]. Momentum
conservation requires then that the medium also has a
mechanical momentum. When a pulse of light enters the
medium, the particles in the medium are accelerated by the
leading edge of the pulse and decelerated by the trailing
edge [5]. As a result, no motion is left in the medium after
the pulse has passed. When light is absorbed or reflected in
the medium, the momentum transfer occurs in units of �hk
or n �hk, where k is the vacuum wave vector. An absorbing
surface is equivalent to photons leaving the medium with-
out reflection and would therefore receive a momentum of
�hk per incident photon. In contrast, as shown in Ref. [5], a
reflecting surface within the medium will recoil with a
momentum of 2n �hk per photon. In this case, the standing
wave formed by the incident and reflected light pulse
transfers momentum to the medium which remains even
after the light pulse has left. This modification of the recoil
momentum has so far been observed only for light being
reflected from a mirror immersed in a liquid [7,8].

Recently, there have been discussions about what hap-
pens when an atom within an atomic cloud absorbs a
photon. If one assumes that after absorbing the photon,
no motion is left in the medium, then the recoil momentum
should be �hk [9]. The same conclusion is reached when one
assumes a very dilute, dispersive medium with the absorb-
ing atom localized in the vacuum space between the par-
ticles of the medium [10]. However, Ref. [6] argues that the
atom will recoil with a momentum of n �hk, which requires
particles in the medium to receive a backward momentum
(for n > 1) due to the interaction of the oscillating dipole
moments of the particles in the dispersive medium and the
absorbing atom. So both for reflection by a mirror and
absorption by an atom, a photon in a dispersive medium
behaves as if it has a momentum of n �hk.

In this Letter, we examine this issue experimentally,
showing that the atom recoils with momentum n �hk. This

has important consequences for atom interferometers using
optical waves to manipulate atoms by the transfer of recoil
momentum. High-precision measurements of the photon
recoil are used to determine the fine-structure constant �
[11–16]. Further improvements in the accuracy of photon
recoil measurements, combined with the value of � derived
from the (g� 2) measurements for the electron and posi-
tron [17–19], would provide a fundamental test of QED. At
low atomic densities, where atom interferometers usually
operate, the index of the refraction effect is relatively
small. However, the accuracy of the best photon recoil
measurements is limited by the uncertainty in the correc-
tion to the photon recoil due to the index of refraction. Here
we operate an atom interferometer with Bose-Einstein

-2nhk

0nhk

Release from Trap
Image in TOF

600 µs
5 µs 5 µs

B

E

τ

+2nhk

FIG. 1. Kapitza-Dirac interferometer. The first pulse out-
coupled a small fraction of atoms into the j � 2n �hki momentum
states. The outcoupled atoms moved within the initial conden-
sate. After a variable delay �, a second pulse was applied, and
atoms outcoupled by the second pulse interfered with those
outcoupled by the first pulse. The laser beam was applied
perpendicular to the long axis of the condensate; the polariza-
tion, ~E, was parallel to it and to the applied magnetic field bias,
~B. The atoms were imaged after 38 ms of ballistic expansion.
The field of view is 0:5 mm� 1:5 mm.
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condensates, which have a much higher density than laser
cooled atomic clouds, and observe how the index of re-
fraction modifies the atomic recoil frequency �h!rec � �h2k2

2m ,
where m is the atomic mass.

The essential idea of our experiment is to measure the
recoil frequency interferometrically using a two-pulse
Ramsey interferometer. The two pulses are optical stand-
ing waves separated by a delay time � (Fig. 1). The first
pulse diffracts the atoms in a 87Rb condensate into discrete
momentum states. During the delay time � the phase of
each momentum state evolves at a different rate according
to its recoil energy. The second pulse recombines the atoms
with the initial condensate. The recombined components
have differing phases leading to interference fringes that
oscillate at the two-photon recoil frequency. By measuring
the resulting frequency, ! as a function of the standing
wave detuning from the atomic resonance, we found a
distinctive dispersive shape for ! that fits the recoil mo-
mentum as n �hk.

The experiment was performed using an elongated 87Rb
Bose-Einstein condensate (BEC) created in a cloverleaf-
type Ioffe-Pritchard magnetic trap previously described in
Ref. [20]. The condensate, containing 1:5� 106 atoms,
was produced in the j5 2S1=2; F � 1; mF � �1i state, and
had a Thomas-Fermi radius of 8 (90) �m in the radial
(axial) direction, and the magnetic trap had a radial (axial)
trap frequency of 81 (7) Hz.

The BEC was illuminated with an optical standing wave
created by a retroreflected, �-polarized laser beam. Losses
in the retroreflected beam were negligible. The polariza-
tion of the beam was optimized by suppressing Rayleigh
superradiance [20]. The laser was detuned from the
5 2S1=2; F � 1 ! 5 2P3=2; F � 1 transition at � �
780 nm, and had a linewidth � much smaller than �, the
natural linewidth of the transition. The intensity of the 5 �s
long pulse was set to outcouple � 5% of the atoms into
each of the j � 2n �hki momentum states with no appre-
ciable population in higher momentum states. This ensured
that the density of the original condensate was nearly
constant throughout the measurement. After a variable
time �, a second identical pulse was applied. The time
between the first pulse and the shutoff of the magnetic trap
was fixed at 600 �s, which was less than a quarter of the
radial trap period. The momentum distribution of the con-
densate was imaged after 38 ms of ballistic expansion, long
enough for the momentum states to be resolved. The
images were obtained using resonant absorption imaging
after first optically pumping the atoms to the 5 2S1=2; F � 2

state. To measure the effect of spontaneous light scattering
from the standing wave, the density of the condensate (and
associated mean-field shift) was determined after applying
a single 5 �s pulse to the condensate, and then immedi-
ately releasing it from the magnetic trap. The number of
atoms in the condensate was determined by integrating the
optical density of the absorption image, which in turn was

calibrated by fitting the Thomas-Fermi radius of unper-
turbed condensates in time of flight [21].

The recoil frequency was found by fitting the oscilla-
tions in the fraction of atoms in the j0n �hki momentum state
as a function of the delay � (Fig. 2) with a cosine function
and a Gaussian envelope:

A exp
�
� �2

�2c

�
cos�!���� � C: (1)

The observation of up to ten oscillations provided a precise
value of the recoil frequency. The origin of the damping
time �c and of the offset C will be discussed later.

Figure 3 shows our measured values for !=2� as a
function of the detuning, �=2�. The measured values for
the frequency clearly follow the dispersive shape of the
index of refraction. The variation in !=2� as a function of
the detuning was 2 kHz across the resonance, much larger
than the statistical error on the frequency fits of less than
100 Hz. This conclusively shows that the momentum trans-
ferred to the atom when a photon is absorbed is n �hk.

We now discuss in more detail how the atoms interact
with optical standing waves. For the short duration of the
applied pulses (5 �s) we can assume that the atoms do not
move during the pulse and ignore the kinetic energy of the
atoms (Raman-Nath approximation). The interaction can
then be described by the application of the ac Stark poten-

tial due to the standing wave V�z� � �h!2
R

� sin2�nkz�, where
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FIG. 2. Interference fringes oscillating at the recoil frequency.
(a) Absorption images for � � 10–50 �s. The detuning was
�=2� � �520 MHz. The field of view is 0:5 mm� 1:5 mm.
(b) Fraction of atoms in the j0 �hki momentum state as a function
of �. The fringes were fit using Eq. (1). The fitted frequency was
! � 2�� 15 627�39� Hz with decay constant �c �
461�25� �s. The signal was normalized using the total atom
number in all momentum states. The systematic scatter of the
data from the fit indicates the reproducibility of the single shot
measurements.
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� is the detuning between the optical frequency and the
atomic transition, and !R is the Rabi frequency. This
equation is valid for large detuning, �2 � �2=4. The short
pulse limit, describing Kapitza-Dirac scattering, is valid
for short interaction times tp � 1=!rec � 40 �s. The first
pulse outcouples a fraction of atoms into the momentum
states j � 2‘n �hki, where the population in the ‘th momen-
tum state is given by P‘ � J2‘��� [22,23], where for a

square pulse, � � !2
Rtp
2� , and J‘ is the ‘th-order Bessel

function of the first kind. For � < 1 a negligible fraction
of atoms is diffracted into states with ‘ > 1, and we can
restrict our discussion to the j � 2n �hki states. For our
experimental parameters � � 0:45. During the delay time
� the phase of the j � 2n �hki states evolves at a faster rate
than the j0n �hki state due to the recoil energy, Erec �
4n2 �h!rec; hence, the wave function evolves as

j ���i � j oi�J1���j � 2n �hkie	i4n2!rec� 
 J0���j0n �hki�:
(2)

At t � � a second pulse is applied that partially recombines
the momentum states. After applying the two pulses, the
probability of finding the atoms in the j0n �hki state, �0 �
jh ��
 tp�j0n �hkij2, is given by

�0 � J40��� 
 4�J20���J21��� 
 J41���� cos�4n2!rec��: (3)

As a function of � the density of the zero momentum peak
oscillates at 4n2!rec.

So far, we have ignored the motion of the atoms during
the delay time �. The amplitudes of the recombined com-
ponents interfere only where they spatially overlap. After
the first pulse, the atoms in the j � 2n �hki states move with
the recoil velocity (vrec � 12 �m=ms). As the overlap
between the recoiling atoms and those at rest decreases,
the interference fringes decay. The overlap integral for this
decay is approximated as a Gaussian with time constant,
�c � 0:75RTF=vrec, where RTF is the Thomas-Fermi radius
of the condensate [24].

The index of refraction for the condensate is derived
from its macroscopic polarization P. For a two level sys-
tem, P � ��oE � i� �2

�h
E

�	i� , where � is the atomic sus-
ceptibility, �o is the permittivity of free space, � is the
dipole matrix element, � is the atomic density of the
condensate. In this experiment the light was � polarized
and detuned by � from the 5 2S1=2; F � 1 ! 5 2P3=2; F

0 �
1 transition. For this polarization the selection rule is
�mF � 0, and there are two allowed transitions from jF �
1; mF � 	1i ! j10;	1i and j1;	1i ! j20;	1i that are
separated by 157 MHz. Including both transitions in the
derivation, the index of refraction, n � �������������

1
 �
p

, is given
by

n�
���������������������������������������������������������������������������������������������������
1	12���3

�
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�

1

1
�2�1

� �2

1
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�2

�

1

1
�2�2

� �2
�vuut ;

(4)

where �1 and �2 are the detunings relative to the F � 1 !
F0 � 1 and F0 � 2 transitions, respectively. This equation
is valid in the limit ��3 � 1 [25], where � � �=2�. For
our experimental parameters ��3 � 0:2. In addition to the
index of refraction shift, the observed recoil frequency has
a mean-field shift [26]; the atoms in the j � 2n �hki state
have twice the mean-field energy of those at rest due to the
exchange term in the interatomic potential. Including both
the mean-field shift and the index of refraction, the fre-
quency of the observed interference fringes should be

! � 4n2!rec 
 �U
�h
; (5)

where �U � 4� �h2a�=m, and a is the s-wave scattering
length. The density � � �4=7��o, where �o is the peak
condensate density and the factor of 4=7 is due to the
inhomogeneous condensate density.

When the interference fringes were fit using Eq. (1), the
average values for the amplitude A and offset C for all of
the data points were 0.12(3) and 0.82(4), respectively. This
is in reasonable agreement with the expected values of A �
0:18 and C � 0:81 for � � 0:45. For a Thomas-Fermi
radius of 8 �m we would expect a decay time �c �
500 �s. There was an unexplained shift in the fitted value
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FIG. 3. Recoil frequency as a function of detuning, �=2�,
showing the dispersive effect of the index of refraction. The
average density of the condensate for the solid points was
1:14�4� 
 1014 cm	3, giving rise to a mean-field shift of
880 Hz. The shaded area gives the expected recoil frequency
including the uncertainty in the density. The dashed line is at
! � 4!rec 
 �U= �h, the expected value without index of refrac-
tion effects. The dotted line is at 4!rec � 15 068 Hz, the two-
photon vacuum recoil frequency. The data shown as open dia-
monds had increased spontaneous light scattering due to 	�
light contamination in the laser beam. The increased light
scattering led to a lower initial density in the condensate, thus
leading to a smaller mean-field shift. The 	� contamination
allowed �mF � �1 transitions, thus for small detunings the
proximity to the j1;	1i ! j00; 0i transition located at �=2� �
	72 MHz resulted in higher spontaneous scattering rates. The
open points have been scaled upward to correct for this lower
density.
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for �c between the red and blue side of the resonances: on
the red side the average value was 347�20� �s and on the
blue, 455�40� �s.

The quadratic dependence in Eq. (5) on the index of
refraction can be understood by considering the diffraction
of atoms from the light grating created by the standing
wave. When the first pulse is applied, the standing wave
creates a grating with a periodicity d � �=2. Within the
condensate the index of refraction modifies the grating
period by n, since �0 � �=n. The momentum of atoms
that diffract off the grating is changed by �2 �hk0, again
within the condensate k0 � nk, and the velocity of the
atoms is modified. Assuming n > 1, when the second
grating is applied the atoms have moved farther by a factor
of n and the grating is shorter by n, changing the time scale
for the interference fringes by a factor of n2.

The increase in the momentum transferred to the atoms
can also be explained by considering the momentum trans-
ferred to atoms by a classical field. A derivation using the
Lorentz force applied to the atoms during the absorption of
a photon can be found in [6]. In a dielectric medium with
n > 1, the magnetic field and therefore the Lorentz force
are not modified. However, the electric field is weaker, and
therefore it takes longer for the atom to perform half a Rabi
cycle and be transferred to the excited state. During that
longer time, the Lorentz force imparts a momentum to the
atom which is larger than �hk.

For Kapitza-Dirac scattering, atoms are diffracted sym-
metrically into the j � 2‘n �hki momentum states, so mo-
mentum is clearly conserved. However, for processes such
as Bragg scattering, where the atoms are scattered in only
one direction, the index of refraction has an additional
effect. Assuming a �=2 pulse with counterpropagating
beams, where half the atoms are diffracted, for n > 1 the
recoil momentum is a factor of n higher than in vacuum.
For momentum to be conserved, the remaining atoms must
recoil backwards with momentum p � 2�n� 1�‘ �hk. For
small fractional outcoupling the effect is negligible, since
the extra momentum is distributed among the remaining
condensate. However, if a large fraction of the condensate
is outcoupled and ‘ is large, this effect could potentially be
resolved in ballistic expansion.

We have discussed here the dispersive effect on the
photon momentum near a one-photon resonance. An analo-
gous effect occurs near two-photon resonances. In this
case, the atomic polarizability is determined in third-order
perturbation theory, and the resulting index of refraction
has a sharp, narrow dispersive feature near the two-photon
resonance [27]. In recent experiments at Stanford [13],
such two-photon effects have been the leading source of
uncertainty in high-precision determinations of atomic
recoil frequencies and the fine-structure constant �.

In conclusion, we have measured a systematic shift in
the photon recoil frequency due to the index of refraction
of the condensate. This is the first direct observation of the

atomic recoil momentum in dispersive media. For high
atomic densities, this shift can have a significant effect
on atom interferometers, and is of particular importance
for precision measurements of h=m and � with cold atoms
[13,16].
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[44] Simon Fölling, Artur Widera, Torben Müller, Fabrice Gerbier, and Immanuel
Bloch. Formation of spatial shell structure in the superfluid to mott insulator
transition. Physical Review Letters, 97(6):060403, 2006.

[45] C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and
M. Inguscio. Effect of optical disorder and single defects on the expansion of
a bose-einstein condensate in a one-dimensional waveguide. Physical Review
Letters, 95(17):170410, 2005.

[46] J. K. Freericks and H. Monien. Strong-coupling expansions for the pure and
disordered bose-hubbard model. Phys. Rev. B, 53(5):2691–2700, Feb 1996.
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and Immanuel Bloch. Phase coherence of an atomic mott insulator. Physical
Review Letters, 95(5):050404, 2005.

[50] S. Giorgini, L. P. Pitaevskii, and S. Stringari. Thermodynamics of a trapped
bose-condensed gas. Journal of Low Temperature Physics, 109:309–355, 1997.

170



[51] Phillip L. Gould, George A. Ruff, and David E. Pritchard. Diffraction of atoms
by light: The near-resonant kapitza-dirac effect. Phys. Rev. Lett., 56(8):827–
830, Feb 1986.

[52] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. Quantum
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